Role of mechanical CPR and assisted devices concise0314 · 2018. 1. 3. · Role of mechanical CPR...

Preview:

Citation preview

Role of mechanical CPR and/or assisted devices ( ITD, ACD)

Wang, Tzong‐LuenMD, PhD, JM, FESC, FACC, FCAPSC

Professor, College of Medicine, Fu‐Jen Catholic UniversityDirector, Emergency Department, Shin‐Kong Wu Ho‐Su Memorial Hospital

Emeritus President, Taiwan Society of Disaster Medicine Emeritus President, Taiwan Society of Critical Care and Emergency Medicine

Executive Board, Taiwan Society of Emergency Medicine

ALS task force, ILCORPresident, Resuscitation Council of Asia

CEO, National Resuscitation Council of Taiwan

November 22, 1992

+

2006

iCoSTR, Executive Summary & GuidelinesPublished on line

Oct 2015

InternationalConsensus ConferenceFeb.3-7, 2015 Dallas

Oct. 2012Vienna

WorksheetsPosted

2015 Consensus Timeline

Dec. 2010 Porto 

ShorterLockbox

Nov. 2011Orlando

Spring 2014 CanadaApril 2013 

Melbourne

2011 2012 2013 2014 2015 2016

Grade Tables and Summary of Findings  

Posted

Batch and Que old PICO Questions

Continuous Evidence Evaluation Reviews

15 Oct 2015 Science

The ILCOR 2015 International Consensus on CPR and ECC Science With Treatment 

Recommendations

Part 1: Executive Summary Part 2: Evidence Evaluation and Management of Conflicts of Interest Part 3: Adult Basic Life Support and Automated External Defibrillation Part 4: Advanced Life Support Part 5: Acute Coronary Syndromes Part 6: Pediatric Basic Life Support and Pediatric Advanced Life Support Part 7: Neonatal Resuscitation Part 8: Education, Implementation, and Teams Part 9: First Aid

New Development from 2010 to 2015 Adult Basic Life Support 

– The EMS dispatcher plays a critical role in identifying cardiac arrest, providing CPR instructions to the caller, and activating the emergency response. 

– The duration of submersion is a key prognostic factor when predicting outcome from drowning. 

– The fundamental performance metrics of high‐quality CPR remain the same, with an emphasis on compressions of adequate rate and depth, allowing full chest recoil after each compression, minimizing pauses in compressions, and avoiding excessive ventilation. Some additional registry data suggest an optimal range for compression rate and depth. 

– Public access defibrillation programs providing early defibrillation have the potential to save many lives if the programs are carefully planned and coordinated. 

15 Oct 2015 ILCOR Guidelines

New Development from 2010 to 2015 Adult Advanced Life Support 

– While these mechanical CPR devices should not routinely replace manual chest compressions, they may have a role in circumstances where high‐quality manual compressions are not feasible.. 

– New data did not prompt a recommendation to change practice but do provide sufficient equipoise for large RCTs to test whether advanced airways and epinephrine are helpful during CPR. 

– Recent improvements in post‐cardiac arrest care include further delineation of the effects, timing, and components of TTM, and awareness of the need to control oxygenation and ventilation and optimize cardiovascular function. 

– Post–cardiac arrest patients should be treated with a care plan that includes TTM, but there is uncertainty about the optimal target temperature, how it is achieved, and for how long temperature should 

be controlled. g temperature should be controlled.

Major Changes from 2010 to 2015 If waveform capnography not available, non‐waveform 

carbon dioxide detector, esophageal detector device or ultrasound in addition to clinical assessment is an alternative.

Vasopressin has been removed from drug lists for cardiac arrest. 

Use BVM, SGA or tracheal tube during CPR.  Cardiac ultrasound may be considered as an additional 

diagnostic tool to identify potentially reversible causes if not interfering with standard ACLS protocol.  

Mechanical CPR devices can be considered  in difficult circumstances such as limited staff numbers, transport, confined spaces, or during interventions. 

Some special resuscitation is re‐emphasized. 

