Linear State-Space Control Systems - ist.edu.pk

Preview:

Citation preview

Linear State-Space Control Systems

Prof. Kamran Iqbal

College of Engineering and Information Technology

University of Arkansas at Little Rock

kxiqbal@ualr.edu

Course Schedule

Session Topic

1. State space models of linear systems

2. Solution to State equations, canonical forms

3. Controllability and observability

4. Stability and dynamic response

5. Controller design via pole placement

6. Controllers for disturbance and tracking systems

7. Observer based compensator design

8. Linear quadratic optimal control

9. Kalman filters and stochastic control

10. LM in control design

Linear System Stability

Transfer Function

β€’ Consider a linear system

π‘₯ = 𝐴π‘₯ + 𝐡𝑒

𝑦 = 𝐢π‘₯ + 𝐷𝑒

β€’ Transfer function

𝐻 𝑠 = 𝐢 𝑠𝐼 βˆ’ 𝐴 βˆ’1𝐡 + 𝐷 =𝐢 𝐸1𝑠

π‘›βˆ’1+𝐸2π‘ π‘›βˆ’2+β‹―+πΈπ‘˜ 𝐡

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

+ 𝐷

Let 𝑠𝐼 βˆ’ 𝐴 = 𝑠𝑛 + π‘Ž1π‘ π‘›βˆ’1 +β‹―+ π‘Žπ‘› = 𝑠 βˆ’ 𝑠𝑖

πœˆπ‘– … 𝑠 βˆ’ π‘ π‘˜πœˆπ‘˜

Then, using partial fractions

𝐻 𝑠 = 𝐻1 𝑠 + 𝐻2 𝑠 + β‹―+ π»π‘˜ 𝑠 + D

where 𝐻𝑖 𝑠 =𝑅1𝑖

π‘ βˆ’π‘†π‘–+

𝑅𝑖2

π‘ βˆ’π‘†π‘–2 +β‹―+

π‘…πœˆπ‘–π‘–

π‘ βˆ’π‘†π‘–πœˆπ‘–

Asymptotic Stability

β€’ Impulse response

𝐻 𝑑 = 𝐻1 𝑑 + 𝐻2 𝑑 + β‹―+ π»π‘˜ 𝑑 + 𝐷𝛿(𝑑)

where 𝐻𝑖 𝑑 = 𝑅1𝑖 + 𝑅2𝑖𝑑 + β‹―+π‘…πœˆπ‘–π‘‘

πœˆπ‘–βˆ’1

πœˆπ‘–βˆ’1 !𝑒𝑠𝑖𝑑

Then 𝐢𝑒𝐴𝑑𝐡 = 𝑅1𝑖 + 𝑅2𝑖𝑑 + β‹―+π‘…πœˆπ‘–π‘‘

πœˆπ‘–βˆ’1

πœˆπ‘–βˆ’1 !π‘’π‘ π‘–π‘‘π‘˜

𝑖=1

Thus,

𝑅𝑒 𝑠𝑖 < 0 for all 𝑖 β†’ asymptotically stable

𝑅𝑒 𝑠𝑖 > 0 for some 𝑖 β†’ unstable

𝑅𝑒 𝑠𝑖 = 0 for some 𝑖

– 𝑠𝑖 is a simple root β†’ stable but not asymptotically stable

– 𝑠𝑖 is a repeated root β†’ unstable

Asymptotic Stability

β€’ Consider unforced system π‘₯ = 𝐴π‘₯

Then, for any matrix 𝐴

𝐴 = π‘‡βˆ’1𝐽𝑇, 𝑒𝐴𝑑 = π‘‡βˆ’1𝑒𝐽𝑑𝑇

where matrix 𝐽 is block diagonal, and for each Jordan block

π‘₯ = π½πœ†π‘₯, π½πœ† = πœ†πΌ + 𝑁

π‘’π½πœ†π‘‘ = π‘’πœ†π‘‘πΌ 𝑒𝑁𝑑 = π‘’πœ†π‘‘

1 𝑑 … π‘‘π‘˜βˆ’1

π‘˜βˆ’1 !

1 … π‘‘π‘˜βˆ’2

π‘˜βˆ’2 !

