Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward...

Preview:

Citation preview

Optical characterization of the composition and scatterer size distributions of turbid

liquids from Vis/NIR spectroscopy

W. Saeys, A. Postelmans, R. Watté, R. Van Beers, B. Aernouts

Wouter.saeys@kuleuven.be

Overview• Introduction

• From optical measurements to bulk optical propertieso Double integrating sphereso Spatially resolved spectroscopy

• From scattering spectra to particle size distributiono Shape dependento Shape independento Case study polystyrene particles

• Conclusions 2

Introduction

Light propagation in turbid media

4

Absorption

Scattering

Incident light

Bulk scattering and absorption coefficient• Bulk absorption coefficient µa

o Probability of photon absorption per unit infinitesimal pathlength

• Bulk scattering coefficient µso Probability of photon scattering per unit infinitesimal pathlengtho Non-linear effect on light extinction

5

Anisotropy factor g

Particle << wavelengthAnisotropy = 0Isotrope scattering

Particle ≈ wavelengthAnisotropy ≈ 0.6

Particle > wavelengthAnisotropy → 1

6

Optical properties and product characteristics• Why interest in bulk optical properties? Related to emulsion/suspension characteristics

Bulk optical properties

Chemical

Physical

µa

µs

Chemical composition

Particle size distributionVolume fraction

7

Research hypothesis

Composition

Microstructure

Absorptionµa

Scatteringµs & g

Light propagation

R(t,r)

T(t,r)

Inverse light

propagationmodels

Chemometrics

Inverse microscale

light propagation

models

Bulk optical propertiesFrom optical measurements to BOP

BOP from optical measurements• Calculate BOP from multiple (uncorrelated) measurements

Reflectance & transmittance

o Double integrating spheres (DIS)

o Unscattered transmission (UT)

Multiple distances from

light source

o Spatially resolved spectroscopy (SRS)

10

Double integrating spheres set-upMonochromator

550 – 2250 nm

Aernouts et al., Opt. Express 21 (2013)

Total reflection

Total transmission

Unscatteredtransmission

11

Inverse adding-doubling (IAD)• Find optical properties that correspond to measured

reflection and transmission

• 3 optical measurementso Diffuse reflectiono Diffuse transmissiono Unscattered transmission

• Iterative process

µaµsg

µaµs’

12

Inverse adding-doubling (IAD)Initial guess

BOP

Calculate reflection + transmission

Update BOP

Calculated vs. measuredMatch?

BOP found

Thin slabKnown BOP, reflection, transmission

Adding or Doubling

Correct thickness?

Reflection + transmission found

Summing reflections and transmission contributions

ADDING-DOUBLING

13

15

IAD

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Dif

fuse

ref

lect

ance

M

R

(*1

00

%)

(a)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Dif

fuse

ref

lect

ance

M

R

(*1

00

%)

(b)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

To

tal

tran

smit

tan

ce

MT

(*1

00

%)

(a)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

To

tal

tran

smit

tan

ce

MT

(*1

00

%)

(b)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Un

scat

tere

d t

ran

smit

tan

ce

MU

(*

10

0%

)

(a)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Un

scat

tere

d t

ran

smit

tan

ce

MU

(*

10

0%

)

(b)

A*

G*

500 550 600 650 700 7500

2

4

6

8

10

12

14

Wavelength (nm)

µa (

cm-1

)

(a)

*1

*2

*3

*4

*5

*6

*7

*8

500 550 600 650 700 7500

2

4

6

8

10

12

14

Wavelength (nm)

µa (

cm-1

)

(b)

*1

*2

*3

*4

*5

*6

*7

*8

500 1000 1500 20000

50

100

150

200

Wavelength (nm)

µs (

cm-1

)

(a)

A*

B*

C*

D*

E*

F*

G*

IL

500 1000 1500 20000

50

100

150

200

Wavelength (nm)

µs (

cm-1

)

(b)

A*

B*

C*

D*

E*

F*

G*

IL

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

An

iso

tro

py

fac

tor

(a)

A*

B*

C*

D*

E*

F*

G*

IL

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

An

iso

tro

py

fac

tor

(b)

A*

B*

C*

D*

E*

F*

G*

IL

Aernouts et al., Opt. Express 21 (2013)

0 50 100 1500

2

4

6

8

10

12

14

16

Concentration MB cMB

(M)

a (

cm-1

)

