Nuclear Astrophysicszegers/ebss2011/rehm.pdfNuclear Astrophysics K. E. Rehm Physics Division....

Preview:

Citation preview

Nuclear Astrophysics

K. E. Rehm

Physics Division

Argonne National Laboratory

2x50 minutes for (13.7±0.13)x109

years

(a ratio of 1.39x10‐14

!)

EBSS  MSU 2011

2

Outline•Why astrophysics?

•The life of a star

•Astrophysical jargon: Big Bang nucleosynthesis, Jeans 

criterion, quiescent and 

explosive  burning, reaction rate, Gamow window, 

S‐factor, resonance strength,..

•Examples                                                  (p,) reaction in X‐ray bursts                     

n‐rich nuclei and the r‐process

EBSS  MSU 2011

3

LiteratureC. Rolfs & W. Rodney:

Cauldrons in the Cosmos, University of Chicago Press, 1988

C. Iliadis:

Nuclear Physics of Stars, Wiley 2007

I. Thompson and F. Nunes

Nuclear Reactions for Astrophysics, Cambridge Univ. Press 2009

B2FH:

Burbidge,Burbidge,Fowler, Hoyle: Rev. Mod. Phys. 29, 15(1957)

Annual Review of Nuclear and Particle Physics

Annual Review of Astronomy and Astrophysics

EBSS  MSU 2011

4

Why astrophysics? What is astrophysics?

Forefront science

EBSS  MSU 2011

5

Particle Physics

Atomic Physics

Neutrinos 0.7%

Plasma Physics

Cosmology Nuclear Physics

Gravitation

Dark Energy 73.4%

Dark Matter 22.1%

-mass 0.7%

H, He 4.1%

Heavy Elements 0.07%

Neutrino Physics

Astronomical Observations

EBSS  MSU 2011

6

Lab/Earth Stars

gravitation 9.81 m/sec2 Black hole

magnetic field 91.4 T 10‐100x109

T

Acc. energy 7x1012

eV 1020

eV

density 22.5 g/cm3 1013

g/cm3

‐flux 1020

/sec 1058

in ~1 s

Whatever stars do, they do it to the extreme

EBSS  MSU 2011

7

Nuclear Astrophysics – goals:

•Understanding the birth and death of stars

•Understanding the energy that powers the stars

•Understanding the formation of the elements

EBSS  MSU 2011

8

Nuclear Astrophysics - Challenges:•Extremely small cross sections

•backgrounds

•Reactions involving unstable nuclei

Frontiers:•High-current accelerators

•Underground laboratories

•Gas targets

•Radioactive ion beams

•High efficiency detectors

EBSS  MSU 2011

9

T ~ 109 K,

t ~ 3 min

1H 0.75

2H 2.5x10‐5

3He 4x10‐5

4He 0.23

7Li 5x10‐9

EBSS  MSU 2011

10

Burles, Nollett, Turner, ApJ

EBSS  MSU 2011

11

The elements after the Big Bang The elements today

What the stars did for us

EBSS  MSU 2011

12

C

C

RGMU

2

53

NkTK23

H

C

mMN

Virial

theorem:  2K + U = 0

Collapse: 2K < ‐U

C

C

H

C

RGM

mkTM 2

533

3/1)43(

C

CC

MR

2/12/3 )4

3()5(CH

J mGkTM

Jeans criterion (1902)

EBSS  MSU 2011

13

C

C

RGMU

2

53

NkTK23

H

C

mMN

Virial

theorem:  2K + U = 0

Collapse: 2K < ‐U

C

C

H

C

RGM

mkTM 2

533

3/1)43(

C

CC

MR

2/12/3 )4

3()5(CH

J mGkTM

Jeans criterion (1943)

MJ

= 45M

TK3/2 N‐1/2

For T=3000K and N=6x103

cm‐3

MJ

=105M

EBSS  MSU 2011

14

EBSS  MSU 2011

15

Two paths to ‘cook’ the elements in stars:Slowly (quiescent)

~(109 years)

Example : the sun

hydrogen helium

Fast (explosive)

~( a few seconds)

Example:Supernova

iron

heavy elements

EBSS  MSU 2011

16

Experiments with stable beams and targets:

provide data for BB nucleo-synthesis and quiescent burning scenarios

Need:•High beam intensities

•thick targets, that can tolerate the beams

•low backgrounds

•long runs

EBSS  MSU 2011

17

LUNA Gran Sasso

DUSEL

EBSS  MSU 2011

18

Experiments with radioactive beams:

provide data for explosive burning scenarios:

Need:•Beams of unstable nuclei (low intensities, contaminants)

•thick targets (to compensate for the intensity)

•long runs

EBSS  MSU 2011

19

Targets for experiments with radioactive beams: controlled by stellar abundance pattern

Most reactions induced by:

p,

(16O,12C, n)

EBSS  MSU 2011

20

Critical reactions in nuclear astrophysics

(p,)

(novae, rp‐process)

()

(red giants)

(,p)

(rp‐process)

12C + 12C fusion

(supernovae)

(n,)

(r‐process, s‐process)

GT transitions

(supernovae)

(,n)

(s‐process, red giants)

(p,)

(novae)

(,p), (,n), () (p‐process)

EBSS  MSU 2011

21

Ap,

(v)

In Nature:

v: Maxwellian distribution

EBSS  MSU 2011

22

target A

p,

(with velocity vo )

(vo )

In the laboratory:

EBSS  MSU 2011

23

Reactions between Charged Particles(astrophysical reaction rate, Gamow window, S-factor, resonance strength)

Example: 12C(p,13N

Nc : 12C particles/cm3

Np : protons/cm3

v: relative velocity between C and p

Astrophys. reaction rate: r=Nc •Np • v• p

(v)

EBSS  MSU 2011

24

Plasma: velocity distribution (v)

v

<v>= (v)•v•(v) dv

(<v> reaction rate per particle pair)

Particle densities Ni :

=Ni weight of a particle

=Ni A/NA NA : Avogadro’s Number

Ni =NA /A

Or, for a multiparticle gas with Xi as a mass fraction:

Ni =NA /A Xi

EBSS  MSU 2011

25

Example: particle density in the center of the sun:

~150 g/cm3

Xi =0.73

Np =6.6 1025 particles/cm3

EBSS  MSU 2011

26

In normal stellar matter (not in neutron stars)

i (vi )=4vi2( )3/2 exp(- ) (Maxwellian)

<v>= (v1 )(v2 )(vrel )vrel dv1 dv2

v1 =V + m2 /(m1 +m2 )v V : center-of-mass velocity

v2 =V - m1 /(m1 +m2 )v v : relative velocity (v1 -v2 )

<v>= (V)(v) v (v) dv dV

kTm2 kT

mv2

2

EBSS  MSU 2011

27

Where:

(V)=4V2( M/(2kT))3/2 exp(- MV2/(2kT))

M=m1 +m2

(v)=4v2(/(2kT))3/2 exp(-v2/(2kT))

=m1 m2 /(m1 +m2 )

<v>= (v)v(v)dv

Because (V)dV=1

EBSS  MSU 2011

28

<v>=4( )3/2 v3 (v) exp(- )dv

or

<v>=( )1/2 ( )3/2 (E) E exp(- ) dE

kT

2 kTv

2

2

8

kT1 kT

E

EBSS  MSU 2011

29

vN

QREvNNR

2

121212

2112

1)1(

Reactions/(cm3 sec) in a plasma consisting of N1 and N2 particles/cm3

Rate of energy release (MeV/(cm3 sec)

Life time (sec) of particle 1 in a plasma consisting of N2 particles/cm3

Some useful expressions:

Need to measure (v) (or (E))

EBSS  MSU 2011

30

Need (E):

Non-resonant cross sections resonant cross sections

EBSS  MSU 2011

31

Probability of tunneling through the Coulomb barrier:

P~ exp(-2); 2Z1 Z2 (/Ecm )1/2 ;

in amu, E in keV

EBSS  MSU 2011

32

2.1 Non-resonant Reactions:

=/k2 l

lTl 2)12(

at low energies only l=0 collisions contribute:

=/k2|T0 |2 = /k2 (F,G:Coulomb functions)221

oo GF

With asymptotic values (Abramowitz-Stegun):

~ 1/E exp(-2)

Where =Z1 Z2 e2/(v) Sommerfeld parameter

EBSS  MSU 2011

33

To eliminate the strong energy dependence, one takes out the trivial factors : e-2/E and defines a new parameter S (S-Factor) which contains the ‘non-trivial’ energy dependence:

=S(E)/E e(-2)

S(E)=E e(2)

