Recent results towards verification of measurement uncertainty for CLARREO IR measurements

Preview:

DESCRIPTION

Recent results towards verification of measurement uncertainty for CLARREO IR measurements. John Dykema CLARREO SDT, 2012 Hampton, VA. On-orbit Test/Validation (OT/V) Modules. (Measures instrument line shape). Heated Halo. (used in combination with space view for instrument calibration). - PowerPoint PPT Presentation

Citation preview

Slide 1Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Recent results towards verification of measurement uncertainty for CLARREO IR

measurements

John Dykema

CLARREO SDT, 2012

Hampton, VA

Slide 2Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Viewing configuration providing immunity to polarization effects.

(used in combination with space view for instrument calibration)

(used for blackbody reflectivity and Spectral Response Module)

(Includes Multiple Phase Change Cells for absolute temperature calibration and Heated Halo for spectral reflectance measurement )

Heated Halo

(Measures instrument line shape)

QCL Laser

On-orbit Test/Validation (OT/V) ModulesWisconsin & Harvard Technology Developments Under NASA IIP

Slide 3Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

DARI Testbed (1)

Slide 4Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

QCL Housing: Optics, Thermal Management, Electronics

New kinematic lens mount

Slide 5Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Quantum Cascade Laser Housing – Exploded View

Purge valve

House-keeping sensor unit (T,p,RH)

Relief valve (for use during purge)

Emission window (AR coated ZnSe)

QCL device mounting clamp

Collimating optic/mount

Thermal cold plate

TEC and electrical connection

Mounting structure

Slide 6Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

QCL Electronics and Built-In Housekeeping

Slide 7Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Collimation of 60°-40° output QCL device

AsphereQCL

Collimated Beam

Slide 8Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

QCL Electronics Chassis

Slide 9Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Vacuum and Thermal Management

Slide 10Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

OSRM: TRL 5

QCL w/integrated

housekeeping

Flip mirror

Electronics bus

QCL thermal management

Blackbodies for thermal testing

Chilled ethanol

Laser power meter

Slide 11Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Vacuum Test Results

Slide 12Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Vacuum Test Results (2)

Parameter Run 1 Run 2 Run 3 Run 4 Average

QCL Drive Current Noise 70 A 57 A 54 A 65 A 60 A

QCL Temperature Stability 0.024°C 0.021°C 0.014°C 0.019°C 0.020°C

TEC Current Noise 21 mA 14 mA 5 mA 10 mA 13 mA

Power Stability 0.45% 0.42% 0.33% 0.41% 0.4%

Results of vacuum test runs

Parameter Value

TEC Current, QCL maintained at 1 atm 0.95 A

TEC Current, QCL maintained under vacuum 1.01 A

Thermal requirements for different QCL packaging options

Slide 13Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

DARI Testbed (2)

Slide 14Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

OSRM: TRL 6

System level test with CO2 laser, integrating sphere: an absolute IR lineshape standard

Slide 15Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

OSRM : CO2 to QCL ILS Comparison (1)

QCL, when T and I specifications

are met, matches CO2 laser lineshape

MCT Detector

Slide 16Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

OSRM : CO2 to QCL ILS Comparison (2)

Pyroelectric Detector

Slide 17Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

DARI Testbed ILS

Slide 18Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

OCEM-QCL TRL 6

Surface Treatment Nominal 10 m reflectivity

Aeroglaze Z306 5%

Alion MH3300 10%

AZ Tech RM550IB 3%

Inferring emissivity from laser reflection

Slide 19Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Calibrated, Illuminated BlackbodiesM

CT

Det

ecto

r

Pyr

oele

ctric

Det

ecto

r

Slide 20Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Calculation of Power on Detector

Pyroelectric detector

MCT detector

Aperture at detector 1.8 mm 2.0 mm

Field stop Ø 38 mm 20 mm

Throughput 0.0089 cm2-sr 0.0038 cm2-sr

Power at detector, Z306

(6.6±0.7)×10-7 W (1.2±0.1)×10-7 W

Power at detector, MH2200

(2.4±0.2)×10-6 W (3.6±0.4)×10-8 W

Slide 21Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

div angle

Optical Modeling for OCEM-QCL

Reflected Laser Light to FTS and Detector

Slide 22Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

Compute Cavity Emissivity

Pyroelectric detector estimate

MCT detector estimate

MH2200 = 0.9959 ±0.00004 MH2200 = 0.9951 ±0.00005

Z306 = 0.9989 ±0.00001 Z306 = 0.9988 ±0.00001

f

surfacesurface

surfacecavity

C

1 Cf=39 (Knuteson et al.

J.TECH 2004)

Slide 23Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

QCL Subsystem: Pathway to TRL 7

Slide 24UW & Harvard NASA IIP Activities in Support of CLARREO

Year-2.5 Review, January 31, 2011

TEC Controller

PowerConditioning Switching

RegulatorController

+

-Filter

Setpoint Temperature

Offset

β

OutputPower In+

-

Current Sensing

FB

Slide 25Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

TEC Controller

• Single Supply Operation

• High Efficiency

• No Heat Sink Necessary

• Buffered Temperature Readout

• Remote/Local Setpoint

Slide 26Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

V/I Board

To LASER

ModifiedHowlandCurrentSource

LASERProtection

+

-

InputWaveform

Voltage Monitoring

Current Monitoring

Temperature Monitoring

V

I

T

PowerMonitoring

+VIN

-

IOUT

Slide 27Progress towards Achieving On-Orbit SI Traceability for the CLARREO IR Payload

Hampton, VA, April 10, 2012

V/I Board

• Single Supply Operation

• No Heat Sink Required– (depending on LASER current)

• Multiple Monitoring Options:– LASER Voltage, Current (Power)– LASER Temperature

• ESD Protection

In Situ Temperature

Temporal Drift in Measurement

= Satellite overpass

Spatial Drift in Measurement

First Assessment of Uncertainty Practices

From Immler et al., AMT 2010

Atmospheric Satellite Measurement

Satellites make wavelength-dependent measurements of radiance R: retrieve x (temperature, humidity, clouds, trace gases, surface properies)

01 xRLx

)(xLR

Infrared Profiling Process

Site Atmospheric State Best Estimate

• Radiosondes drift in time and space• Radiosondes ascent time much greater than

satellite measurement length• Solution: use ancillary measurements to

interpolate in space and time• One approach: Tobin et al., “Atmospheric

Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation,” JGR 2006

• See also Calbet et al., AMT, 2011

Tobin 2006 Approach to SASBE

• Two sondes were launched within 2 hours of overpass time

• Interpolate sonde profiles in time with IR-based atmospheric profiling

• Interpolate sonde profiles in space with geostationary measurements

• Perform weighted average of interpolated profiles to get best estimate of atmospheric column

Practical Blackbody:

•Finite Aperture •Temperature Gradients

Blackbody Calibration and Uncertainty

Uncertainty Assessment for Vector Quantities

2211 TTT SASBE

)cov()cov()cov( 2221

21 TTT SASBE

RLJ 1

jiij uu

TJuJx )cov()cov( 0

1 xRLx

Uncertainty Assessment: In Situ Temperature Profile TSASBE

Uncertainty Assessment: Infrared Temperature Profile x

Acknowledgements

• Thanks to NASA for:– IIP funding (ESTO)– IPT funding (LaRC)– SDT funding

Recommended