Introduction Newell Creek Reservoir Data Organization and Algal Bloom Analysis December 11, 2012...

Preview:

Citation preview

Introduction

Newell Creek Reservoir Data Organization and Algal Bloom Analysis

December 11, 2012City of Santa Cruz Water Department

Presented by CSUMB ENVS 660 Class:Scott Blanco, Brittani Bohlke, Cherie Crawford, Christina David, Thomas DeLay, Shane Keefauver, Gwen Miller, Polly Perkins, Rochelle Petruccelli,

Kirk Post, John Silveus

Instructor: Fred Watson

Goal

The goal of this study was to digitize and organize all

available data provided by the City of Santa Cruz

Water Department for the Newell Creek Reservoir

watershed, and to use the data for analysis of

phytoplankton dynamics.

Overview

I. BackgroundJohn Silveus

II. Public DatabaseRochelle Petruccelli & Shane Keefauver

III.HydrologyThomas Delay & Kirk Post

IV.Algal SummaryCherie Crawford & Gwen Miller

V. Algal Dynamics – Methods, Results, DiscussionChristina David & Scott Blanco

VI.ConclusionsBrittani Bohlke

VII.Questions

Background

• Newell Creek Reservoir is a critical water source for the City of Santa Cruz.

• Loch Lomond is a popular recreation area, with 50,000 visitors a year.

Background

• During summer months, periodic freshwater algal blooms have been observed.

• Blooms can impact water quality, water treatment efficiency, fish populations, and the beneficial recreational use of the reservoir.

http://www.dhs.wisconsin.gov

Public Database

Newell Creek Reservoir watershed data ranges from 1958-2012, of which 1958-1988 were in hardcopy form and required digitization. Data included:• Water Quality• Plankton• Precipitation• Flow• Reservoir Elevation• Wildlife

Data Availability Figure

Public DatabaseExcerpt from public database website

Under Construction!

Hydrology Summary

0

2

4

6

8

1/1/2003 1/1/2004 1/1/2005 1/1/2006 1/1/2007 1/1/2008 1/1/2009 1/1/2010 1/1/2011

Newell Creek Watershed

Prec

ipit

atio

n(in/d

ay)

Newell Creek watershed

0

100

200

300

400

1/1/2003 1/1/2004 1/1/2005 1/1/2006 1/1/2007 1/1/2008 1/1/2009 1/1/2010 1/1/2011

Newell Creek Mainstem

b)

Dis

char

ge

(CFS

)

Newell Creek Mainstem

555

565

575

585

595

1/1/2003 1/1/2004 1/1/2005 1/1/2006 1/1/2007 1/1/2008 1/1/2009 1/1/2010 1/1/2011

Year

Reservoir

Spillway

2003 2004 2005 2006 2007 2008 2009 2010 2011

c)

Elev

atio

n(f

t)

ReservoirSpillway

a)

470

490

510

530

550

570

8 12 16 20 24

Elev

atio

n (f

t)

470

490

510

530

550

570

8 12 16 20 24

470

490

510

530

550

570

8 12 16 20 24

470

490

510

530

550

570

0 3 6 9 12

Elev

atio

n (f

t)

470

490

510

530

550

570

0 3 6 9 12

470

490

510

530

550

570

0 3 6 9 12

Temperature (°C)

DO (mg/ L)

January February March April May June

July August September October November December

2007 (Dry) 2009 (Average) 2010 (Wet)

470

490

510

530

550

570

0 3 6 9 12

Elev

atio

n (f

t)

470

490

510

530

550

570

0 3 6 9 12

470

490

510

530

550

570

0 3 6 9 12

470

490

510

530

550

570

0 10 20 30 40

Elev

atio

n (f

t)

470

490

510

530

550

570

0 10 20 30 40

470

490

510

530

550

570

0 10 20 30 40

0

8

16

24

32

Jan

Feb

Mar

Apr

May Jun

Jul

Aug

Sep

Oct

Nov

Dec

Elev

atio

n (f

t)

08

162432

Jan

Feb

Mar

Apr

May Jun

Jul

Aug

Sep

Oct

Nov

Dec

0

8

16

24

32

Jan

Feb

Mar

Apr

May Jun

Jul

Aug

Sep

Oct

Nov

Dec

Turbidity (NTU)2007 (Dry) 2009 (Average) 2010 (Wet)

Color (CU)

Secchi Depth (ft)

January February March April May June

July August September October November December

470

490

510

530

550

570

6 7 8 9 10

Elev

atio

n (f

t)

470

490

510

530

550

570

6 7 8 9 10

470

490

510

530

550

570

6 7 8 9 10

470

490

510

530

550

570

300 350 400 450 500

Elev

atio

n (f

t)

470

490

510

530

550

570

300 350 400 450 500

470

490

510

530

550

570

300 350 400 450 500

pH2007 (Dry) 2009 (Average) 2010 (Wet)

Conductivity (umhos/ cm)

January February March April May June

July August September October November December

Phytoplankton Summary

Total phytoplankton count and chlorophyll concentration with algaecide applications at Site 2 of the Newell Creek Reservoir.