Major Changes from 2010 to 2015 Coronary angiogram is recommended for all patients with ST 

elevation or hemodynamically or electrically unstable patients without ST elevation.

Identification and correction of hypotension is recommended in the immediate post‐cardiac arrest period.

Target temperature management with a range from 32 to 36ºC for at least 24 h and prevention of rebound fever is acceptable.

Prognostication should be made no sooner than 72 h after TTM or ROSC.

All patients progressing to brain death or circulatory death should be considered candidates for organ donation.  

MECHANICAL CPR DEVICES

2015 PICO

• Among adults who are in cardiac arrest in any setting (P), does do automated mechanical chest compression devices (I), compared with compared with standard manual chest compressions (C), change Survival with Favorable neurological/functional outcome at discharge, 30 days, 60 days, 180 days AND/OR 1 year, Survival only at discharge, 30 days, 60 days, 180 days AND/OR 1 year, ROSC (O)?

Mechanical CPR• This presentation will 

review mechanical CPR devices with a significant share of the market. The design and advantages will be discussed. Ultimately, we would like to know if any of the devices merely save labor or actually save lives.

Gas Driven Piston (Thumper)

Load Distributing Band (AutoPulse)

Gas Piston + Suction cup (LUCAS)

LifeBelt

Mechanical CPR Devices

• Ambulance • Helicopter • Long-distance transportation • Angiography rooms • HAZMAT • Pregnancy • Other Difficult Situations

JAMA. 2006 Jun 14;295(22):2629‐37 

JAMA. 2006 Jun 14;295(22):2629‐37 

JAMA. 2006 Jun 14;295(22):2629‐37 

JAMA. 2006 Jun 14;295(22):2629‐37 

JAMA. 2006 Jun 14;295(22):2629‐37 

JAMA. 2006 Jun 14;295(22):2629‐37 

JAMA. 2006 Jun 14;295(22):2620‐8.

JAMA. 2006 Jun 14;295(22):2620‐8.

Date of download: 6/2/2015 Copyright © 2015 American Medical Association. All rights reserved.

From: Manual vs Device-Assisted CPR: Reconciling Apparently Contradictory Results

JAMA. 2006;295(22):2661-2664. doi:10.1001/jama.295.22.2661

Mechanical CPR devices

• Treatment recommendation– Suggest against routine use of automated mechanical chest 

compression devices to replace manual chest compressions (weak recommendation, moderate quality of evidence)

– Suggest that automated mechanical chest compression devices are a reasonable alternative to high‐quality manual chest compressions in situations where sustained high‐quality manual chest compressions are impractical or compromise provider safety (weak recommendation, low quality evidence)

• Examples include CPR in a moving ambulance where provider safety is at risk, need for prolonged CPR where provider fatigue may impair high‐quality manual compressions (eg hypothermic arrest), and CPR during certain procedures (eg coronary angiography or preparation for extracorporeal CPR)

Load Distributing Band vs. CCPR

• Consensus on Science– For the critical outcome of survival to 1 year, we identified moderate‐quality evidence (downgraded for serious risk of bias) from 1 cluster RCT(Perkins 2015, 947) using the Lund University Cardiac Arrest System (LUCAS) device showing no benefit or harm when compared with manual chest compressions (5.4% versus 6.2%; RR, 0.87; 95% CI, 0.68–1.11). 

Load Distributing Band vs. CCPR

• Consensus on Science– For the critical outcomes of survival at 180 days with good neurologic outcome and survival at 30 days with favorable neurologic outcome, we identified moderate‐quality evidence (downgraded for serious risk of bias) from one RCT(Rubertsson 2014, 53) using a LUCAS device and enrolling 2589 OHCA patients that did not show benefit or harm when compared with manual chest compressions at 180 days (8.5% versus 7.6%; RR, 1.11; 95% CI, 0.86–1.45) or 30 days (7.3% versus 8.1%; RR, 1.11; 95% CI, 0.84–1.45). 

