Modelling of Grid-Connected Geared 2MW PMSG Wind Turbine Generator (1)

Preview:

Citation preview

1

Modeling of Grid-Connected Di-rect-Driven 2MW PMSG Wind

Turbine Generator System

Presented by YU, DONGYOUNGCHOI, YOUNGSICK

2

CONTENTS• Modeling of Generator System

– Wind Turbine– MPPT– PMSG – FUZZY Controller– FUZZY Observer– SV-PWM

• Simulation Results

• Modeling of Grid-Side System– Super Capacitor– SV-PWM– PLL– Filter

• Simulation Results

3

Total System• Wind Turbine Generation System (with

Grid)

PMSGωd

Vg

Vd

c

Vgrid

Igrid

Wind Tur-bine

TorqueCon-

trollerBack-to-Back

Converter Controller

P, QCon-

troller

Vw : Wind speed Tw : Mech torqueωd : Design speed

ωe : Generator speed

Te : Generator torque

Vg : Generator voltageIg : Generator cur-rent

Vdc : DC-link volt-age Vgrid : Grid voltage

Igrid : Grid current

GridDC

AC DC

AC

TorqueCon-

trollerTower Con-

trol Unit

PitchCon-

troller

Y

-Y Trans.

Ig

Generator Parts

Grid-Side Parts

Tw_g

Te

4

Modeling of Generator SystemPMSG

Tw_g

Te

VgVd

c

Wind Tur-bine

VW

DC

AC

Ig

Ian ,Ibn ,Icn

je3Ø

S1 ~ S6

ωe

SVPWMVqs

Vds

Iqs , Ids

je

θ

θ

ωe

h(ωe)

FUZZYOb-

server

FUZZYCon-

troller

h1, h2

h1, h2

ωd

LT̂

MPPT

Pe (Te * ωg) dt

d

To Grid

Vqs

,Vds

Iqs , Ids

ωe

5

Modeling of Generator System

Grid Side Model Parts

6

Modeling of Generator System• Parameters of Wind Turbine & PMSG

Parameters Unit

Air density [Rho] 1.205 [kg/m3]

Radius of wind turbine rotor [Rd]

38 [m]

Cut-in wind Speed 4 [m/s]

Cut-off wind speed 25 [m/s]

Rated wind speed 11.8 [m/s]

Gear ratio 1

Parameters for Wind Turbine

*refer to the Dynamic Modelling, Simulation and Analysis of an Offshore Variable-Speed Directly-Driven Permanent-Magnet Wind Energy Conver-sion and Storage System (WECSS) - Nicholas P. W. Strachan and Dragan Jovcic,

7

Modeling of Generator System• Parameters of Wind Turbine & PMSG

Parameters Unit

Number of poles [p] 22

Pole pairs [np] 11

Resistance of motor [Rs] 0.08 [Ohm]

Inductance of Generator [Ld =Lq]

0.334 [mH]

Inertia [J] 2.5e6 [kg.m2]

Equivalent Viscous Friction Coefficient [B] 0.001

Magnetic Flux (Electrical) [Lambdam] 136 [Wb]

Parameters for PMSG

8

Modeling of Generator System

Parameters for PMSG

Parameters Values Units

Rated Turbine Power 2 [MW]

Rated RPM of Turbine 42 [RPM]

Air Density [ρ] 1.205 [kg/m3]

Radius of Wind Turbine Rotor (Rt) 38 [m]

Cut-in Wind Speed 4 [m/s]

Cut-off Wind Speed 25 [m/s]

Rated Wind Speed (Vw) 11.8 [m/s]

Gear Ratio (ng) 1:1 -

Number of Poles [p] 22 -

Pole Pairs [np] 11 -

Resistance of Generator [Rs] 0.08 [Ω]

Inductance of Generator [Ls = Lds = Lqs] 0.334 [H]

Equivalent Inertia [J] 2.5e6 [kg·m2]

Equivalent Viscous Friction Coefficient [B] 0.001 [N·m·sec/rad]

Magnetic Flux (Electrical) [λm] 136 [V·sec/rad]

Rated Source-link Voltage [Vdc] 9200 [V]