EBSS  MSU 2011

34

EBSS  MSU 2011

35

With S(E) one can rewrite <v>:

<v>=( )1/2 ( )3/2 S(E)exp(-E/kT-b/E1/2) dE

argument of the exponent:

8

kT1

EBSS  MSU 2011

36

Maximum of the argument at E0 :

E0 =(bkT/2)2/3 with b=(2)1/2 e2Z1 Z2 /

or

E0 =1.22( )1/3 [keV] Gamow peak26

22

21 TZZ

T6 : temperature in 106 K

EBSS  MSU 2011

37

56

22

21 TZZ

System Eo

[keV] [keV] 3He + 3He 21 12.1 49.7

p + 12C 24 12.8 55.4

+ 12C 56 19.6 130.216O + 16O 237 40.4 550.9

Example of Gamow window values

T6

=15 K    T=15x106

K

EBSS  MSU 2011

38

From C. Angulo

EBSS  MSU 2011

39

Example: reactions in the CNO cycle

reaction times long compared to Nuclear reactions occur on stable nuclei

EBSS  MSU 2011

40

Increasing the temperature by a factor of 10:

Reaction times are comparable to decay times.

unstable nuclei become part of the reaction network

EBSS  MSU 2011

41

2.2 Resonance Reactions

EBSS  MSU 2011

42

resonance : Breit-Wigner shape

if = 2k

)12)(12(12

21

JJJ

22 )2/()(

r

fi

EE

J: spin of the resonance

J 1,2 : spin of the particles in the entrance channel

k: wave number

i,f : widths (decay probabilities) in the entrance or exit channel

Er : resonance energy

: total width (i +f +..)

EBSS  MSU 2011

43

<v>=( )1/2 ( )3/2 BW E exp(-E/kT) dE

<v>=( )1/2( ) 3/2 Er exp(-Er /kT) BW (E) dE

8

kT1

8

kT1

EBSS  MSU 2011

44

BW (E) dE = i f /2)

=22/k2 =

=22/k2

: resonance strength

2k

fi

EBSS  MSU 2011

45

<v>=( )3/2 2

exp(-Er /kT)

For several non-overlapping resonances:

<v>=( )3/2 2 i exp(-Ei /kT)

kT2

kT2

High rates for:

1. Large

2. low resonance energies Ei

EBSS  MSU 2011

46

spin-parity selection rules, e.g.14O + : 0+, 1-, 2+,3-..17F(5/2+) + p(1/2+): 2+,3+,1-,2-,..

What are the important levels in the compound nucleus (18Ne)? Example: 14O(,p)17F

Angular momentum barrier:

Vint =Z1 Z2 e2/R +2 l(l+1)/(2R2)

tunneling inhibited for higher l

preference for l=0 transitions

EBSS  MSU 2011

47

Example I:

X-ray bursts –

Reactions on the surface of a neutron star

EBSS  MSU 2011

48

X-ray bursts

~1.5 M

radius ~ 10 km

~ 106-14 g/cm3

T ~ 107 K

donor star

neutron star

accretion disk

normal H, He star

period: hours-100d

distance~ 10-3– 1AU

accumulation rate ~10-8-10-10 M

/y

(50-0.5 kg/cm2/s)

~200 MeV/u

KS 1731-260

D=23 kly

EBSS  MSU 2011

49

X-ray Bursts

•~repetition rate hours-days

•duration of ~10 sec

•E=1038 erg/s (sun 1033 erg/s)

EBSS  MSU 2011

50

56Ni(p,)57Cu

b

T1/2 (56Ni)=6.1d

EBSS  MSU 2011

51

What are the observables? a) Time dependence of the luminosity

EBSS  MSU 2011

52

L. Boirin et al.,

A&A 2007

Observables cnt’d:multiplets

EBSS  MSU 2011

53

Galloway et al., ApJ 601,466(2004)

Observables cnt’d:‘aging’ effects in X-ray bursts

Observations 

in 1997‐98 

and in 2000

EBSS  MSU 2011

54

Observables cnt’d:Energy shift of Fe-absorption line (ionization)

Nature 420, 51

EBSS  MSU 2011

55

Observables cnt’d:Long (‘super’) bursts

Strohmayer & Brown ApJ 566, 1045(2002)