Load Distributing Band vs. CCPR

• Consensus on Science– For the critical outcome of survival to 180 days, we identified moderate‐quality evidence (downgraded for serious risk of bias) from 1 RCT(Rubertsson 2014, 53) using a LUCAS device enrolling 2589 OHCA patients showing no benefit or harm when compared with manual chest compressions where quality of chest compressions in the manual arm was not measured (8.5% versus 8.1%; RR, 1.06; 95% CI, 0.81–1.41). 

Load Distributing Band vs. CCPR

• Consensus on Science– For the critical outcome of survival to hospital discharge with favorable 

neurologic outcome (defined as CPC 1–2 or mRS 0–3), we have identified moderate‐quality evidence (downgraded for serious risk of bias) from 3 RCTs enrolling 7582 OHCA patients showing variable results.(Hallstrom 2006, 2620; Rubertsson 2014, 53; Wik 2014, 741) One study(Hallstrom 2006, 2620‐2628) (n=767) showed harm with the use of a load‐distributing band mechanical chest compression device compared with manual chest compressions (7.5% of patients in the control group versus 3.1% in the intervention group; P=0.006; RR, 0.41; 95% CI, 0.21–0.79). Two other RCTs (Rubertsson 2014, 53; Wik 2014, 741) (n=6820), one using a load‐distributing band and the other using a LUCAS, did not show benefit or harm when compared with manual chest compressions: load‐distributing band study: 4.14% survival in the intervention group versus 5.25% for manual compressions (RR, 0.79; 95% CI, 0.60–1.03); LUCAS: 8.31% intervention versus 7.76% manual compressions (RR, 1.07; 95% CI, 0.83–1.39). 

Load Distributing Band vs. CCPR

• Consensus on Science– For the critical outcome of survival to hospital discharge, we identified 

moderate‐quality evidence (downgraded for serious risk of bias) from 5 RCTs(Hallstrom 2006, 2620; Lu 2010, 496; Smekal 2011, 702; Rubertsson 2014, 53; Wik 2014, 741) enrolling 7734 OHCA patients and 150 IHCA patients showing heterogeneous results. One study of patients with IHCAs(Lu 2010, 496) (n=150) showed benefit with use of a piston device compared with manual chest compressions (32.9% versus 14.7%; P=0.02; RR, 2.21; 95% CI, 1.17–4.17). Two other RCTs(Smekal 2011, 702; Rubertsson 2014, 53) of LUCAS did not show benefit or harm (9.0% versus 9.15%; RR, 0.98; 95% CI, 0.77–1.25 and 8.0% versus 9.72%; RR, 0.82; 95% CI, 0.29–2.33, respectively, for LUCAS versus manual compressions). One large RCT(Wik 2014, 741‐748) (n=4231) using a load‐distributing–band device showed equivalence when compared with high‐quality manual chest compressions (9.34% versus 10.93%; RR, 0.85; 95% CI, 0.71–1.02). 

Load Distributing Band vs. CCPR

• Consensus on Science– For the critical outcome of survival to 30 days, we identified moderate‐

quality evidence (downgraded for serious risk of bias) from 2 RCTs (Rubertsson 2014, 53; Perkins 2015, 947) (n=7060) using the LUCAS device showing no benefit or harm when compared with manual chest compressions and where quality of compressions in the manual arm was not measured (6.3% versus 6.85%; RR, 0.92; 95% CI, 0.73–1.16 and 8.82% versus 8.07%; RR, 1.02; 95% CI, 0.97–1.31, respectively). 