Source-link Capacitance [Cdc] 3300 [uF]

Grid-Side Converter Output Voltage (Vac) 4000 [V]

LC Filter

Inductance [Lf] 0.55 [mH]

Capacitance [Cf] 727 [uF]

Cut-Off Frequency [fc] 250 [Hz]

Transformer Output Voltage (Vac) 22.9 [kV]

Transformer Ratio 5.7 N1:N2

Connection Type △-Y

9

Modeling of Generator System• Wind Turbine Model Block

Grid Side Model Parts

10

Modeling of Generator System• Wind Turbine Model Block

),Cp(VR0.5P 3w

2W βλπ

Cp is utilization for Wind Power (0<Cp<1)

wdm /VRωλ

11

• Cp Calulation Model Block

Modeling of Generator System

12

• Cp Calulation Model Block

Modeling of Generator System

In MPPT Tracking Area(Vw < 11.8 m/s),Cp should be al-ways maximum value, that is 0.4412.

13

• Pitch Angle Controller

Modeling of Generator System

14

Modeling of Generator System

Wind Speed (m/s)

5 10 15 20 25

2.1MW1.0

0.5

0

Nogeneration

Nogeneration

Acti

ve P

ow

er

(P.U

)

Cut-in wind speed

Cut-off wind speed

Rated (Nominal) wind speed

MPPT Tracking Area

Constant Power Area

Cp

0.4412

Pitch Angle

15

• MPPT Model Block

Modeling of Generator System

Grid Side Model Parts

Modeling of Generator System• MPPT Model Block

3

optp

Genoptr K

MPPT equation

ωr opt : Optimum rotor speed [m/

s]Pgen : measured generated power [W]Kp opt : MPPT gain [W/(m/s}]

For keeping about 2MW stable power

MPPT_late : 10

17

Modeling of Generator System• Kp_opt Gain of each Condition (1)

Wind Speed (m/s)

5 10 15 20 25

2.1MW1.0

0.5

0

Nogeneration

Nogeneration

Acti

ve P

ow

er

(P.U

)

Cut-in wind speed

Cut-off wind speed

Rated (Nominal) wind speed

MPPT Tracking Zone

Constant Power Zone

ω*

2.01e5

Kp_opt

23.99 rad/sec

Tw_g

18

Modeling of Generator System• Kp_opt Gain of each Condition (2)

Wind Speed (m/s)

5 10 15 20 25

2.1MW1.0

0.5

0

Nogeneration

Nogeneration

Acti

ve P

ow

er

(P.U

)

Cut-in wind speed

Cut-off wind speed

Rated (Nominal) wind speed

MPPT Tracking Zone

Constant Power Zone

ω*

2.01e5

1.55e5Kp_opt

23.99 rad/sec

Tw_g

19

Grid Side Model Parts

Modeling of Generator System• PMSM Model Block

20

Modeling of Generator System• Quadratic Mode by equation & sign of

Torque Torque

Eq.

Genera-tor

ModeMotorMode

PMSM eq.

PMSG eq.

SimPowerSys-tem PMSG

Module

Tmech

TloadTe

Te

Tload

Te Tmech

Te

0

PositiveTorque

Nega-tive

Torque

In Negative Torque Con-dition,

PMSM equation is oper-ate

By Generator Mode.

Te : Electrical Torque Tload : Load Torque

Tmech : Mechanical Torque

21

Modeling of Generator System• PMSM eq. & PMSG eq.

PMSM LOAD

ωe

Te Tm

PMSM LOAD

ωe

Te Tm

mmmem TBT

dtd

ωω

meqsm2

e T*)(1/J)2p

((B/J)i/J)2p

)(23

(

ωλω

mmmem TBT

dtd

ωω

meqsm2

e T*)(1/J)2p

((B/J)i/J)2p

)(23

(

ωλω

: PMSM eq

: PMSG eq

22

Modeling of Generator System• PMSM eq. & PMSG eq.

Rs

Lq

Vqs

iqs

eq

ωeLdids

Fig. Equivalent d,q-axis Circuit of PMSM

RsLd

Vds

ids

ωeLqiqs ed =0

: PMSM eq.