~ 3hrs

Nuclear reactions deeper inside the neutron star

EBSS  MSU 2011

56

0 12

3 45 6

7 8

9 10

111213

14

1516

17181920

2122

2324

25262728

2930

3132

33343536

3738

n (0)H (1)

He (2)Li (3)

Be (4) B (5) C (6) N (7)

O (8) F (9)

Ne (10)Na (11)

Mg (12)Al (13)Si (14) P (15)

S (16)Cl (17)

Ar (18)K (19)

Ca (20)Sc (21)

Ti (22)V (23)

Cr (24)Mn (25)

Fe (26)Co (27)

Ni (28)Cu (29)

Zn (30)Ga (31)

Ge (32)As (33)

( )

X-ray bursts and Nuclear PhysicsTypical rp-process reaction network

(p,)

(,p)

+ decay

Need:•Proof of particle stability

•masses

•T1/2 (+)

•Cross sections

EBSS  MSU 2011

57

Shock front

atmosphere Sedimentation of the reaction products

Egr /mc2=GMNS /(RNS c2) ~ 0.2

•Relativistic treatment

•Three-dimensional

•Rotations

•Turbulences

•Sedimentation

•‘Ashes’ (e.g. 12C) can burn as well

•Magnetic fields

Theoretical treatment of X-ray bursts

FLASH Center ANL

EBSS  MSU 2011

58

Which reactions have been measured?

Direct measurement

Indirect measurement

Under investigation

EBSS  MSU 2011

59

0 12

3 45 6

7 8

9 10

111213

14

1516

17181920

2122

2324

25262728

2930

3132

33343536

3738

n (0)H (1)

He (2)Li (3)

Be (4) B (5) C (6) N (7)

O (8) F (9)

Ne (10)Na (11)

Mg (12)Al (13)Si (14) P (15)

S (16)Cl (17)

Ar (18)K (19)

Ca (20)Sc (21)

Ti (22)V (23)

Cr (24)Mn (25)

Fe (26)Co (27)

Ni (28)Cu (29)

Zn (30)Ga (31)

Ge (32)As (33)

( )

X-ray bursts and Nuclear PhysicsTypical rp-process reaction network

(p,)

(,p)

+ decay

Need:•Proof of particle stability

•masses

•T1/2 (+)

•Cross sections

21Na(p,)22Mg

EBSS  MSU 2011

60

(p,) reactions

Center of activities with radioactive beams

Mainly resonant 

Example  21Na(p,)22Mg (TRIUMF)

S. Bishop et al. PRL90, 162501(2003)

J. d’Auria

et al. PRC69, 065803(2004)

EBSS  MSU 2011

61

Gamow windows

EBSS  MSU 2011

62

Need 200-900 keV 21Na (T1/2 =22.8 s) beams and hydrogen gas target

Reaction studied as: p(21Na,22Mg)21Na

22Mg

EBSS  MSU 2011

63

EBSS  MSU 2011

64

EBSS  MSU 2011

65

EBSS  MSU 2011

66

Conversion from cross section to reaction rate

EBSS  MSU 2011

67

Other Recoil Separators for Astrophysics

Used to measure 21Na(p,)22MgDRAGON at TRIUMF ISAC

ARES at Louvain-la-NeuveUsed to measure 19Ne(p,)20Na

DRS at ORNL HRIBFUsed to measure 17F(p,)18Ne

FMA at ANL ATLASUsed to measure 18F(p,)19Ne

Future: SECAR at NSCL

EBSS  MSU 2011

68

rp-process

Nuclei involved in Astrophysics

EBSS  MSU 2011

69

Example 2:

Nucleosynthesis beyond 56Fe:

(r and s-processes)

Coulomb barrier too high for charged-particle reactions

reactions involving neutrons

from the mass distributions: at least two processes

slow neutron capture (s-process)

rapid neutron capture (r-process)

EBSS  MSU 2011

70

Relative abundances as f(A)

~3% of 56Fe

EBSS  MSU 2011

71

Where does nature produce neutrons in stars?

Charged-particle reactions 13C(,n)16O Q=2.216 MeV (but 12C(,n)15O Q=-8.508)22Ne(,n)25Mg Q=-0.480 MeV

Cross sections for neutron capture

reactions are usually quite large.

(100-5000 mb)

Shell effects!

EBSS  MSU 2011

72

s-process

slow neutron capture process

EBSS  MSU 2011

73

s-process

Nuclei involved in Astrophysics

EBSS  MSU 2011

74

What neutron flux is needed?

