Select/Special Topics in Atomic Physics · 2017-08-04 · contravar ian t xxx x xyz ct ... Time...

Preview:

Citation preview

P. C. Deshmukh Department of PhysicsIndian Institute of Technology MadrasChennai 600036

pcd@physics.iitm.ac.in Unit 3(i) Lecture 13

Relativistic Quantum Mechanics of the

Hydrogen Atom - 1References: RQM by Bjorken and Drell

and RQM by Greiner

Select/Special Topics in Atomic Physics

August‐September 2012  PCD STiAP Unit 3 1

August‐September 2012  PCD STiAP Unit 3 2

( )4 1 4 1

2

4 4i c mc e

t × ××

∂ψ = α π + β + φ ψ

∂i

2 2 2 24 4

2 2 2 2

00

ii

i× ×

×× ×

⎡ ⎤σα = ⎢ ⎥σ⎣ ⎦

2 2 2 2

2 2 2 2

1 00 1

× ×

× ×

⎡ ⎤β = ⎢ ⎥−⎣ ⎦

Electron spin requires two components,- but Dirac equation admits a wavefunction with 4-components.

Anti-matter / negative energy solutions

2 2

14spin orbit

e VHm c r r−

∂= σ ⋅

∂Some questions about relativistic effects in atomic physics that may have concerned you:

Where does this come from?

Dirac equation

What is all this about?

ep Ac

⎛ ⎞π = −⎜ ⎟⎝ ⎠

Unit 3

Relativistic Quantum Mechanics of the

Hydrogen Atom

Unit 3(i)

First: Transition from Non-relativistic

to Relativistic Dynamical Variables

Then: quantization!

August‐September 2012  PCD STiAP Unit 3 3

Galilean relativity

'(( )) cr u tr tt = +( )r t

OI

O’

XI

X’

Y’

Z’

ZI

YI

'( )r t '

= + cd rdt

rd

udt' I cO O u t=F

F’

'cudr r

tdtdd

− =

August‐September 2012  PCD STiAP Unit 3

: constant velocity

cu

4

Aarav baby on treadmill.flv

( http://www.youtube.com/watch?v=odJqqXdqJe8 )

August‐September 2012  PCD STiAP Unit 3 5

What is the velocity of the oncoming car?

……… relative to whom?

What would happen if

the object of your

observations is LIGHT?

'cudr r

tdtdd

− =

August‐September 2012  PCD STiAP Unit 3 6

z'e

“Light (EM waves) travels at the constant speed in all inertial frames of references”