Mechanical CPR vs. CCPR

• Consensus on Science– For the important outcome of ROSC, we identified low‐quality evidence 

(downgraded for serious risk of bias and serious inconsistency) from 7 RCTs enrolling 11 638 cardiac arrest patients (IHCA and OHCA).(Halperin1993, 762; Dickinson 1998, 289; Lu 2010, 496; Smekal 2011, 702; Rubertsson 2014, 53; Wik 2014, 741; Perkins 2015, 947) Two studies(Dickinson 1998, 289; Lu 2010, 496) (n=167) showed benefit with mechanical chest compression devices compared with manual compressions: 14.29% versus 0% (RR, not applicable) and 55.26% versus 37.84% (RR, 1.46; 95% CI, 1.02–2.08), respectively. One study(Wik 2014, 741) (n=4231) showed harm with mechanical devices; however, there was no adjustment for interim analyses: 28.59% versus 32.32% (RR, 0.88; 95% CI, 0.81–0.97). Four studies(Halperin 1993, 762; Smekal 2011, 702; Rubertsson 2014, 53; Perkins 2015, 947) (n=7240) did not show benefit or harm when compared with manual chest compressions: 47.06% versus 17.75% (RR, 2.67; 95% CI, 0.85–8.37), 31.60% versus 31.39% (RR, 1.01; 95% CI, 0.92–1.10), 35.38% versus 34.60% (RR, 1.02; 95% CI, 0.92–1.14), and 40.54% versus 31.94% (RR, 1.27; 95% CI, 0.82–1.96), respectively. 

Mechanical CPR vs. CCPR

Mechanical CPR vs. CCPR

Mechanical CPR vs. CCPR

• Treatment Recommendations – We suggest against the routine use of automated mechanical chest 

compression devices to replace manual chest compressions (weak recommendation, moderate‐quality evidence). 

– We suggest that automated mechanical chest compression devices are a reasonable alternative to high‐quality manual chest compressions in situations where sustained high‐quality manual chest compressions are impractical or compromise provider safety (weak recommendation, low‐quality evidence). 

ITD / ACD

Active Compression Decompression CPR

Metronome Force Gauge

Handle

Suction Cup

Slide courtesy of Keith Lurie, MD

(ITD)Impeding passive inspiratory gas exchange during the chest recoil

phase, yet allowing periodic positive pressure ventilation

A consensus recommendation could not be reached for the use of the ITD when used together with ACD CPR.

2015 PICO

• Among adults who are in cardiac arrest in any setting (P), does does use of an inspiratory ITD during CPR (I), compared with compared with no ITD (C), change Survival with Favorable neurological/functional outcome at discharge, 30 days, 60 days, 180 days AND/OR 1 year, Survival only at discharge, 30 days, 60 days, 180 days AND/OR 1 year, ROSC (O)?

ITD Plus Conventional CPR (I) Versus Conventional CPR (C) 

• Consensus on Science– For the critical outcome of neurologically favorable

survival at hospital discharge (assessed with modified Rankin Scale [mRS] score of 3 or less), there was 1 RCT(Aufderheide 2011, 798) of high quality in 8718 OHCAs that was unable to demonstrate a clinically significant benefit from the addition of the ITD to conventional CPR (RR, 0.97; 95% CI, 0.82–1.15).

– For the critical outcome of survival to hospital discharge, there was 1 RCT(Aufderheide 2011, 798) of high quality in 8718 OHCAs that was unable to demonstrate a clinically significant benefit from the addition of the ITD to conventional CPR (RR, 1; 95% CI, 0.87–1.15).

ITD Plus ACD CPR (I) Versus ACD CPR (C) 

• Consensus on Science– For the critical outcome of neurologically

favorable survival (CPC ≤2) at 12 months, there was 1 publication reporting results from a randomized study(Frascone 2013, 1214) of very low quality (downgraded for very serious risk of bias and serious imprecision) in 2738 OHCAs that was unable to demonstrate a clinically significant benefit from the addition of the ITD to ACD CPR (when compared with conventional CPR: RR, 1.34; 95% CI, 0.97–1.85).

ITD Plus ACD CPR (I) Versus ACD CPR (C) 

• Consensus on Science– For the critical outcome of neurologically

favorable survival (CPC ≤2) at 12 months, there was 1 publication reporting results from a randomized study(Frascone 2013, 1214) of very low quality (downgraded for very serious risk of bias and serious imprecision) in 2738 OHCAs that was unable to demonstrate a clinically significant benefit from the addition of the ITD to ACD CPR (when compared with conventional CPR: RR, 1.34; 95% CI, 0.97–1.85).