Rate equation for a nucleus A with respect to n- capture:

dNA (t)= -NA (t)/A dt

is the rate at which A is converted into A+1,

i.e. NA Nn <v>=-dNA /dt

A Nn =1/<v>

dtdN A

EBSS  MSU 2011

75

n

~1/v <v> ~ constant

~ 100 mb , v ~ 108 cm/sec

Nn ~ 1017 s neutrons/cm3

To have capture times <10y (=•108 s)

Nn > 3x108 neutrons/cm3 (s-process)

EBSS  MSU 2011

76

Nuclei with small n

(e.g. closed shell nuclei) have a large

and form a ‘bottleneck’

resulting in the s process abundance peaks.

EBSS  MSU 2011

77

EBSS  MSU 2011

78

What causes the second peaks?

EBSS  MSU 2011

79

The other peaks in the abundance spectra are shifted downward in mass, but can be explained with a similar mechanism: rapid capture of neutrons.

EBSS  MSU 2011

80

r-process

s-process

rapid neutron capture process

EBSS  MSU 2011

81

For this to happen the n capture has to occur on a much faster time scale: n ~ ms

With Nn ~ 1017

Nn ~ 1020 n/cm3

At which astrophysical sites do we have these neutron densities?

EBSS  MSU 2011

82

Price and Rosswog

Where can we get these high neutron densities?

Neutron star mergers                                            

core‐collaps

supernovae

• Site of the r‐process is unknown

Properties of nuclei in the r‐process path are unknown 

(half‐lives, masses, n‐capture cross sections..)

EBSS  MSU 2011

83

EBSS  MSU 2011

84

S.Wanajo

EBSS  MSU 2011

85

EBSS  MSU 2011

86

EBSS  MSU 2011

87

0

20

40

60

80

100

0 50 100 150

GANIL SPEG CSS2

stable indirect

ISOLDE MISTRAL ISOLTRAP

Other Penning traps CPT (ANL) LEBIT (MSU) JYFLTRAP

neutron dripline(FRDM95)

proton dripline(FRDM95)

GSI ESR-SMS ESR-IMS SHIPTRAP

N

Z

Lunney, NIC-IX, 2006

For the r‐process path we need masses of neutron‐rich nuclei

EBSS  MSU 2011

88

106 103 100 10-310-9

10-8

10-7

10-6

10-5

10-4

JYFL COOL

CPT

ESR SMS

ISOLTRAP

ESRIMS

MISTRAL

CSS2

SPEG

rela

tive

unce

rtain

ty

half life (seconds)

See: Lunney, Pearson & Thibault, Rev. Mod. Phys. 75 (2003) 1021

Most accurate mass measurements with Penning traps

EBSS  MSU 2011

89

B

• constant axial magnetic field

• particle orbits in horizontal plane

• free to escape axially

mqB

c

How a Penning trap works -1

EBSS  MSU 2011

90

How a Penning trap works-2

B

Add an axial harmonic potential to confine particles:

)2

(2

22

2rz

dVV o

EBSS  MSU 2011

91

Motion of ions in a Penning trap

picture from http://isoltrap.web.cern.ch/isoltrap/

242

22zcc

)( BvEqF

Solve for equations of motion:

2mdeV

z

Axial oscillations:

Radial motion:

EBSS  MSU 2011

92

Magnetic field lines outside the Penning trap

Ions from the Penning trap

zFF

0B

0B

MCP

OrbitalEnergy

LinearEnergy

TOFDetection

Penning trap mass spectrometry

35

40

45

50

55

60

-20 -15 -10 -5 0 5 10 15 20

Applied Frequency - 1328698.54 Hz

TOF

( s)

Sample TOF spectrum

EBSS  MSU 2011

93

Penning traps

CPT at ATLAS

SHIPTRAP

ISOLTRAP

JYVLTRAP

EBSS  MSU 2011

94

Need information of n‐rich nuclei in the r‐process path

T1/2

, masses, n‐capture rates

EBSS  MSU 2011

95

T1/2

known

Mass known

RIKEN 2010

RIKEN 2011

CARIBU 2011

A very active field – stay tuned!

EBSS  MSU 2011

96

r-process

sn1006

rp-process

s-process

Nuclear Physics in Astrophysics

EBSS  MSU 2011

97Thanks for listening ‘til the bitter end.

Recommended