0 0

1c= μ ε

v

xe x'e

y'e

ze

ye

~~~~

The rocket frame moves toward the right at a constant velocity where 0<f<1.

OIInertial frame

RL

COUNTER-INTUITIVE ?

August‐September 2012  PCD STiAP Unit 3

f c×

7

X X’

Y Y’

ZZ’

v

F F’

Origins O and O’ of the two frames F and F’coincide at t=0 and t’=0.

2 2

x'= (x vt) x= (x'+vt')y'=y y=y'z'=z z=z'

vx vx't'= t t= t'+c c

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

γ γ

γ γ

2

2

2

1=v1-

1 1

: 1 as v 0.

=−

→→

c

Note

γ

βγ

Lorentz transformations transform the space-time coordinates of ONE EVENT.

August‐September 2012  PCD STiAP Unit 3 8

2

2

1

' 1-

ΔΔ = ≥ Δ

= ≤

t

L l l

τ τβ

β

v/c 1= ⟨β

August‐September 2012  PCD STiAP Unit 3 9

Time dilation and Lorentz contraction

Neither ‘time’ intervals, nor ‘space’ intervals is invariant / absolute.

Simultaneity is not absolute.

Then what is invariant?

Non-relativisticSchrodinger equation:

( )2

2

iH V(r )

m

− ∇= +

H Eψ = ψ

distance not Lorentz invariant: →

How can we get a relativistic description of temporal evolution of the state of a system?

‘Events’ take place in 4-dimensional ‘MINKOWSKI’ space-time continuum

August‐September 2012  PCD STiAP Unit 3 10

We use 4D vectors to describe events0 1 2 3

subscripts: covaria

tn

x x x x

x y z

ct

τ

0 1 2 3

superscripts: contravariant

x x x x

x y z

ct

τ

( )( )2ds dx dxμμ=

( )( ) ( )( )( )( ) ( )( )

2 0 10 1

2 32 3 +

ds dx dx dx dx

dx dx dx dx

= + +

+

‘interval’ / ‘distance’ between two ‘events’

August‐September 2012  PCD STiAP Unit 3 11

0

10 1 2 3

2

3

11

11

dxdxdx dx dx dxdxdx

⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣

⎢ ⎥−⎢ ⎥⎢ ⎥−⎢ ⎥−⎣ ⎦ ⎦

0 1 2 3

covariant

x x x x

x y zτ

0 1 2 3

contravarian

t

x x x x

x y zτ

( )( )2ds dx dxμμ=

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3ds dx dx dx dx= − − −

( ) ( )2 gds dx dxμυ

υμ=

0

10 1 2 3

2

3

dxdxdx dx dx dxdxdx

⎡ ⎤⎢ ⎥−⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥−⎢ ⎥−⎣ ⎦

+ - - - pseudo-Euclidian

a g aνμ μν=

( )( ) ( )( ) ( )( ) ( )( )2 0 1 2 30 1 2 3ds dx dx dx dx dx dx dx dx= + + +

August‐September 2012  PCD STiAP Unit 3 12

( )( )2ds dx dxμμ=

( )( ) ( )( ) ( )( ) ( )( )2 0 0 1 1 2 2 3 3ds dx dx dx dx dx dx dx dx= − − −

a g aνμ μν=

( ) ( ) ( ) ( )2 2 2 22ds d dx dy dz+ − − −= τ

( ) ( ) ( ) ( )2 2 2 22d d dx dy dzξ = + + +τ +

( )( )2d dx dx : Euclideanμ μξ =

+ - - - PSEUDO-EUCLIDEAN

All physical phenomena take place in the 4D Pseudo-Euclidean Space.

0 1 2 3

contravar

ian

t

x x x x

x y zctτ

+ + + + Euclidean

0 1 2 3

covariant

x x x x

x y zτ

August‐September 2012  PCD STiAP Unit 3 13

Signature + - - - PSEUDO-EUCLIDEAN

X X’

Y Y’

ZZ’

v

F F’

Origins O and O’ of the two frames F and F’ coincide at t=0 and t’=0.

2 2

' ( v ) ( ' v ')' '' '

v v '' '

= − = += == =

⎛ ⎞ ⎛ ⎞= − = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

x x t x x ty y y yz z z z

x xt t t tc c

γ γ

γ γ

2 2

2

1 111-

: 1 0.

= =−

→→

vc

Noteas v

γβ

γ

August‐September 2012  PCD STiAP Unit 3

( ) ( ) ( ) ( )2 2 2 22ds' d ' dx ' dy ' dz '= τ − − −

{ } ( ) ( )2

2 2 222

vxt (x vt)c

ds' dy ' dd d z 'c⎧ ⎫⎛ ⎞γ − γ −⎨ ⎬⎜ ⎟⎝ ⎠