(a)

0.55 mm

1.1 mm

a = 0.1071c

MB

0.75 0.8 0.85 0.9 0.95 1

22

24

26

28

30

32

34

36

Volume concentration water w (m

3/m

3)

a (

cm-1

)

(b)

0.55 mm

1.1 mm

a = -15.75 + 48.76

w

R² = 0.996 (up to 70 µM)

Spatially resolved spectroscopy (SRS)• Detectors at multiple distances from light source

• Interaction history is function of distance do Further from light source

• Lower signal• More interaction with tissue

• Intensity profile R(d)

• Possible for dense samples without dilution

d

16

Estimate BOP from SRS data• Forward light propagation model

o Adding-doubling → no 2D informationo Diffusion approximation → assumptions not valido Monte Carlo simulations → computationally expensiveo Data-based metamodeling approach

• Stochastic Kriging• Train on set of liquid phantoms covering wide range of BOP

17

Watté et al., Opt. Express 21 (2013)

Wavelength by wavelength

18

• Iterative optical properties estimationo Nelder-Mead optimizer for minimization

• Cost function = sum of squared relative errors

o No assumptions on scattering or absorption profiles used

Watté et al., Opt. Express 21 (2013)

600 800 1000 1200 1400 1600

101

102

Wavelength [nm]

µs' [c

m-1

]

Original µs' profile

Estimated µs' profile

Constrained optimization• Include expert knowledge: µs’ as parametric function

o Trade-off smoothness - flexibility

• Minimising cost function over entire wavelength range• Construction of ‘information grid’ to select best combination

19

Watté et al., Opt. Express (2016)

𝜇𝑠′ 𝑊𝐿 = 𝑝1. 𝑒𝑥𝑝 𝑝2.𝑊𝐿 + 𝑝3 + 𝑝4.𝑊𝐿 + 𝑝5.𝑊𝐿

2 + 𝑝6.𝑊𝐿3

Particle size distribution estimationFrom scattering spectra to PSD

Forward problem• Calculate optical properties for known PSD

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

1.4

Radius a (µm)

Re

lative

we

igh

t

discrete

continuous

Mie theory

Discretise PSD

+

MICROSCALE

Physical information• Particle size distribution• Volume fraction scatterers• Refractive indices

MACROSCALE

Bulk optical properties• Bulk absorption coefficient• Bulk scattering coefficient• Anisotropy factor

21

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

µs [

µm

-1]

wavelength [µm]

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

radius [µm]

Inverse estimation PSD

Inverse estimation

polydispersePSD

RegularizationShape dependent Assume shape

Shape independent Smoothness condition

22

Scattering spectraµs, µs’ or g

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

µs [

µm

-1]

wavelength [µm]

Particle Size Distribution (PSD)Volume fraction

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

radius [µm]

Mathematical solutions Non-negative

solutions Conform literature/ measurements

Shape dependent PSD estimation

23

• Assume probability density functiono Monomodal: PSD = logn(μ1,σ1)

o Bimodal: PSD = scale . logn(μ1,σ1) + (1-scale) . logn(μ2,σ2)

• Robust against noise• Limited flexibility

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

radius [µm]

(vo

lum

e b

ase

d)

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

radius [µm]

(vo

lum

e b

ase

d)

Estimate parameter values and volume fraction

Minimize sum of relative least squared errors

Shape independent PSD estimation• Approximate PSD by weighted sum of splines

• Find B-spline weights

o Calculate volume fraction from weights

B-spline basis

Weighted sum B-splines

24

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

radius [µm]

(vo

lum

e b

ase

d)

10-3

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

radius [µm]

𝜇𝑠 𝜆 =

𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥

𝑃𝑆𝐷 𝑟 . 𝜎𝑠 𝑟, 𝜆 𝑑𝑟 =

𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥

𝑗=1

𝑁𝐵

𝑤𝑗 . 𝐵𝑗 𝑟 . 𝜎𝑠 𝑟, 𝜆 𝑑𝑟 =

𝑗=1

𝑁𝐵

𝑤𝑗 . 𝜇𝑠,𝑗 𝜆

Number of splines

Particle radius range

Shape independent PSD estimation• Tikhonov regularization

o Non-negative least squares

• Chahine algorithmo Iterative update spline weights

µs = ∑ wi . µs, spline i Non-smoothness penalty

γ: regularization parameter,strength of penalty

L: regularization matrix,discrete 2nd derivative

• More flexible• Less robust,

regularization needed

25

𝑤𝑗𝑝+1= 𝑤𝑗𝑝.𝜇𝑠, 𝑚𝑒𝑎𝑠 𝜆𝑗

𝜇𝑠, 𝑐𝑎𝑙𝑐𝑝𝜆𝑗

min 𝐴𝑤 − 𝜇𝑠2 𝑤 ≥ 0+𝛾 𝐿𝑤 2,

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

radius [µm]

