On Control of Queueing Networks and The Asymptotic Variance Rate of Outputs

Preview:

DESCRIPTION

On Control of Queueing Networks and The Asymptotic Variance Rate of Outputs. Ph.d Summary Talk Yoni Nazarathy Supervised by Prof. Gideon Weiss. Haifa Statistics Seminar, November 19, 2008. The Problem Domain. PLANT. OUTPUT. Desired: Low Holding Costs Low Resource Idleness - PowerPoint PPT Presentation

Citation preview

1

On Control of Queueing Networks and The Asymptotic Variance Rate

of Outputs

Ph.d Summary Talk

Yoni NazarathySupervised by Prof. Gideon Weiss

Haifa Statistics Seminar,November 19, 2008

2

PLANTOUTPUT

The Problem Domain

Finite Horizon [0,T]

Desired:

1. Low Holding Costs

2. Low Resource Idleness

3. Low Output Variability

3

Queues and NetworksA Brief Survey

4

Mean File Size

1 1 1

Phenomena of Queues

5

Key Phenomena• Stability / instability

• Congestion increases with utilization

• Variability of primitives causes larger queues

• Steady state

• Little’s law

• Flashlight principle

• State space collapse

6

Queueing Networks

7

Multi-Class

=2

8

Infinite Inputs

9

Miracles

10

PLANTOUTPUT

The Problem Domain

Finite Horizon [0,T]

Desired:

1. Low Holding Costs

2. Low Resource Idleness

3. Low Output Variability

11

Sta

cked

Que

ue L

evel

s

time T

Q1

Q2Q3

Trajectory of a single job

Finished Jobs

Server 1Server 2

1

23

3

10

( )T

kk

Q t dtAttempt to minimize:

Near Optimal Finite Horizon Control

12

1 2 3

0

1 1 1 1

0

2 2 1 1 2 2

0 0

3 3 2 2 3 3

0 0

1 3

2

min ( ) ( ) ( )

( ) (0) ( )

( ) (0) ( ) ( )

( ) (0) ( ) ( )

( ) ( ) 1

( ) 1

( ), ( ) 0

T

t

t t

t t

q t q t q t dt

q t q u s ds

q t q u s ds u s ds

q t q u s ds u s ds

u t u t

u t

u t q t

s.t.

Separated Continuous Linear Program (SCLP)

Fluid RelaxationServer 1Server 2

1

23

13

• SCLP – Bellman, Anderson, Pullan, Weiss• Piecewise linear solution• Simplex based algorithm, finite time (Weiss)• Optimal Solution:

0 10 20 30 40

0

5

10

15

203 3

2 2

1 1

1 3

2

(0) (0) 15

(0) (0) 1

(0) (0) 8

1.0

0.25

40

Q q

Q q

Q q

T

3( )q t

2 ( )q t

1( )q t

Fluid Solution

14

3

1

2

3

1

2

3

1

2

3

1

2

0 10 20 30 40

5

10

15

20

25

30

31 1 10 0 1 0 14 4 4 4

{1,2,3} {1,2,3} {1,3} {1}nK

0 { | ( ) 0, }nk nk q t t

{ | ( ) 0, }nk nk q t t

Fluid Tracking1 2 3 4

15

0 10 20 30 400

500

1000

1500

2000

0 10 20 30 400

500

1000

1500

2000

0 10 20 30 400

500

1000

1500

2000

0 10 20 30 400

500

1000

1500

2000

0 10 20 30 400

50

100

150

200

0 10 20 30 400

50

100

150

200

0 10 20 30 400

50

100

150

200

0 10 20 30 400

50

100

150

200

0 10 20 30 400

5

10

15

20

0 10 20 30 400

5

10

15

20

0 10 20 30 400

5

10

15

20

0 10 20 30 400

5

10

15

20

1N

10N

100N

seed 1 seed 2 seed 3 seed 4

Asymptotic Optimality

16

PLANTOUTPUT

The Problem Domain

Finite Horizon [0,T]

Desired:

1. Low Holding Costs

2. Low Resource Idleness

3. Low Output Variability

17 2 ( )Q t

4 ( )Q t

1S

2S

• 2 job streams, 4 steps

• Queues at 2 and 4

• Infinite job supply at 1 and 3

• 2 servers

The Push-Pull Network

1 2

34

1S 2S

2 4( ), ( )Q t Q t• Control choice based on

• No idling, FULL UTILIZATION

• Preemptive resume

Push

Push

Pull

Pull

Push

Push

Pull

Pull

2Q

4Q

18

Configurations• Inherently stable network

• Inherently unstable network

Assumptions

(A1) SLLN

(A2) I.I.D. + Technical assumptions

(A3) Second moment

Processing Times

Previous Work (Kopzon et. al.):

