Mitglied der Helmholtz-Gemeinschaft Harald Bolt Forschungszentrum Jülich, 52425 Jülich Energy...

Preview:

Citation preview

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

Harald Bolt

Forschungszentrum Jülich, 52425 Jülich

Energy materials research in the context of the SET Plan

E2C, Budapest, 29.10.2013

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

• Role of materials in energy technologies• Example: Materials for extreme environments• Example: Electrochemical materials for SOFC• Materials for low carbon energy technologies• “Materials for Energy” in Europa

Contents

E2C 2013

Role of Materials in Energy Technologies

ENERGY

E-Generation

Effi

cien

cy

Con

vers

ion

Storage

BatteriesCatalystsNanoporous electrodes

Hydrogen storageFunctional nanomat.Nano-surfaces

Fuel cellsCatalystsNanostructured electrodesHigh mobility membranes

Turbines, Carbon capturSC and dirc. C alloysNanophase ceramicsMembranes

Structural nanomaterials• Lightweight for transportation• High insulation for buildings

Nanoelectronic materials• LED-lighting• Nano-carbon for „cool“ IT

Hydrogen generation(Photo-) catalystsNanostructured electrodes

PhotovoltaicsNanocrystall. semicond.Nanocomposites

J. Gobrecht, H. Bolt, Nanotechnologies for Energy Research, 27.05.2010

Fusion, Fission„Nano steels“CompositesWaste matrices

Example: Materials for extreme environments

Thermal loads in different technologies

power density MW/m2

1

Reentry vehicle

Rolls-Royce Trent 900

85Ariane 5 /Vulcain 2

20

ITER Divertor

2000

ELMs in ITER

PWR-fuel element

Extreme environment

Several severe loading conditions at the same time

Stationary heat flux: up to 20 MW/m2

up to 80 MW/m2 for minutes transient pulses: several GW/m2

up to 150 dpa,generation of H and He

Caused e.g. by• thermal gradients+external loads• dissimilar material compounds

Ions, atoms:• chemically reactive (ox., hydr.)• energetic (up to keV-range)

Space Electronics Fusion Advanced Fission

Spin-Offs

Protection Materials

x x x x

Heat Sink Materials

x x x x

Radiation Res. Materials

x x

Compound Technologies

x x x x x

Application fields and synergies

Potential spin-offs: - thermal hydrogen generation - very high temperature heat exchangers - new brake materials

• European Integrated Project• 37 European partners

(from 13 member states)

Fibre reinforced metal composites

Applications for new heat sink Materials

New Cu-based heat sink materials for different applications

Electronic powermodule - Al-SiC base(Siemens)

Thruster wall (EADS)

Divertor (Ansaldo)

Example: Fusion Demonstration Reactor DEMO

Heat removal requires aheat sink material with

- very high thermal conductivity- mechanical stability at high temperatures (>500°C)

CuCrZr, DS-Cu cannot be applied

Metal-matrix composites: SiCf- or Wf- reinforced Cu

Heat sink materials: Cu-based composites

DEMO – Divertor requirements

• heat flux: 10-15 MW/m2

• coolant: water 300°C or

helium ~ 450°C…600°C• neutron damage ~

30 dpa

New heat sink

materials: - SiCf reinforced Cu

Operation temperature:

300…550°C 100 µm

400 µm

Cu-MMCTube

300 °C

W

Heat flux

SiCf / Cu: Tomographic analysis

SiCf / Cu (20% fibers)

3D view of the voids in the Cu matrix150 µm

SiCf

Cu matrix

voids

V. Paffenholz, IPPM. Schöbel, TUW

Tomography at ESRF, beamline ID-15A:≤ 2 µm/pixel, 10 s / scan

Interface engineering of SiCf–Cu composites

5 µm SiC-fibre

titaniumm

PVD-copper

gal. copper

titanium

PVD-copper

gal. copper

SiC-fibre 20 µm

A. Brendel, IPP

matrix deformation

10 µm

Twin

formation

Interfacial shear strength: 70 MPa Interfacial friction strength: 54 MPa

Push-out experiments

Laser flash measurments

Thermal conductivity of SiC fibre reinforced copper (νf=14%) in fibre direction is comparable with CuCrZr.

