K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen,...

Preview:

DESCRIPTION

Outlook ITER - fusion energy Why? Methods of the analysis C lassical treatment of the collision problem - Trajectory Monte Carlo method Search for Fermi-shuttle ionization Search for Fermi-shuttle ionization Hot electron generation - Examples - C + + Ne - Al q+ + He - N + + Ar - Universal functionl form? Summary

Citation preview

K. Tőkési

1Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU

ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING 

V

p

+

vnxv

Collaborators

D. Tskhakaya D. Coster

Max-Planck-Institut für Plasmaphysik, Garching, German, EU

Institute for Theoretical Physics University of Innsbruck, Innsbruck, Austria, EU

Outlook• ITER - fusion energy • Why?• Methods of the analysis Classical treatment of the collision problem - Trajectory Monte Carlo method• Search for Fermi-shuttle ionizationSearch for Fermi-shuttle ionizationHot electron generationHot electron generation - Examples - C+ + Ne

- Alq+ + He - N+ + Ar

- Universal functionl form? • Summary

ITER

Wide range of atomic data are needed by the ITM-TF (transport, ionization, capture)

Generate energetic electrons

Ping-pong game: heavy paddle – light ballElastic scattering:

mM

VBefore:

MV’ m

vAfter:

mvMVMV '2

212

212

21 ' mvMVMV

Momentum conservation:

Energy conservation:

MmVv

MmMmVV

/112

/1/1'

The final velocity of the light particle in the laboratory frame

Large energy gain

Energy gain in ping-pong game

Projectile velocity (V)EV=0.5 me V2

kicks: 1 2 3 4 5ball velocity: 2V 4V 6V 8V 10Vball energy: 4 EV 16 EV 36 EV 64 EV 100 EV

Charge particles in moving magnetic fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B1

B2

Pioneer: E. Fermi, Phys Rev. 75 (1949)

Pierre Auger project - Argentina 1600 detectors in 3000 km2

Can it be o

bserved in

an atomic scale ?

Ionization in ion-atom collisions

Description:

ZP/ZT

vP/ve

1

0.1 1 10

MO

PWBA

0.1

10

CDW

adiabatic fast

Distorted wawe approximations

Perturbative methods

Molecular development

Coupled channels calculations

?

Non-perturbative models:Classical treatment

Exact quantum models, e.g.,one dimensional „scattering” on a delta potential

Surprise (Wang et al.,1991):

2V

2V

4V

4V

6V

6V

• Classical nonperturbative method – „theoretical experiment”• Treats the many-body interactions – multiple scattering model

3-body CTMC approach

1/ 1)1((r) where,r

1)()1(V(r)

dreHdrZ

Model potential:

Target nucleus

electron

Projectile

V(rTP)

V(rTe)

V(rPe)

v Specific for the present work:-Screened core potentials for both partners (analytic GSZ model pot.)

-Strategies for extracting the relevant information • a three-body balance is bound by E and p conservation;• final-state kinematics does not provide information about the mechanism

Example - advertisementDoubly differential cross sections for ionization of neon by 2.4 MeV C+ ions.

θ= 130°

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurementtarget ionization

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurement

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurementtarget ionizationProjectile Loss

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurementtarget ionizationProjectile LossTarget ion + Projectile loss

C+ + Ne

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

Energy (eV)

0.01 0.1 1 10 100 1000 10000

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryExperimentCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

Energy (eV)

0.01 0.1 1 10 100 1000 10000

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryExperimentCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

Energy (eV)

0.01 0.1 1 10 100 1000 10000

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryExperimentCTMC

0.8 MeV C+ 1.2 MeV C+ 2.4 MeV C+

Tar

get

ioni

zatio

nPr

ojec

tile

io

niza

tion

Tar

get a

nd

proj

ectil

e io

niza

tion

Observation of the Fermi-shuttle process in the angular integrated electron spectra. Separation of multiple scattering components.

1.2 MeV C+ + Ne

Energy (eV)100 1000

Cro

ss se

ctio

n ra

tio

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Experiment / binary theoryCTMC / binary theory

2.4 MeV C+ + Ne

Energy (eV)100 1000

Cro

ss se

ctio

n ra

tio0.0

0.5

1.0

1.5

2.0

2.5

3.0

Experiment / binary theoryCTMC / binary theory

2V 3V 2V

Doubly differential cross sections for ionization of helium by 100 and 200 keV Al3+ ions.

Doubly differential cross sections for ionization of helium by 100 keV Al+ ions.

Slow ion impact (>98% ping-pong)

Experiment

HMI Berlin

CTMC

Debrecen

Long ping-pong game (15 keV N+ + Ar) P-T-P-T-P-T-P-T-P-T

t (a.u.)88 90 92 94

z (a

.u.)

-6

-4

-2

0

2

4

6

8

Ele

ctro

n en

ergy

(a.u

.)

-6

-4

-2

0

2

4

6

8

target nucleusprojectileelectronEnergy (a.u.)

P PP P P

T T T T T

Hopefully this talk has given • An indication of the needs of the fusion community for Atomic data.• Some sense of new developments needs.

-Classical treatments of the atomic collisions reproduce the electron emission spectra.

- The signature of the Fermi shuttle type ionization is identified in the electron spectra.

-Fermi-shuttle multiple scattering is significant or dominant for slow collisions.

Generate energetic electrons

Electron emission in low energy ion-matter interactions might be governed by multiple scattering.

Conclusions

Thank you!

Recommended