{ , 1,2,...}, 1, 2,3,4jk k j k

1 2

34

1 1lim , a.s. 1, 2,3, 4

nj

kj

nk

kn

2 1 2Var( ) , 1, 2,3,4k k kc k

1 ~ exp( ), 1, 2,3,4k k k

1 2

4 3

1 2

4 3

19

Policies

1 2

4 3

Inherently stable

Inherently unstable

Policy: Pull priority (LBFS)

Policy: Linear thresholds

1 2

4 3

1 2

34

TypicalBehavior:

2 ( )Q t

4 ( )Q t

2,4

1S 2S

3

4

2 1

1,3

TypicalBehavior:

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

5

1 0

2 2 4Q Q

4 1 2Q Q

Server: “don’t let opposite queue go below threshold”

1S

2S

Push

Pull

Pull

Push

1,3

20

KSRS

1 2

34

21

Push pull vs. KSRS

Push Pull

KSRS with“Good” policy

22

Stability Result

( ) Q(t), U(t)X t

1 2

34

Queue Residual

is strong Markov with state space

( )X t

Theorem: Under assumptions (A1) and (A2), X(t) is positive Harris recurrent.

Proof follows framework of Jim Dai (1995)

2 Things to Prove:

1. Stability of fluid limit model

2. Compact sets are petite

Positive Harris Recurrence:

23

PLANTOUTPUT

The Problem Domain

Finite Horizon [0,T]

Desired:

1. Low Holding Costs

2. Low Resource Idleness

3. Low Output Variability

24

Example 1: Stationary stable M/M/1, D(t) is PoissonProcess:( )

Example 2: Stationary M/M/1/1 with . D(t) is RenewalProcess(Erlang(2, )):

Variability of OutputsVariability of Outputs(1)Vt B o

Asymptotic Variance Rate

of Outputs

t

1( , )D t

3( , )D t

t1( , )X t

3( , )X t 2( , )X t

2( , )D t

Var( ( ))D t

V

21 1 1Var( ( ))

4 8 8tD t t e

Var( ( ))D t t

2

3V

m

For Renewal Processes:

25Taken from Baris Tan, ANOR, 2000.

Previous Work: NumericalPrevious Work: Numerical

26

**

* *

VV

V V

BRAVO Effect

27

0 .2 0 .4 0 .6 0 .8 1 .0 1 .2

0 .2

0 .4

0 .6

0 .8

BRAVO Effect: A Phenomena

Using a “renewal-reward” method for regenerative simulation for .V

Queues with Restricted Accessibility (Perry et. al.)

V

28

Summary of ResultsQueueing System Without Losses Finite Capacity Birth Death Queue

Push Pull Queueing Network Infinite Supply Re-Entrant Line

1*

0

K

ii

V v

stable

BRAVO (?) critical

instable

arrivals

service

V

V

V

1 2

Explicit Expressions

for , V V1

1

2

3

kk C

kk C

V

m

V

Diffusion LimitsDiffusion Limits

Matrix Analytic MethodsSimple

29

Infinite Supply Re-entrant Line

4

2

1C

1 3

56

78

10 9

( )D t

2C 3C

4C

2

13

1

: For any stable policy (e.g. LBFS): .k

k C

mkk C

Thm V

1

1Infinite QueuesSupply

1

1

2 21

1

1 {2,..., } ... ,

1 .

Means: ,...,

Variances: ,...,

1, i=2,...,Ii

I

k

k

kk C

i kk C

K C C

C

m m

m

m

30

“Renewal Like”

4

2

1C

1 3

56

78

10 9

2C 3C

4C1

1

2

3

kk C

kk C

V

m

1C

1

6

8

10

Renewal Output1 1 1 1 2 2 2 2 3 3 3 31 6 8 10 1 6 8 10 1 6 8 10

Job 1 Job 2 Job 3

, , , , , , , , , , , ,....x x x x x x x x x x x x

1 1 1 1 2 2 2 3 3 3 31 6 8 10 6 8 1 1 6 8 10

201, , , , , , , , , , , , ,...x x x x x x x x x x xx

31

A Future Direction

32

Finite QRate

1Infinite Q

Rate2

α

α

1

Steady State Total Mean Queue

Sizes

An Implication of BRAVO?

?

IT DOESN’T “WORK

Finite QRate1/4

Rate1/4

Finite Q

Finite Q Infinite QRate

2

Rate1/2

Infinite Q

Poisson(α)

Overflow

Overflows Priority

Infinite QRate

1

α

Steady State Mean Queue

Sizes

11/4

When rate exceeds ¼

overflows of first queue cause the second server to

mostly give priority to the fast

stream.

Non Monotonic Networks

?

34

Now Lets Do!לחיים

Recommended