− −⎩ ⎭

= −

14

( )22 invariance criterionds ds' :=( ) ( ) ( ) ( )2 2 2 22ds d dx dy dz= + τ − − −

22

2 2 2

2

1v v1-

= =−c

cc

γ

{ } ( ) ( )2

2 2 222

vxt (x vt)c

ds' dy ' dd d z'c⎧ ⎫⎛ ⎞γ − γ −⎨ ⎬⎜ ⎟⎝ ⎠

− −⎩ ⎭

= −

{ } ( ) ( )2

2 2 22 2 2 22

vdxdt dx vdtc

ds' dy ' dc z '⎧ ⎫γ − γ −⎨ ⎬⎩ ⎭

= − − −

{ }

( ) ( )

2 22 2 2 2 2 2

2 42

2

2

2

vdtdxdt 2 dx 2 vdt+vc

v dxc dx dtds'

d dz

c

y ' '

⎧ ⎫γ − + γ= −

− −

−⎨ ⎬⎩ ⎭

( ) ( )

2 22 2 2 2 2 2 2 2 2 2 2

2

24

2

2

dt 2 vdtdx dx 2 vdt v

v dxc c dx dtds'

dy ' d

c

z '

⎧ ⎫γ − γ + γ − γ + γ − γ⎨ ⎬=

⎩ ⎭

August‐September 2012  PCD STiAP Unit 3 15

( ) ( )2 2

2 22 2 2 2 2 2 2 2 2 2 24dt dx vv dxds' c c dt dy ' dz '

c= γ + γ − γ − γ − −

( ) ( )2 2

2 22 2 2 2 2 2 2 2 2 2 24dt v dxv dxds' c dt c dy ' dz '

c= γ − γ + γ − γ − −

( ) ( ) ( )2

2 22 2 2 2 2 2 22v 1 dxvds' c dt dy ' dz '

c⎛ ⎞

= γ − + γ − − −⎜ ⎟⎝ ⎠

12 22

2 2 2

v1v

−⎛ ⎞

= − =⎜ ⎟ −⎝ ⎠

cc c

γ

( ) ( ) ( )2 2 2

2 22 2 2 2 22 2 2 2 2v 1 dx

v vc c vds' c dt dy ' dz '

c c c⎛ ⎞

= − + − − −⎜ ⎟− − ⎝ ⎠

( ) ( )2 22 2 2 2dxds' c dt dy ' dz '= − − −

2 2 2 2 2 2dxds' d dy dz ds= τ − − − =

August‐September 2012  PCD STiAP Unit 3 16

INVARIANCE

2

2

of dx

ds dx dx dx g dx

ds' dx ' dx ' dx ' g dx '

NORM

μ μ υμ μυ

μ μ υμ μυ

μ

=

= =

=

=

=

is a measure of INVARIANT INTERVAL

( ) ( ) ( ) ( )2 2 2 22ds d dx dy dz= τ − − −

-may be positive : “Time like”- zero : “Light like”- negative: “Space like”

August‐September 2012  PCD STiAP Unit 3 17

( )op op

op op op op

QUANTIZATION: q q p p

F(q,p) F F q ,p

→ →

→ → →

expressed as

drp mv mdt

= =Space

Time

Lorentz contraction

Time dilationproper length proper velocity proper time

drvd

STRut pshot

= η = =

( ) 2

2

dr dr 1 ; 1dttd 1

;vc

η = = γ γ =

γ ≥

γ

Refer: Module 6: Special Theory of RelativityNPTEL course: Special/Select Topics on Classical MechanicsNPTEL http://nptel.iitm.ac.in/courses/115106068/Youtube http://www.youtube.com/playlist?p=PLB368471AD70B8A6B

August‐September 2012  PCD STiAP Unit 3 18

( ) 2

2

dr dr 1 ; 1dttd 1

;vc

η = = γ γ =

γ ≥

γ

gives 3 of the 4-component '4-vector' for 'proper velocity' with =0,1,2,3:

μ

η

η μ

( )( )0 0

0 d ctdx dx cd t dt dt

η = = γ = γ = γγ

( )( )1 1

1x

d xdx dx vd t dt dt

η = = γ = γ = γγ

( ) ( )2 3

2 3 and y zdx dxv v

d t d tη = = γ η = = γ

γ γ

proper velocity

:μη

August‐September 2012  PCD STiAP Unit 3 19

( ) 2

2

dr dr 1 ; 1dttd 1

;vc

η = = γ γ =

γ ≥

γ

0 cη = γ

1xvη = γ

2

3

y

z

v

v

η = γ

η = γ

( ) ( ) ( ) c, c, v c,vμη = γ η = γ γ = γProper velocity

Scalar product

2 2 2 20 1 2 3

gμ μ νμ μνη η = η η

= η − η − η − η

( )

( ) ( )

2 2 2 2 2 2 2

22 2 2

2 2

c v c v

c c v cc v

μμη η = γ − γ = γ −

= − =−

Manifestly invariant in all inertial frames

2 cμμη η =

August‐September 2012  PCD STiAP Unit 3 20

0 0p m m c= η = γ 1 1xp m m v= η = γ

( ) ( ) ( ) p m mc,m mc, v m c,vμ μ= η = γ η = γ γ = γ

Proper Momentum = mass x proper velocity

Scalar product:2 2 2 20 1 2 3

p p p g p

p p p p

μ μ νμ μν=

= − − −( )

( ) ( )

2 2 2 2 2 2 2 2 2 2

2 22 2 2 2

2 2

mp p c m v m c v

m c c v m cc v

μμ = γ − γ = γ −