: PMSG eq.

iqs

ids

qdsdeqs

qqssqs eiLdt

diLiRV ω

qsqeds

ddssds iLdtdi

LiRV ω

qdsqeqs

qqssqs eiLdt

diLiRV ω

qsqeds

ddssds iLdtdi

LiRV ω

23

Modeling of Generator System• PMSG Model Block in SimPowerSystem module

24

Modeling of Generator System• PMSG Model Block in SimPowerSystem module

25

Modeling of Generator System• Elecrtical Model in SimPowerSystem module

)i)iL(Li()2p

(1.5 dsqsqdqsm λ

Modeling of Generator System• Adc2qd Block

))V3(sin)V(2V(cos31

V bcbcabqs θθ ))V3cos()V(2V(sin31

V bcbcabds θθ

Modeling of Generator System• Adc2qd Block

))V3(sin)V(2V(cos31

V bcbcabqs θθ

))V(V33

(sin)V(V31

)V(V32

(cos cnbncnbnbnan θθ

cnbnan )V

32

cos()V32

cos(Vcos32

πθπθθ

))cosV3()V(2V(sin31

V bcbcabds θθ

))V32

sin()V32

sin(V(sin32

)V31

sincosVsin31

cosV31

sincosVsin31

cosV(sin32

cnbnan

cncnbnbnan

πθπθθ

πθθππθθπθ

Modeling of Generator System• Adc2qd Block

cnbnanqs )V

32

cos()V32

cos(Vcos32

V πθπθθ

cnbnands )V

32

sin()V32

sin(Vsin32

V πθπθθ

cn

bn

an

ds

qs

V

V

V

)32

sin()32

sin(sin

)32

cos()32

cos(cos

32

V

V

πθπθθ

πθπθθ

Modeling of Generator System• qd2abc Block

θθ sinicosii dsqsa ))ii3(sin)i3i(0.5(cosi dsqsdsqsb θθ

Modeling of Generator System• qd2abc Block

θθ sinicosii dsqsa

))ii3(sin)i3i(0.5(cosi dsqsdsqsb θθ

dsqs )i32

sin()i32

cos( πθπθ

bac iii

dsqs )i32

sin()i32

cos( πθπθ

0s

ds

qs

c

b

a

i

i

i

1)32

sin()32

cos(

1)32

sin()32

cos(

1sincos

i

i

i

πθπθ

πθπθ

θθ

Modeling of Generator System• qd2abc Block

0s

ds

qs

c

b

a

i

i

i

21

)32

sin()32

cos(

21

)32

sin()32

cos(

21

sincos

i

i

i

πθπθ

πθπθ

θθ

cn

bn

an

ds

qs

V

V

V

)32

sin()32

sin(sin

)32

cos()32

cos(cos

32

V

V

πθπθθ

πθπθθ

Coordinate transforma-tion is same as PMSG simulink equation’s Co-ordinate transformation axis

axis

f

q axis

d axis

f

r

r

q axis

S

N

b-axisa’

b

a-axis

c’

ac-axis

b’

c

axis

axis

Modeling of Generator System• Mechanical model Block

33

Modeling of Generator System

• PMSG Model Block in PMSM eq.

PMSM LOADωm

Te Tm

mmmem TBT

dtd

ωω

mmqsmm T*(1/J)(B/J)i/J)2p

)(23

(

ωλω

mmqsmm T*)(1/J)2p

()(B/J)2p

(i/J)2p

)(23

()2p

()2p

(

ωλω

meqsm2

e T*)(1/J)2p

((B/J)i/J)2p

)(23

(

ωλω

34

Modeling of Generator System

• Iq, Id Model Block in PMSM eq.

35

Modeling of Generator System

• iq Model Block in PMSM eq.

36

Modeling of Generator System

• PMSG Model Block in PMSM eq.

Fig. Equivalent q-axis Circuit of PMSM

qdsdeqssqsqs

q eiLiRVdt

diL ω

q

em

q

dsde

q

qss

q

qsqs

LLiL

L

iR

L

V

dt

di ωλω

qdsdeqs

qqssqs eiLdt

diLiRV ω

qdsdeqs

qsqssqs eiLdt

diLiRV ω

RsLq

Vqs eq

ωeLdids

iqs

37

Modeling of Generator System

• id Model Block in PMSM eq.