ITD Plus ACD CPR (I) Versus ACD CPR (C) 

• Consensus on Science– For the critical outcome of neurologically favorable survival at

hospital discharge, there was 1 RCT(Frascone 2013, 1214) that incorporated the presumed cardiac etiology subset published in 2011(Aufderheide 2011, 301) of very low quality (downgraded for very serious risk of bias, serious inconsistency, and serious imprecision) in 2738 OHCAs that was unable to demonstrate a clinically significant benefit (using CPC ≤2) from the addition of the ITD to ACD CPR (when compared with conventional CPR: RR, 1.28; 95% CI, 0.98–1.69). Similar data (neurologically intact survival at hospital discharge) were also reported that used mRSof 3 or less, and were unable to demonstrate a clinically significant benefit (lower CI was 3 more/1000 in Frascone[number needed to treat, NNT, of 333] and 6 more/1000 [NNT of 167] in Aufderheide).(Aufderheide 2011, 301; Frascone 2013, 1214)

ITD Plus ACD CPR (I) Versus ACD CPR (C) 

• Consensus on Science– For the critical outcome of survival to 12 months,

there were 2 publications reporting results from a single randomized study,(Frascone 2013, 1214) which incorporated the presumed cardiac etiology subset published in 2011,(Aufderheide 2011, 301) of very low quality (downgraded for very serious risk of bias and serious imprecision) in 2738 OHCAs that was unable to demonstrate a clinically significant benefit from the addition of the ITD to ACD CPR (when compared with conventional CPR): Frascone: RR, 1.39 (95% CI, 1.04¬–1.85; lower CI was 2 more/1000; NNT, 500); Aufderheide: RR, 1.49 (95% CI, 1.05–2.12; lower CI was 4 more/1000; NNT, 250).

ITD Plus ACD CPR (I) Versus ACD CPR (C) 

• Consensus on Science– For the critical outcome of survival to hospital discharge,

there were 3 publications reporting results from 2 randomized studies(Wolcke 2003, 2201; Aufderheide2011, 301) (which incorporated the presumed cardiac etiology subset published in 2011 (Aufderheide 2011, 301)) of very low quality (downgraded for very serious risk of bias, serious indirectness, and serious imprecision) in a total of 2948 OHCAs that were unable to demonstrate a clinically significant benefit from the addition of the ITD to ACD CPR (when compared with conventional CPR): Frascone: RR, 1.17 (95% CI, 0.94–1.45); Aufderheide: RR, 1.26 (95% CI, 0.96–1.66); Wolcke: RR, 1.41 (95% CI, 0.75–2.66).

ITD and/or ACD CPR

• Treatment Recommendation – We recommend against the routine use of the

ITD in addition to conventional CPR (strong recommendation, high-quality evidence).

– A consensus recommendation could not be reached for the use of the ITD when used together with ACD CPR.

Ultrasound during CPR

• Treatment recommendation– We suggest that if cardiac ultrasound can be performed without interfering with standard ACLS protocol, it may be considered as an additional diagnostic tool to identify potentially reversible causes (weak recommendation, very‐low‐quality evidence).

TFQO: Clifton Callaway #34EVREV 1: Mayuki Abiki #COI

EVREV 1: Tzong‐Luen Wang #COITaskforce: ALS

eCPR versus Manual CPR(PICO ID #723)

ECPR vs CCPR

Treatment RecommendationsWe suggest using eCPR for select* populations of OHCA (weak recommendation, low quality of evidence). We suggest using eCPR for select* populations of IHCA (weak recommendation, low quality of evidence).

*In making these recommendations we note that the published series used rigorous inclusion criteria to select patients for eCPR, and that our recommendation should apply to similar populations.

Definition

• ECPR: Extracorporeal cardiopulmonary resuscitation

• ECLS: Extracorporeal live support• The rapid deployment of extracorporeal membrane oxygenation (ECMO) to provide immediate cardiovascular support for patients who have cardiac arrest unresponsive to conventional CPR measures.