0 100 200 300 400 500200

250

300

350

400

CuCrZr ITER Grade MMC with v

f = 30 %

MMC with vf = 14 %

Th

erm

al C

on

du

ctiv

ity in

W/m

K

Temperature in °C

*G. Kalinin, R. Matera / Journal of Nuclear Materials 258-263 (1998) 345-350

1 mm

SiCf-Cu: Thermal conductivity

A. Brendel, S. Lindig, IPP

Example: Electrochemical materials for SOFC

SOFC

Nachbrenner

Reformer

Wasser

Kraftstoff

Luft

Abgas

Abluft

IWV 3

cells

stacks

systemevaluation

systemanalysis

analytics &diagnostics

modelling & simulationmaterials

systemdesign

componentssystem

verification

characterisation

Fuel cells

value chain: from materials to systems

SOFC Development

Solid Oxide Fuel Cell (SOFC)

Relevance of materials technologies

FZ Juelich, IEK, ZEA

Long time stability of SOFC stack

Solid Oxide Fuel Cell (SOFC)

Materials engineering provided step change in durability

24,000 h0.18%/kh

FZ Juelich, IEK, ZEA

Materials for low carbon energy technologies

Role of Materials in Energy Technologies

ENERGY

E-Generation

Effi

cien

cy

Con

vers

ion

Storage

BatteriesCatalystsNanoporous electrodes

Hydrogen storageFunctional nanomat.Nano-surfaces

Fuel cellsCatalystsNanostructured electrodesHigh mobility membranes

Turbines, Carbon capturSC and dirc. C alloysNanophase ceramicsMembranes

Structural nanomaterials• Lightweight for transportation• High insulation for buildings

Nanoelectronic materials• LED-lighting• Nano-carbon for „cool“ IT

Hydrogen generation(Photo-) catalystsNanostructured electrodes

PhotovoltaicsNanocrystall. semicond.Nanocomposites

J. Gobrecht, H. Bolt, Nanotechnologies for Energy Research, 27.05.2010

Fusion, Fission„Nano steels“CompositesWaste matrices

Further advances in energy materials require

functional materials design

modelling/simulation

innovative processing routes (at industrial scale)

characterization: functional, often at atomic level, time resolved

operational testing and in operando characterization

lifetime assessment/prediction

Understanding Functional Energy Materialsrequires characterization on the atomic scale using X-rays, Neutrons and Electrons

J. Gobrecht, H. Bolt, Nanotechnologies for Energy Research, 27.05.2010

Microscopy at the picometer scale

Titan 80-300: primary resolution 80 pm, atom positions: down to 5 pm

aberration correction

Example:HexagonalBSCF-ceramic

Computer simulation of a fullerene molecule (white) moving a helium atom fluid (green) through a carbon nanotube (blue)

Simulation ScienceUnderstanding and optimizing functional nanomaterials by „virtual experiments“

„Materials for Energy“ in Europa

EU Commission: Road mapping exercise to define materials research priorities toward the SET-Plan goals

• 10 Energy materials road maps:a) Windb) Photovoltaicsc) Electricity storaged) Hydrogen and fuel cellse) Concentrated solar powerf) Gridg) Bio Energyh) Novel materials for fossil energy sector (including CCS)i) Materials for nuclear fissionj) Energy efficient buildings

• Chapters on cross-cutting synergies and methods (e.g. modelling/simulation, materials characterization)and on overarching issues (sustainability assessments,standardization)

SET-Plan Materials Road Map (28.11.2011)

Elements and Actors in Europe

SET-Plan: Strategic Energy Technology Plan Materials Roadmap enabling Low Carbon Energy Technologies

ESFRI: European Strategic Forum on Research Infrastructures European Materials Characterization Platform EERA: European Energy Research Alliance Network with joint programmes

EMIRI: European Energy Materials Industrial Research Initiative

EUA-EPUE: Energy Platform of the European Universities Association

EIT-KICs: InnoEnergy and Climate KIC: supporting new business

Documents related to „Materials for low carbon technologies“

http://setis.ec.europa.eu/setis-deliverables/materials-roadmap

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

• Role of materials in energy technologies• Example: Materials for extreme environments• Example: Electrochemical materials for SOFC• Materials for low carbon energy technologies• “Materials for Energy” in Europa

Contents

E2C 2013

Thank you for your attention

Including contributions from:Aurelia Herrmann, Annegret Brendel, Christian Linsmeier, Freimut Koch,Carmen Garcia-Rosales*, Jochen Linke**, Verena Paffenholz, Carmen Höschen;Stephan Lindig, Jeong-ha You, Gabi Matern, Susanne Köppl, Till Höschen, Martin Schöbel***, Stefan Kimmig, and further colleagues

Max Planck Institut für Plasmaphysik*CEIT**Forschungszentrum Jülich***TU Wien

Recommended