… …… 1

Thus, π‘’π½πœ†π‘‘ includes terms of the form π‘‘π‘–π‘’πœ†π‘‘, 𝑖 = 0, … , π‘˜ βˆ’ 1

If 𝑅𝑒 πœ†π‘– < 0, then limπ‘‘β†’βˆž

π‘‘π‘–π‘’πœ†π‘‘ = 0

BIBO Stability

β€’ Bounded Input Bounded Output Stability

𝑦 𝑑 = β„Ž 𝑑 βˆ’ 𝜏 𝑒 𝜏 π‘‘πœπ‘‘

0

𝑦 𝑑 ≀ β„Ž 𝑑 βˆ’ 𝜏 𝑒 𝜏 π‘‘πœπ‘‘

0

If 𝑒(𝑑) < 𝑐, then 𝑦 𝑑 ≀ 𝑐 β„Ž 𝑑 βˆ’ 𝜏 π‘‘πœπ‘‘

0

β€’ A system is BIBO stable if and only if

β„Ž 𝜏 π‘‘πœβˆž

0< 𝑀

β€’ Asymptotic stability β†’ BIBO stability

Lyapunov Stability

β€’ The unforced system π‘₯ = 𝐴π‘₯ is asymptotically stable if for a positive

definite matrix 𝑄 the Lyapunov equation 𝑃𝐴 + 𝐴𝑇𝑃 = βˆ’π‘„ has a

unique positive definite solution

β€’ Proof:

Consider a Lyapunov function: 𝑉 π‘₯ = π‘₯𝑇𝑃π‘₯

Then 𝑉 π‘₯ = βˆ’π‘₯𝑇𝑄π‘₯

𝑉 𝑑 ≀ βˆ’π›Όπ‘‰(𝑑) or 𝑉 𝑑 ≀ βˆ’π›Όπ‘‰(0)

where 𝛼 =πœ†π‘šπ‘–π‘› 𝑄 π‘₯𝑇π‘₯

πœ†π‘šπ‘Žπ‘₯ 𝑃 π‘₯𝑇π‘₯

Alternatively, assume that eigenvalues of A have negative real parts

Then 𝑃 = 𝑒𝐴𝑇𝑑𝑄𝑒𝐴𝑑𝑑𝑑

∞

0 is the unique positive definite solution

Hurwitz Stability

β€’ Let 𝐻 𝑠 =𝑁 𝑠

𝐷 𝑠

where 𝐷(𝑠) = 𝑠𝑛 + π‘Ž1π‘ π‘›βˆ’1 +β‹―+ π‘Žπ‘›βˆ’1𝑠 + π‘Žπ‘›

β€’ Let 𝐻 =

π‘Ž1 π‘Ž3 … …

1 π‘Ž2 … …

π‘Ž1 π‘Ž3 …

1 π‘Ž2 …

be the 𝑛 Γ— 𝑛 Hurwitz matrix

β€’ Then zeros of 𝐷 𝑠 are confined to LHP if and only if all leading

minors of 𝐻 are strictly positive:

𝐷1 = π‘Ž1, 𝐷2 =π‘Ž1 π‘Ž31 π‘Ž2

, … , 𝐷𝑛 = 𝐻 > 0

System Poles and Zeros

β€’ For a SISO system

𝐻 𝑠 =𝑏0𝑠

𝑛+𝑏1π‘ π‘›βˆ’1+β‹―+𝑏𝑛

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

=𝑁 𝑠

𝐷 𝑠

– System zeros: zeros of 𝑁 𝑠

– System poles: zeros of 𝐷(𝑠)

β€’ For a square MIMO system

𝐻 𝑠 =𝐸1𝑠

π‘›βˆ’1+𝐸2π‘ π‘›βˆ’2+β‹―+πΈπ‘˜

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

+ 𝐷

– System zeros: zeros of 𝐻 𝑠

– System poles: zeros of π»βˆ’1 𝑠

Example: Missile Dynamics

Missile dynamics (π‘€π‘ž=0)