38

Modeling of Generator System

• PMSG Model Block in PMSM eq.

Fig. Equivalent d-axis Circuit of PMSM

qsqeds

ddssds iLdtdi

LiRV ω

qsqeds

ddssds iLdtdi

LiRV ω

qsqedssdsds

d iLiRVdtdi

L ω

d

qsqe

d

dss

d

dsds

L

iL

LiR

LV

dtdi ω

RsLd

Vds

ωeLqiqs ed =0

ids

39

Modeling of Generator System

• PMSG Model Block

qsed

qde

dds

d

sds

dseq

dqs

qe

q

mqs

q

sqs

Leqs2

e

iL

LV

L1

iLR

i

iLL

VL1

Li

LR

i

TJ1

)2p

(JB

iJ1

)2p

(23

ω

ωωλ

ωω

Dynamic equation of PMSM

40

Modeling of Generator System

• PMSG Model Block

Dynamic equation of PMSM

qse11ds8ds7ds

dse10qs6e5qs4qs

L3e2qs1e

ikVkiki

ikVkkiki

Tkkik

ω

ωω

ωω

q

d11

d

q10

d8

d

s7

q6

q

m5

q

s4

32m2

1

LL

k,L

Lk,

L1

k,LR

k

,L1

k,L

k,LR

k

,J1

)2p

(k,JB

k,J1

)2p

(23

k

λ

λ

46

Modeling of Generator System• Signal Generator Model Block

Grid Side Model Parts

47

Modeling of Generator System• FUZZY Controller Block

48

Modeling of Generator System• FUZZY Controller Block

Vde rate limit : 2e4

49

Modeling of Generator System• FUZZY Controller Block (Nonlinear Con-

troller)

qse11ds7

dse10e5qs4

L3e2qs1

T62

T61

Tdsqse

ds2qs1

ikik

ikkik

Tkkik

f(x)

]k00[g,]0k0[g,]ii[xwhere

VgVgf(x)x

ω

ωω

ω

ω

50

Modeling of Generator System• FUZZY Controller Block (Nonlinear Con-

troller)

L3e2qs1e

ds2e1

Tkkik

i(x)h,(x)h,fieldVector

ωω

ω

)Tkki(kk)ikkik(kVkk

Vkk)Tkki(kk)ikkik(k

)Tkki(kk)Vkikkik(k

kik

again.atedifferenti usLet u,input the torelated directly not still is since

L3e2qs12dse10e5qs41eqs61

qs61L3e2qs12dse10e5qs41

L3e2qs12qe6dse10e5qs41

e2qs1e

ωωωω

ωωω

ωωω

ωω

ω

51

Modeling of Generator System• FUZZY Controller Block (Nonlinear Con-

troller)

1ω21ω1d1

de1

L3e2qs12dse10e5qs411e1

111

11

L3e2qs12dse10e5qs41e61

qs

ekekωv

as vinput new thechoosing and,errortrackingabe(t)ω(t)ωeLet

)Tkωki(kk)iωkωkik(kf,ωvwhere,

)f(v)E(xu

)Tkωki(kk)iωkωkik(kωkk1

V

52

Modeling of Generator System• FUZZY Controller Block (Nonlinear Con-

troller)

2ids_dds2

qse11ds72ds2ds2

221

22

qse11ds7ds8

de

qse11ds7dsds8

qse11ds8ds7ds

ds2

ekiv

)ikik(f,iv,Vuwhere,

fv)E(xu

)ikik(ik1

V

ikikiVk

ikVkiki

,iu

ω

ω

ω

ω

53

Modeling of Generator System• FUZZY Controller Block (Nonlinear Con-

troller)

)i(ikiv

)ωω(k)ω(ωkωv

iωkikihL

ωk)iωkωkik(kωkx

ikωhL

TkωkikωhL

h)(LLhL,(x)fxh

fhhL

DerivateLie

vhL

vhLE(x)

u

u

ds_ddsidsds_d2

deω2deω1d1

qse11ds7ds2f

d2dse10e5qs41d2qs

1d12f

L3d2qs1d1f

1)(iff

ifi

n

1i if

22f

112f1

2

1

6

611

6

61

k1

0

0kk1

E(x),k0

0kkE(x)