Digitized phytoplankton data were plotted (2003-2012) from Site 2.

0

20

40

60

80

100

120

140

160

0

2000

4000

6000

8000

10000

12000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Chlo

roph

yll c

once

ntra

tion

(mg/

m3)

Phyt

opla

nkto

n co

unt (

NU/

mL)

Phytoplankton

Algaecide Application

Chlorophyll

List of all plankton taxa that have occurred from 2003-2012.

Algae Flagellate Cyanobacteria Protist/ ProtozoaDiatom Chrysochromulina Agmenellum ProtistAsterionella Phytoconis Anabaena ActinophrysCyclotella Unknown Flagellates Anacystis EuglenaCymbella Dinoflagellate Aphanizomenon ProtozoaFragilaria Ceratium Aphanizomenon gracile Unknown ProtozoanMelosira Peridinium Lyngbya CiliatesNavicula Euglenoid Microcystis ColpodaNitzschia Trachelomonas Oscillatoria Vorticella Pennate Diatom PhormidiumStephanodiscus PlanktolyngbyaSynedra Pseudo AnabaenaTabellaria WoronichiniaUnknown DiatomCryptomonadCryptomonas CryptophyteGolden AlgaeChrysococcus DinobryonMallamonasSynuraGreen AlgaeAnkistrodesmus AnkyraChlamydomonasChlorellaChlorococcumClosteriumCoelastrum EudorinaGolenkiniaMonoraphidiumOocystis Palmella PalmellopsisPediastrumPhytoconisScenedesmusSphaerocystis Staurastrum Volvox

http://www.micrographia.com/specbiol/bacteri/bacter/bact0200/anabae03.htm

http://www.cyanobacteria-platform.com/cyanobacteria.html

Phytoplankton count for Site 2 at Newell Creek Reservoir at the surface of the reservoir, an elevation of 550 ft, and 530 ft.

0

1000

2000

3000

4000

5000

6000

Surface

(573-

576 ft)

0

1000

2000

3000

4000

5000

6000

Phyt

opla

nkto

n

abundan

ce (N

U/m

L)

Cyanobacteria

Algae

Flagellatte

Protist/ Protozoa

550ft

0

1000

2000

3000

4000

5000

6000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

530ft

Plankton Dynamics

Newell Creek Reservoir has experienced recurrent

phytoplankton blooms which have been

monitored and treated to stem high densities

and associated water quality issues.

Erin Stanfield

Environmental factors considered here that can affect bloom density, timing and composition:

• Temperature

• Conductivity

• Dissolved oxygen (DO)

• pH

• Precipitation and flow

• Turbidity and light availability

Limited data available: Nutrients

Plankton Dynamics

Plankton Dynamics

The main phytoplankton of interest for management at Newell Creek Reservoir is cyanobacteria (“blue-green algae”):

Cyanobacteria taxa of interest:• Anabaena spp.• Aphanizomenon spp.• Lyngbya spp.

Plankton DynamicsTop functional groups were ranked based on the minimum NU count treated for a bloom during the study period.

Final groupings: Cyanobacteria, Diatoms, &

Green AlgaeCyanobacteria Anabaena XCyanobacteria Aphanizomenon XCyanobacteria Lyngbya XDiatom Unknown diatom

Diatom NitzchiaDiatom AsterionellaDiatom CyclotellaDiatom FragilariaDiatom MelosiraDiatom Navicula

Flagellatea Unknown flagellate

Flagellatea ChrysochromulinaGreen Algae AnkyraGreen Algae OosystisGreen Algae PalmellaGreen Algae PalmellopsisGreen Algae Sphaerocystis

Flagellatea Chrysochromulina

Flagellatea Unknown flagellate

Reported or inferred

target for algaecide

applicationGeneraFunctional Group

Plankton Dynamics - Methods

1. Time series graphs and select scatter plots of NU plankton counts v. environmental parameters for:

• Anabaena, Aphanizomenon, and Lyngbya (2003-2012)

• Cyanobacteria, diatoms, and green algae (2003-2012)

• Close-up of Anabaena in 2010 (wet year)

Plankton Dynamics - Methods

2. Spearman Rank Correlation tests, NU plankton count v. environmental parameter for these datasets:• Diatom (surface)• Green Algae (surface)• Cyanobacteria (surface, 550 ft, 530 ft)• Cyanobacteria “bloom season” subset