𝛼 π‘ž

=𝑍𝛼

𝑉1

𝑀𝛼 0

π›Όπ‘ž +

𝑍𝛿𝑉

𝑀𝛿

𝛿

𝛼𝑁 = 𝑍𝛼𝛼 + 𝑍𝛿𝛿

Add an actuator: 𝛿 =1

πœπ‘’ βˆ’ 𝛿 , then

𝐻 𝑠 =1

πœπ‘ +1 𝑍𝛿𝑠

2+π‘π›Όπ‘€π›Ώβˆ’π‘π›Ώπ‘€π›Ό

𝑠2βˆ’π‘π›Όπ‘‰π‘ βˆ’π‘€π›Ό

Let 𝑉 = 1253𝑓𝑑

𝑠, 𝑍𝛼 = βˆ’4170

𝑓𝑑

𝑠2, 𝑍𝛿 = βˆ’1115

𝑓𝑑

𝑠2, 𝑀𝛼 = βˆ’248

π‘Ÿπ‘Žπ‘‘

𝑠2, 𝑀𝛿 = βˆ’662

π‘Ÿπ‘Žπ‘‘

𝑠2,

𝜏 = 0.01

𝐻 𝑠 = βˆ’1115 𝑠2βˆ’2228

0.01𝑠+1 𝑠2+3.33𝑠+248

Poles: 𝑠 = βˆ’100,βˆ’1.67 Β± 𝑗15.65; zeros: 𝑠 = Β±47.2

𝐺𝑀 = 11.13

Aircraft Longitudinal Motion

Let π‘₯ = Δ𝑒, 𝛼, π‘ž, πœƒ β€²; 𝑒 = 𝛿𝐸

Δ𝑒 = 𝑋𝑒Δ𝑒 + 𝑋𝛼𝛼 βˆ’ π‘”πœƒ + 𝑋𝐸𝛿𝐸

𝛼 =𝑍𝑒

𝑉Δ𝑒 +

𝑍𝛼

𝑉𝛼 + π‘ž +

𝑍𝐸

𝑉𝛿𝐸

π‘ž = 𝑀𝑒Δ𝑒 +𝑀𝛼𝛼 +π‘€π‘žπ‘ž +𝑀𝐸𝛿𝐸

πœƒ = π‘ž

Let 𝑋𝑒, 𝑋𝛼 , 𝑋𝐸 ,𝑍𝑒

𝑉,𝑍𝛼

𝑉,𝑍𝐸

𝑉, 𝑀𝑒, 𝑀𝛼 , π‘€π‘ž, 𝑀𝐸 =

[βˆ’0.0507, βˆ’3.861, 0, βˆ’0.00117, βˆ’0.5164, βˆ’0.0717, βˆ’0.000129, 1.4168,

βˆ’0.4932,βˆ’1.645]

Then,

𝑠 = βˆ’1.705, 0.724, βˆ’0.0394 Β± 𝑗0.2

Dynamic Response: Stability Margins

β€’ Define the return difference

– For SISO systems, 𝑇 π‘—πœ” = 1 + 𝐺(π‘—πœ”)

– For MIMO systems, 𝑇 π‘—πœ” = 𝐼 + 𝐺(π‘—πœ”)

β€’ SISO Stability Margins

– Gain margin: 𝛾 = 𝑇 π‘—πœ”2 , πœƒπΊ πœ”2 = 180Β°

– Phase margin: πœ™ = 2 sinβˆ’1𝑇 π‘—πœ”1

2, 𝐺 π‘—πœ”1 = 1

β€’ MIMO Stability margins:

Let 𝜎 𝑇(π‘—πœ”) β‰₯ 𝛼, then

– 𝐺𝑀 =1

1±𝛼

– 𝑃𝑀 = Β±2 sinβˆ’1𝛼

2

Note, these resulting stability margins are extremely conservative

Dynamic Response: Rise Time

β€’ Define system centroidal rise time as:

𝑑 = π‘‘β„Ž(𝑑)π‘‘π‘‘βˆž0

β„Ž(𝑑)π‘‘π‘‘βˆž0

= βˆ’π»β€² 0

𝐻 0

Let 𝐻 𝑠 = 𝐢Φ(𝑠)𝐡 where Ξ¦ 𝑠 = 𝑠𝐼 βˆ’ 𝐴 βˆ’1

Then 𝐻 0 = βˆ’πΆπ΄βˆ’1𝐡, 𝐻′ 0 = βˆ’πΆπ΄βˆ’2𝐡, 𝑑 =πΆπ΄βˆ’2𝐡

πΆπ΄βˆ’1𝐡

Alternatively, 𝑑 =π΄βˆ’1

𝐴

1/2

– First order system: 𝑑 =1

πœ”0

– Second order system: 𝑑 =2πœ‰

πœ”0, πœ”π΅π‘‘ β‰ˆ 1

– For 𝐻 𝑠 = 𝐻1 𝑠 𝐻2(𝑠), 𝑑 = 𝑑 1 + 𝑑 2

– For 𝐻 𝑠 =𝐾𝐺 𝑠

1+𝐾𝐺(𝑠), 𝑑 𝐢𝐿 =

1

1+𝐾𝐺 0𝑑 𝐺

Recommended