(vo

lum

e b

ase

d)

reference

estimated

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.005

0.01

0.015

0.02

0.025

wavelength [µm]

µs [

µm

-1]

input

estimated

spline 17

spline 22

spline 23

spline 24

spline 25

spline 28

spline 29

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.005

0.01

0.015

0.02

0.025

wavelength [µm]

µs [

µm

-1]

input

estimated

spline 22

spline 23

spline 24

spline 25

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

radius [µm]

(vo

lum

e b

ase

d)

reference

estimated

Case study polystyrene particles

26

Input PSD BOPForward

simulation Add noise

Input scattering spectrum Estimated PSD

Inverse estimation

Estimated BOP

DIS + UT500-1850 nm

IAD BOP

Laser diffractionDLS

Check

Check

Measured data

Simulated data

Reference PSD

Measured BOP+

Results polystyreneMonomodal shape dependent

27

1 1.5 3 50

2

4

6

8

10

12

radius [µm]

(vo

lum

e b

ase

d)

3µm reference

= 1.5015 = 0.043472

6µm reference

= 3.1259 = 0.066031

10µm reference

= 4.9887 = 0.20495

0.5 0.6 0.7 0.8 0.9 12

3

4

5

6

7

8

9

10x 10

-3

µs [

µm

-1]

wavelength [µm]

3µm input, VF = 0.005

3µm estimated, VF = 0.0047072

6µm input, VF = 0.0075

6µm estimated, VF = 0.010936

10µm input, VF = 0.0075

10µm estimated, VF = 0.0070289

Results polystyreneMonomodal shape dependent

0.6 0.8 1 1.2 1.4 1.6 1.80.65

0.7

0.75

0.8

0.85

0.9

0.95

1

g [

-]

wavelength [µm]

1µm input, VF = 0.75%

1µm estimated

10-1

100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

radius [µm]

(vo

lum

e b

ase

d)

1µm reference

= 0.50673 = 0.083152

28

Results simulated fat in waterBimodal shape dependent bimodal

29

0.5 1 1.5

4

5

6

7

8

9

10

11

x 10-4

µs' [

µm

-1]

wavelength [µm]

0.5 1 1.5

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

µs [

µm

-1]

wavelength [µm]

60s input

60s estimated

bimod input

bimod estimated

10-2

10-1

100

101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

radius [µm]

(vo

lum

e b

ase

d)

60s reference

60s estimated

bimod reference

bimod estimated

Results simulated fat in waterShape independent

30

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.005

0.01

0.015

0.02

0.025

wavelength [µm]

µs [

µm

-1]

Raw reference

Raw estimated

120s reference

120s estimated

480s reference

480s estimated

bimod reference

bimod estimated

10-3

10-2

10-1

100

101

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

radius [µm]

(vo

lum

e b

ase

d)

Raw reference

Raw estimated

120s reference

120s estimated

480s reference

480s estimated

bimod reference

bimod estimated

Applications• Link to product properties and quality attributes

o Viscosity, creaming, mouth feeling/creaminess perception, nutrient uptake...

• Quality monitoring during production and storage

31

Conclusions• Accurate determination of bulk optical properties from

o Reflectance & transmittance data• DIS + UT

o Multiple reflectance measurements• SRS

• Use of BOP for characterizing emulsions/suspensionso Absorption: chemical compositiono Scattering: PSD, volume fraction scatterers

32

Conclusions

33

• PSD estimation from Vis/NIR bulk scattering spectra

• Shape dependent methodo Good estimation if correct choice of probability density

function

• Shape independent methodo Flexible, but more prone to artefactso Good estimation if good regularization and choice B-

spline basis

• Opportunities for (on-line) optical determination of microphysical emulsion/suspension quality

Questions?Contact:www.biophotonics.beWouter.saeys@kuleuven.be

Recommended