54

Modeling of Generator System• FUZZY Controller Block (Nonlinear Con-

troller)

22f

112f1

2

1

vhL

vhLE(x)

u

u

dsidsqs11ds7k1

1dω2dω1dd2ds105qs4k1

ds

qs

ds_dds_d

ds_ddsidsds_dqs11ds7k1

1dω2dω1dd2ds105qs4k1

ds

qs

ikωikik

k))ωω(k)ω(ωkωω(kωikωkik

V

V

0,i0,i

)i(ikiωikik

k))ωω(k)ω(ωkωω(kωikωkik

V

V

6

6

6

6

55

Modeling of Generator System• FUZZY Observer Block

56

Modeling of Generator System• FUZZY Observer Block

57

Modeling of Generator System• IPARK Block

58

Modeling of Generator System• IPARK Block

ds

qs

V

V

cos-sin

sincosV

V

θθ

θθ

59

Modeling of Generator System• IPARK Block

ds

qs

V

V

cos-sin

sincosV

V

θθ

θθ

axis

axis

f

q axis

d axis

f

r

r

q axis

S

N

b-axisa’

b

a-axis

c’

ac-axis

b’

c

axis

axis

60

Modeling of Generator System

• Space-Vector PWM Model Block

61

Modeling of Generator System

• Tune for Space-Vector PWM

62

Modeling of Generator System

• Tune for Space-Vector PWM

d axis

q axis

V1

V2

V3

V4

V5 V6

(100)

(110)

(010)

(011)

(001) (101)

(111)

(000)V0

V7

θ

T1

T2

1

2

3

4

5

6

)0,32(

)31,31()31,31(

)0,32(

)31,31(

)31,31(

θV*V max)

VV

(tanVVV

V*V

122*

max

θ

Limitation of SVPWM Voltage is 2/3Vdc.

63

Modeling of Generator System

• Space-Vector PWM Model Block

64

Modeling of Generator System

• Space-Vector PWM

11 VT

T

z

22 VT

T

z

*V

1V

2V

θ0

)6006)to1Sectoris,(that6through1n(where,,TTTT

)3

1ncossin

31n

sincos(V

*VT3T

)sin3n

coscos3n

(sinV

*VT3T

SectoranyatdurationtimeSwitching

21z0

dc

Z2

dc

Z1

θ

πθπθ

θπθπ

65

Modeling of Generator System

• Switching Time of Space-Vector PWM

Sa

V0

Sb

Sc

V1 V2 V7 V7 V2 V1 V0

0

0

0

0

0 0

1 1 1

1

1

1

0

0

0

0

00

111

1

1

1

T0/2 T0/2T0/2 T0/2T1 T2 T2 T1

TS TS

ON Sequence OFF Sequence

66

Modeling of Generator System

• Switching Time of Space-Vector PWM

V1

V2V3

V4

V5V6

(100)

(110)(010)

(011)

(001) (101)

(111)

(000)V0

V7

1

2

3

4

5

6

67

Modeling of Generator System

• Switching Time of Space-Vector PWM

68

Simulation Results• Simulation Result in Variable Speed

69

Simulation Results• Simulation Result in Variable Speed

0 1 2 3 4 5 6 7 810

12

14

16

18

20

Time (sec)

Win

d S

pee

d [

m/s

]

0 1 2 3 4 5 6 7 822.5

23

23.5

24

24.5

Time (sec)

&

d (

rad

/sec

)

d

0 1 2 3 4 5 6 7 8-14

-12

-10

-8

-6

-4x 10

5

Time (sec)

To

rqu

e (N

m)

est TL

TL

Te

0 1 2 3 4 5 6 7 88000

8500

9000

9500

10000

Time (sec)

Vd

c (V

)

0 1 2 3 4 5 6 7 8-450

-400

-350

Time (sec)

i qs (

A)