= − =− Manifestly

invariant in all inertial frames

2 2 p p m cμμ =

2 2yp m m v= η = γ 3 3

zp m m v= η = γ2

2

1

1 vc

γ =

22 2 2 2 2 2

2 m Ep p c m v p.pc

μμ = γ − γ = −

August‐September 2012  PCD STiAP Unit 3 21

Quantization!

Equation of Motion ….

Time evolution of state vector….

2 2 2 2 2 2

22 2

2

m p p c m v

E p.p m cc

μμ = γ − γ

= − =

August‐September 2012  PCD STiAP Unit 3 22

DYNAMICAL VARIABLES

m ?

Appears in both of the TWO most famous equations

Relativistic Energy

?F ma=2 ?E mc=

2E mc= γ2

2

1

1 vc

γ =

−12 2

2 221 vE mc mc

c

−⎛ ⎞

= γ = −⎜ ⎟⎝ ⎠

22 22 2

2 2

1 1 11 2 212 2

v vE mc mc ....c ! c

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎛ ⎞⎝ ⎠⎜ ⎟= γ = + + +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 23

m ?

2

2

1

1 vc

γ =

12 2

2 221 vE mc mc

c

−⎛ ⎞

= γ = −⎜ ⎟⎝ ⎠

4 62 2 2

2 4

1 3 52 8 16

v vE mc mc mv m m ....c c

= γ = + + + +

22 22 2

2 2

1 1 11 2 212 2

v vE mc mc ....c ! c

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎛ ⎞⎝ ⎠⎜ ⎟= γ = + + +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠

constantrest energy

NR K.E.

2E mc= γRelativistic Energy

Note! We measure only changes in K.E.

August‐September 2012  PCD STiAP Unit 3 24

4 62 2 2

2 4

1 3 52 8 16

v vE mc mc mv m m ....c c

= γ = + + + +

constantrest energy NR K.E.

2E mc= γRelativistic Energy

Relativistic Kinetic Energy2 2 2 1relativisticT mc mc mc ( )= γ − = γ −

2 2

2

20

1

1

00

? forphoton

mv c

E mc mcvc =

=

⎡ ⎤⎢ ⎥⎢ ⎥= γ =⎢ ⎥

−⎢ ⎥⎣ ⎦

= for Photon

?

August‐September 2012  PCD STiAP Unit 3 25

The question of the rest mass of the photon is connected with how well do we know the inverse square law.

Note that Coulomb.

1( ) ~ ; or ( ) ~ ?

μ−

r cheV r V r

r r

0 μ → ⇒Inverse force requires:

so that the force would vary as: 2

1( ) ~ ,

1 .

V rr

r

August‐September 2012  PCD STiAP Unit 3

Electrostatic potential

Photon: massless particle

26

2 2

2

2 photon 0 and

1 00

1form v c

E mc mcvc

= =

⎡ ⎤⎢ ⎥⎢ ⎥= γ = =⎢ ⎥

−⎢ ⎥⎣ ⎦

222 2

2 holdsEm c p p pc

μμ= = − ←2

2

20 Em p E pcc

= ⇒ = ⇒ =For

massless photons

h cE pc c h h= = = = νλ λ

August‐September 2012  PCD STiAP Unit 3 27

Defined by de Brogliewavelength

Some books define

RELATIVISTIC MASS

as2

2

1

1rel rest restm m m

vc

= γ =

−2 restE m c= γ

( ) ( ) ( ) QUANTIZATION!

Next :p m mc,m mc, v m c,vμ μ= η = γ η = γ γ = γ

August‐September 2012  PCD STiAP Unit 3 28

; op opq q p p i→ → = − ∇

( )QUANTIZATION of p m m c,vμ μ= η = γ

p i i i ,x ct

μ μ

μ

∂ ∂⎛ ⎞= ∂ = ≡ −∇⎜ ⎟∂ ∂⎝ ⎠

p i i i ,x ctμ μ μ

∂ ∂⎛ ⎞= ∂ = ≡ ∇⎜ ⎟∂ ∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 29

( )

( )

1 2 3

0

;

1

op opq q p ,p ,p p p i

Ep mc i ic c t ct

→ ≡ → = − ∇

∂ ∂= γ = → =

∂ ∂

( )QUANTIZATION of p m m c,vμ μ= η = γ

p i i i ,x ct

μ μ

μ

∂ ∂⎛ ⎞= ∂ = ≡ −∇⎜ ⎟∂ ∂⎝ ⎠

p i i i ,x ctμ μ μ

∂ ∂⎛ ⎞= ∂ = ≡ ∇⎜ ⎟∂ ∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 30

2 2 0p p m cμμ⇒ − =

p i i i ,x ct

p i i i ,x ct

μ μ

μ

μ μ μ

∂ ∂⎛ ⎞= ∂ = = −∇⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞= ∂ = = ∇⎜ ⎟∂ ∂⎝ ⎠

QUANTIZATION

operatorsOperate on state vector, wavefunction