Morris MC. Crit Care Med. 2004;32(4):1061‐9.

C2015 PICO

• Population: adults who are in cardiac arrest in any setting• Intervention:  the use of extracorporeal CPR techniques 

(eCPR)(including ECMO or cardiopulmonary bypass)• Comparison: manual CPR or mechanical CPR

• Outcomes:– survival to 180 days with good neurological outcome 9‐Critical– survival with favorable neurologic outcome 9‐Critical– survival to hospital discharge with good neurological outcome 8‐Critical– survival to hospital discharge 7‐Critical

– ROSC 6‐Important

ILCOR ALS Task Force: Mayuki Aibiki, Tzong‐Luen Wang

Inclusion/Exclusion& Articles Found

• Inclusions/Exclusions– Included RCTs as well as non‐RCTs – Excluded case reports and series, and also retrospective studies with one arm

• 637 papers retrieved by the electronic search.• Selected  

– 6 non‐RCTs 5 non‐RCTs– 2 RCTs– 3 reviews of note

ILCOR ALS Task Force: Mayuki Aibiki, Tzong‐Luen Wang

Risk of Bias in studies

Risk of Bias in studies

ILCOR ALS Task Force: Mayuki Aibiki, Tzong‐Luen Wang

Evidence

Evidence

Evidence profile table(s)

Evidence profile table(s)

2015 Consensus on Science statements

• For the critical outcome of “neurological outcome at 90 days” after OHCA we have identified very low quality evidence from one non‐RCT enrolling 39 patients showing no benefit (OR 0.22 95% CI 0.04‐1.20). 

• For the critical outcome of “neurological outcome at 180 days” after OHCA we have identified low quality evidence from one non‐RCT enrolling 359 patients showing benefit (OR 0.22 95% CI 0.09‐0.61). 

• For the critical outcome of “neurological outcome at hospital discharge” after IHCAwe have identified very low quality evidence from 3 non‐RCTs enrolling 410 patients showing benefit (OR 0.42 95% CI 0.24‐0.72). 

• For the critical outcome of “neurological outcome at one year” after IHCA we have identified low quality evidence from 2 non‐RCTs enrolling 199 patients showing no benefit (OR 0.54 95% CI 0.24‐1.23). 

2015 Treatment Recommendations

We suggest ECPR is a reasonable rescue therapy for selected*patients with cardiac arrest when initial conventional CPR is failing in settings where this can be implemented (weak recommendation, very‐low‐quality evidence).

*In making these recommendations we note that the published series used rigorous inclusion criteria to select patients for eCPR, and that our recommendation should apply to similar populations.

Knowledge Gaps (eCPR vs mCPR)

• Randomized, double‐blind controlled studies are required for eCPR vs. mCPR, at least for selected population.

Guidelines (ILCOR) 

SEMS IReSS 2016 in Singapore

Guidelines (AHA)  

Brooks SC. Circulation. 2015;132(18 Suppl 2):S436‐43

Guidelines (ERC)  

Monsieurs KG, et al Resuscitation 2015;95:1–80

Outcomes: meta‐analysis

• 20 observational studies from 1990-2007 • A total of 20 publications • 135 patients with witnessed cardiac arrest • Overall survival to hospital discharge 40%

Marcelo G, et al. ASAIO J 2009;55:581–6

Outcomes: meta‐analysis

• 8 observational studies after 2000 • 343 patients with cardiac arrest • Overall survival to hospital discharge 35.9%

Xie A, et al. J Cardiothorac Vasc Anesth. 2015;29:637‐45

Outcomes: IHCA

• 3-year prospectiveobservational study

• 59 patients • Age 18-75 years• Witnessed IHCA of cardiac origin • Undergoing conventional CPR > 10 min • Propensity‐score matched with conventional CPR