0 1 2 3 4 5 6 7 8-100

-50

0

50

100

Time (sec)

i ds (

A)

70

Modeling of Grid System• Circuit for Grid Side Part

3-ØLoad

Cv

Lf

Cf

Trans-formerΔ - Y

5.725 : 14kV /

22.8kV

ia

ib

ic

InverterController

ia_PCC

ib_PCC

ic_PCC

ia_grid

ib_grid

ic_grid

ea

eb

ec

Vab_iv

Vbc_iv

Vca_iv

Vab_in

Vbc_in

Vca_tn

22.9kV 3-Ø Line to Line

Voltage

Islanding Protector

71

Modeling of Grid System

Parameters Values Units

Rated Source-link Voltage [Vdc] 9200 [V]

Source-link Capacitance [Cdc] 3300 [uF]

Grid-Side Converter Output Voltage

(Vac)4000 [V]

LC Filter

Inductance [Lf] 0.55 [mH]

Capacitance [Cf] 727 [uF]

Cut-Off Frequency

[fc]250 [Hz]

72

Modeling of Grid System• Vdc equation

Cv Vdc

idciinv

The input DC current of the DC link is cal-culated by dividing the reference power to the DC voltage.

dtiiC

V invdcv

dc

1

Pgen Pout

73

Modeling of Grid System• LC-fillter

uFCthenmHLso

ef

CL

HzkHz

fassume

CLf

ff

offcutff

offcut

ff

offcut

750,55.0,

4.02

1

,25020

5

2

1

6

2

Lf

Lf

Lf

Cf

Cf

CfVab_inv

Vbc_inv

Vca_inv

Vab_in

Vbc_in

Vca_in

74

Modeling of Grid System• LC-fillter Result

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

-6000

-4000

-2000

0

2000

4000

6000

Time(sec)

Va

b In

ve

rte

r [V

]

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

-6000

-4000

-2000

0

2000

4000

6000

Time(sec)

Va

b In

pu

t [V

]

Modeling of Grid Control Sys-tem

75

GridY

-Y Trans.

VcIabc Vab

c

DC

AC

LocalLoad

PI+

-

+ -PI +

+

+

+

+PI+

-

-ωL

ωL

Vc

Vc_Nominal

ids

iqs

Ids_refVds

*

Vqs

*

Vds

Qmeasured

Qref PI+

- iqs_ref

Vqs

iabc

Vab

cidqs

Vdqs

76

Modeling of Grid System• Simulink Model Block Controller Part

77

Modeling of Grid System• Equvalant-Circuit of d-axis

Vds_in

v

Vds_in

Lf ωLfiqs

+-

qsfindsds

invds iLVdt

diLV __

+

-

+

-

ids

From In-veter

ToTrans-former

Cf

78

Modeling of Grid System• Equvalant-Circuit of d-axis

Vqs_in

v

Vqs_in

Lf ωLfids

+- +

-

+

-

ids

From In-veter

ToTrans-former

Cf

dsfinqsqs

invqs iLVdt

diLV __

Phase Locked Loop (PLL)

79

Modeling of Grid

1Sin_Cos

2*picos

sin

Theta

>=

1s

RampGenerator

error w

FrequencyController

1

3ph

The most common PLL technique applied to three phase grid connected systems is based on an algorithm implemented in synchronous reference frame (dq). The structure of the dq PLL algorithm is represented like this:

Va,b,c

Vd*Loop Filter

++

1/s

ωf

f θ ω

αβ

dq abc

αβ

Vd

Vq

PLL con-troller

VCO

Transformation module

-

+

θ

5. PV system Simulation

Where:CloseNeed: Need to CloseCloseNeed: Can CloseCloseOK: Close the switch

Algorithm for closed-swithching:

NOYES

abs(θGrid- θPCC_out)<∆θ1

CloseCan=OFFCloseOK=OFFθPCC_out = θPCC_in

CloseNeed=ON

k=k+1θPCC_out = θPCC_in +k*∆θ2

Initialize CloseNeed=OFF, CloseCan=OFF,CloseOK=OFF, θPCC_out =0, k=0

CloseCan=ON

abs(θGrid)<∆θ3

NO

YES

NO

CloseOK=ON;