(surface)

Plankton Dynamics - Results

PrecipitationIntensity of bloom may be tied to intensity of nutrient flows delivered by precipitation and surface water flow, however the relationship may not be linear

Plankton Dynamics - Results

0 50 100 150 200 250 300 350 4000

1000

2000

3000

4000

5000

6000

Upper Newell Creek Peak Discharge (cfs)

Cyan

obac

teria

Pea

k Ab

unda

nce

(NU/

mL)

Peak discharge and peak cyanobacterial densityPeak discharge in the preceding water year corresponds with peak cyanobacteria densities (need to assess more years)

Plankton Dynamics - ResultsTemperatureNo discernible patterns or correlations between temperature and bloom intensity at ten year time scale

Plankton Dynamics - Results

Interspecific interactions• Anabaena appears to be the dominant taxa, occurring in every bloom year, seemingly outcompeting Aphanizomenon.

• However in the 2011 bloom season, Aphanizomenon reached high densities, possibly being release from competition with Anabaena following algaecide treatment

Plankton Dynamics - Results

Phytoplankton and environmental interactionsOccurrence of diatoms in the cooler spring “clear-water phase” preceding warmer water cyanobacteria blooms.

Plankton Dynamics - Results

Phytoplankton and environmental interactionsDiatoms occur during higher flow and precipitation periods that precede cyanobacteria dominated low flow and precipitation periods

Plankton Dynamics - Results

2010 Anabaena bloom analysis

Plankton Dynamics - Results

2010 Anabaena bloom analysis (continued)

Plankton Dynamics - Results

Spearman Rank Correlation

• Tests resulted in many significant p-values, most of the correlations (rhos) were weak (<0.25)

rho p-value rho p-value rho p-value rho p-value rho p-value rho p-valueTemperature 0.11 <0.01 0.24 <0.01 0.13 <0.01 -0.02 0.59 -0.7 0.12 -0.25 <0.01Conductivity 0.33 <0.01 0.11 0.02 0.11 0.02 0.01 0.8 -0.01 0.84 0.07 0.09DO 0.09 0.03 0.23 <0.01 -0.09 0.06 -0.04 0.37 0.12 <0.01 -0.1 0.01pH 0.51 <0.01 0.44 <0.01 0.09 0.05 0.22 <0.01Precipitation -0.19 <0.01 -0.07 0.17 -0.02 0.54Upper Newell Creek flow -0.23 <0.01 0.03 0.53 0.1 <0.01Secchi depth -0.39 <0.01 -0.61 <0.01 -0.18 <0.01Turbidity 0.42 <0.01 0.66 <0.01 0.09 0.06 0.12 0.01 -0.03 0.37

Green Algae (Surface)

Cyanobacteria (Surface)

Cyanobacteria (Surface, bloom season)

Cyanobacteria (550 ft elevation

Cyanobacteria (530 ft elevation)

Diatoms (Surface)

Plankton Dynamics - Results

Spearman Rank Correlation

Cyanobacteria versus pH, Secchi depth, and turbidity yielded moderate to strong (0.3-0.5 moderate & >0.5 strong) correlations

• These correlations were largely assumed to be caused BY the blooms, not vice versa

Summary of Results

Precipitation Flow

Nutrients

Temperature

Algaecide Treatment

Cyanobacteria Bloom

- Interspecies interactions (+/-)- Role of turbidity/light availability (+) +/-

Inferences on cause of algal blooms:

Discussion

Future Analysis Recommendations

• Create subset of green algae for bloom periods

• Disconnect between bloom data and environmental parameter changes (precipitation, temperature) – time lag

• Degree days instead of temperature data

Discussion

Data Collection and Processing Recommendations

• Collect turbidity and nutrient load data from Newell Creek inflows

• Collect regular nutrient samples from current reservoir sampling sites

• Consider augmenting NUs with additional biomass-related lab metrics

Discussion

Recommendations for Future Projects

• Analyze temperature for genera-specific bloom predictions

• Further examination of taxa between depths

• In situ environmental probe

Conclusions

• Organized and documented existing data

• Demonstrated one approach to begin comprehensively visualizing and analyzing data

• Provided basis for future analyses

• A few inferences were made - not able to clearly identify causes of blooms

• Nutrient data are needed

Acknowledgements

The CSUMB Advanced Watershed Science and Policy Class of 2012 would like to recognize the following for their contributions to our efforts:

SCWD - Chris Berry, Terry Tompkins, Hugh Dalton, Ryan Basset, Ezekiel Bean

CSUMB - Erin Stanfield and Fred Watson for their endless patience

Questions?

Erin Stanfield