Chen YS, et al. Lancet. 2008;372(9638):554‐6

Outcomes: IHCA

Chen YS, et al. Lancet. 2008;372(9638):554‐6

Outcomes: IHCA

Chen YS, et al. Lancet. 2008;372(9638):554‐6

ECPR CCPR

Weaning from ECMO

49% ‐

Survival to discharge

29% 12%

CPC 1 or 2 at discharge

24% 11%

CPC 1 or 2 at one year 

15% 9%

Outcomes: Cardiac Origin

• 7-year retrospectivestudy

• 86 patients • Age 18-74 years• Cardiac arrest of cardiac origin, 49% OHCA • VF on ECG during CPR • Undergoing ALS > 20 min

Kagawa E, et al. Circulation. 2012;126:1605‐13

Outcomes: Cardiac Origin

• Weaning from ECMO: 50%• 30-day survival: 28% • CPC 1 or 2 at discharge: 24%• Age 18-74 years• Survivors: 28% OHCA • Non-survivors: 57% OHCA

Kagawa E, et al. Circulation. 2012;126:1605‐13

Outcomes: CHEER

• Prospective study• 26 patients

– 11 OHCA – 15 IHCA

• Age 18-65 years• Initial rhythm: VF• CPR > 30 min 

Stub D, et al. Resuscitation. 2015;86:88‐94

Outcomes: CHEER

• Mechanical CPR with Autopulse• 2 liters ice-cold saline• ECMO immediately at arrival to ER• Cardiac arrest to ECMO: 56 min (40-85)• Arrival to ECMO flow: 20 min (15‐30) • Weaning from ECMO: 54% • Hospital discharge: 54% (IHCA 60%, OHCA 45%) • CPC1 of survivors: 100%

Stub D, et al. Resuscitation. 2015;86:88‐94

Outcomes: OHCA

• 3-year prospectivestudy

• 26 hospitals ECPR20 non-ECPR

• VF/VT initial ECG, 20‐70 years• Hospital arrival within 45min after EMS call 

Sakamoto T, et al, Resuscitation. 2014;85:762‐8

Outcomes: OHCA

Sakamoto T, et al, Resuscitation. 2014;85:762‐8

ECPR Non‐ECPR

Patient No.  260 194

Time from EMS call to arrival

29 min  30 min

CPC 1 or 2 at 6months 

12.4% 3.1%

Patient Selection

• Accidental hypothermia – ECPR associated with 6.6‐fold survival 

• Intoxication: case reports with good outcome – Beta‐blockers– Calcium channel antagonists– Antiarrhythmics– Tricyclic antidepressants– Benzodiazepines

Patient Selection

Poppe M, et al. Resuscitation 2015;91:131–6

• VICAR study• Age < 75 years• Witnessed OHCA• Basic life support• VF/pVT• No ROSC within 15 min of ALS

Patient Selection

Poppe M, et al. Resuscitation 2015;91:131–6

Prognostication 

• No flow time 

Prognostication 

• Time elapse until ECMO‐flow

Prognostication 

• Time of CPR

Prognostication 

• Serum lactate 

Prognostication • No flow time• VF/VT at initial ECG• Cardiac origin• Signs of life

– movement, respiration, pupillary response

• Time to ECMO flow– No differences IHCA/OHCA when adjusted for time

• ETCO2>10 mmHg• Lactate levels

Summary 

• Only small non‐randomized studies• Survival in ECPR ranges from 4% to 54%• Decision for ECMO after 15‐20 min• ECMO should start within 60 min• Need for efficient ECMO rescue teams for IHCA and OHCA

ConclusionWho will benefit from eCPR?   

• Age: 18‐65 (75) years • Etiology: 

– Cardiac origin– Accidental Hypothermia– Intoxication  

• VT/pVF• Shorter time of CPR• Shorter time elapse to ECMO flow

– IHCA vs OHCA

• Bridge to definitive treatment (PCI, pulmonary thrombectomy, heart transplantation…)_

THANK YOU

Tzong‐Luen Wang, MD, PhD, JM, FESC, FACCallen2183@gmail.com

Recommended