YES

DPC with SVPWM and PLL

5. PV system Simulation

DPC with SVPWM and PLL

Theta_Grid_in

Theta_PCC_in

6

CloseOK

5

CloseCan

4

CloseNeed

3

Sin_Cos_PCC_out

2

Theta_PCC_in

1

Theta_Grid_in

cos

sin

Sin_Grid

CloseOK

Theta_PCC_out

Theta_PCC_in

Theta_Grid_in

CloseCan

CloseNeedthupham3

3phTheta

Sin_Cos

3phTheta

Sin_Cos 3

CloseNeed

2

Vabc_3

1

Vabc_Grid

Vabc_Grid

Vabc_3

CloseNeed

Theta_Grid_in

Theta_PCC_in

Sin_Cos_PCC_out

CloseNeed

CloseCan

CloseOK

Swithching Control

CloseNeed

Theta_PCC_in

Theta_Grid_in

CloseOK

CloseCan

Sin_Cos_PCC_outVabc_3

Vabc_Grid

CloseNeed

82

Iqds

Modeling of Grid System

DC

AC

From Generator

SVPWM

S1 ~ S6

Y

-Y Trans.L-C FilterVgrid

Igrid

Grid

POWERCon-

troller( PI )

θ^

Vqs

Vds

je

Vdc

X grid

je3Ø

Ia ,Ib ,Ic

Va ,Vb, Vc

Vqd

s PLL

LocalLoad

• Block Diagram of Normal Mode (Grid Connected)

PQ Load

PQ PCC PQ Grid

83

Modeling of Grid System• Simulink Model Block Normal Mode (Grid Connected)

84

Modeling of Grid System• Simulation Result Normal Mode (Grid Connected) LOAD

0.5 0.55 0.6 0.65 0.7 0.75 0.8-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_Lo

ad [V

]

V

a_Load [V]

Vb_Load

[V]

Vc_Load

[V]

0.5 0.55 0.6 0.65 0.7 0.75 0.8-100

-50

0

50

100

Time(sec)

i abc_

Load

[A]

ia_Load

[A]

ib_Load

[A]

ic_Load

[A]

0.5 0.55 0.6 0.65 0.7 0.75 0.8-1

0

1

2

3

4x 10

6

Time(sec)

PQ

Load

[W &

Va

r]

P

Load [W]

QLoad

[Var]

85

Modeling of Grid System• Simulation Result Normal Mode (Grid Connected) PCC

0.5 0.55 0.6 0.65 0.7 0.75 0.8-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_P

CC

[V]

V

a_PCC [V]

Vb_PCC

[V]

Vc_PCC

[V]

0.5 0.55 0.6 0.65 0.7 0.75 0.8-200

-100

0

100

200

Time(sec)

i abc_

PC

C [A

]

ia_PCC

[A]

ib_PCC

[A]

ic_PCC

[A]

0.5 0.55 0.6 0.65 0.7 0.75 0.8-1

0

1

2

3

4x 10

6

Time(sec)

PQ

PC

C [W

& V

ar]

P

PCC [W]

QPCC

[Var]

86

Modeling of Grid System• Simulation Result Normal Mode (Grid Connected) Grid

0.5 0.55 0.6 0.65 0.7 0.75 0.8-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_G

rid [V

]

V

a_Grid [V]

Vb_Grid

[V]

Vc_Grid

[V]

0.5 0.55 0.6 0.65 0.7 0.75 0.8-200

-100

0

100

200

Time(sec)

i abc_

Grid

[A]

ia_Grid

[A]

ib_Grid

[A]

ic_Grid

[A]

0.5 0.55 0.6 0.65 0.7 0.75 0.8-1

0

1

2

3

4x 10

6

Time(sec)

PQ

Grid

[W &

Va

r]

P

Grid [W]

QGrid

[Var]

87

Modeling of Grid System• Simulink Result Fault Mode (Stand Alone) PCC

0.7 0.75 0.8 0.85 0.9 0.95 1-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_Lo

ad [V

]

V

a_Load [V]

Vb_Load

[V]

Vc_Load

[V]

0.7 0.75 0.8 0.85 0.9 0.95 1-100

-50

0

50

100

Time(sec)

i abc_

Load

[A]

ia_Load

[A]

ib_Load

[A]

ic_Load

[A]

0.7 0.75 0.8 0.85 0.9 0.95 1-1

0

1

2

3

4x 10

6

Time(sec)

PQ

Load

[W &

Va

r]

P

Load [W]

QLoad

[Var]

88

Modeling of Grid System• Simulation Result Fault Mode (Stand Alone) PCC

0.7 0.75 0.8 0.85 0.9 0.95 1-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_P

CC

[V]

V

a_PCC [V]

Vb_PCC

[V]

Vc_PCC

[V]

0.7 0.75 0.8 0.85 0.9 0.95 1-200

-100

0

100

200

Time(sec)

i abc_

PC

C [A

]

ia_PCC

[A]

ib_PCC

[A]

ic_PCC

[A]

0.7 0.75 0.8 0.85 0.9 0.95 1-1

0

1

2

3

4x 10

6

Time(sec)

PQ

PC

C [W

& V

ar]

P

PCC [W]

QPCC

[Var]

89

Modeling of Grid System• Simulation Result Fault Mode (Stand Alone) Grid

0.7 0.75 0.8 0.85 0.9 0.95 1-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_G

rid [V

]

V

a_Grid [V]

Vb_Grid

[V]

Vc_Grid

[V]

0.7 0.75 0.8 0.85 0.9 0.95 1-200

-100

0

100

200

Time(sec)

i abc_

Grid

[A]

ia_Grid

[A]

ib_Grid

[A]

ic_Grid

[A]

0.7 0.75 0.8 0.85 0.9 0.95 1-1

0

1

2

3

4x 10

6

Time(sec)

PQ

Grid

[W &

Va

r]

P

Grid [W]

QGrid

[Var]

90

Modeling of Grid System• Simulink Result Reconnecting Mode LOAD

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_Lo

ad [V

]

V

a_Load [V]

Vb_Load

[V]

Vc_Load

[V]

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-100

-50

0

50

100

Time(sec)

i abc_

Load

[A]

ia_Load

[A]

ib_Load

[A]

ic_Load

[A]

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-1

0

1

2

3

4x 10

6

Time(sec)

PQ

Load

[W &

Va

r]

P

Load [W]

QLoad

[Var]

Command Reconnecting Synchronized PLL

91

Modeling of Grid System• Simulation Result Reconnecting Mode PCC

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_P

CC

[V]

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-200

-100

0

100

200

Time(sec)

i abc_

PC

C [A

]

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-1

0

1

2

3

4x 10

6

Time(sec)

PQ

PC

C [W

& V

ar]

Va_PCC

[V]

Vb_PCC

[V]

Vc_PCC

[V]

ia_PCC

[A]

ib_PCC

[A]

ic_PCC

[A]

PPCC

[W]

QPCC

[Var]

Command Reconnecting Synchronized PLL

92

Modeling of Grid System• Simulation Result Reconnecting Mode GRID

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-4

-2

0

2

4x 10

4

Time(sec)

Vab

c_G

rid [V

]

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7-200

-100

0

100

200

Time(sec)

i abc_

Grid

[A]

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

-1

0

1

2

3

4x 10

6

Time(sec)

PQ

Grid

[W &

Va

r]

P

Grid [W]

QGrid

[Var]

Va_Grid

[V]

Vb_Grid

[V]

Vc_Grid

[V]

ia_Grid

[A]

ib_Grid

[A]

ic_Grid

[A]

Command Reconnecting Synchronized PLL

93

Modeling of Grid System• Simulation Result Reconnecting Mode

1.35 1.4 1.45 1.5 1.55 1.60

2

4

6

8

Time(sec)

Th

eta

Grid

& T

he

taP

CC

[ra

d]

Theta

PCC [rad]

ThetaGrid

[rad]

1.35 1.4 1.45 1.5 1.55 1.60

0.5

1

1.5

2

Time(sec)

Grid

Co

nn

ect

ied

Co

mm

an

d

Command ConnectingSynchronized PLL

Recommended