2 2 0op

p p m cμμ⎡ ⎤− ψ =⎣ ⎦

0

p=

E p ic ct

i

∂= =

∂− ∇

2 2 2 2 2 2

22 2

2

m p p c m v

E p.p m cc

μμ = γ − γ

= − =

August‐September 2012  PCD STiAP Unit 3 31

2 2 0p p m cμμ − =

2 2 2 4E p pc m c= +i

QUANTIZATION!

2 2 2 2 2 2

22 2

2

m p p c m v

E p.p m cc

μμ = γ − γ

= − =

22 2

2 0E p p m cc

− − =i

( )22

2 2

1 0mcc t

⎡ ⎤∂ ⎛ ⎞− + ∇ ∇ − ψ =⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦i

( )( )

0

1 2 3

1

op

Ep mc i ic c t ct

p ,p ,p p p i

∂ ∂= γ = =

∂ ∂

≡ = − ∇

August‐September 2012  PCD STiAP Unit 3 32

Klein-Gordon equation

Quantization!

Equation of Motion ….

Time evolution of state vector

Questions? pcd@physics.iitm.ac.in

2 2 2 2 2 2

22 2

2

mp p c m v

E p.p m cc

μμ = γ − γ

= − =

August‐September 2012  PCD STiAP Unit 3 33

P. C. Deshmukh Department of PhysicsIndian Institute of Technology MadrasChennai 600036

pcd@physics.iitm.ac.in

Unit 3(ii) Lecture 14

Relativistic Quantum Mechanics of the

Hydrogen Atom - 2

Select/Special Topics in Atomic Physics

( )QUANTIZATION of p m m c,vμ μ= η = γ

August‐September 2012  PCD STiAP Unit 3 34

2 2 0p p m cμμ − =

2 2 2 4E p pc m c= +i

QUANTIZATION!

2 2 2 2 2 2

22 2

2

m p p c m v

E p.p m cc

μμ = γ − γ

= − =

22 2

2 0E p p m cc

− − =i

( )22

2 2

1 0mcc t

⎡ ⎤∂ ⎛ ⎞− + ∇ ∇ − ψ =⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦i

( )( )

0

1 2 3

1

op

Ep mc i ic c t ct

p ,p ,p p p i

∂ ∂= γ = =

∂ ∂

≡ = − ∇

August‐September 2012  PCD STiAP Unit 3 35

( )22

2 2

1 0mcc t

⎡ ⎤∂ ⎛ ⎞− + ∇ ∇ − ψ =⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦i

2

0mc⎡ ⎤⎛ ⎞+ ψ =⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

( )2

2 2

1c t x xμ

μ

⎡ ⎤∂ ∂ ∂= − ∇ ∇ =⎢ ⎥∂ ∂ ∂⎣ ⎦

i D’Alembertian Operator

Klein-Gordon equation

KG Eq. indefinite probability density

August‐September 2012  PCD STiAP Unit 3 36

1928: Dirac Relativistic QMProc. Roc. Soc. (Lond.) A117 610 (1928)Proc. Roc. Soc. (Lond.) A118 351 (1928)

P.A.M.Dirac: Principles of Quantum Mechanics

August‐September 2012  PCD STiAP Unit 3

Dirac equation:- fundamental role in accounting for

atomic properties and processes.2 2 0p p m cμ

μ − =( )

( )

0

1 2 3

1

op

Ep mc i ic c t ct

p ,p ,p p p i

∂ ∂= γ = =

∂ ∂

≡ = − ∇

How would one get1st ORDER TIME DERIVATIVE?

37

2 2 0p p m cμμ − = ( )

( )

0

1 2 3

1

op

Ep mc i ic c t ct

p ,p ,p p p i

∂ ∂= γ = =

∂ ∂

≡ = − ∇

How would one get 1st ORDER TIME DERIVATIVE?

( )

0 1 2 3 2 20 1 2 3

0 2 20

20 2 2

0

0

0

p p p p p p p p m c

p p p.p m c

p p.p m c

+ + + − =

− − =

− − = ( )20 2 2

0

0

p

p m c

=

− =

IF

THEN

( )( )0 0 0factorize : p mc p mc+ − = ( )( )

0

0

0

0

p mc

p mc

+ =

− =Either or Both

August‐September 2012  PCD STiAP Unit 3 38

How would one factorize

2 2 0p p m cμμ − =

( )( )

0

1 2 3

1

op

Ep mc i ic c t ct

p ,p ,p p p i

∂ ∂= γ = =

∂ ∂

≡ = − ∇

( )20 2 2 0p p.p m c− − =

0p ≠WHEN

( )( )2 2 p p m c p mc p mcμ κ λμ κ λ− = β + γ −

Explore ? ?

August‐September 2012  PCD STiAP Unit 3 39

( )( )0 0 0factorize : p mc p mc+ − = ( )20 2 2

0

0

p

p m c

=

− =

WHEN:

40

2 2 0p p m cμμ − = ( )

( )

0

1 2 3

1

op

Ep mc i ic c t ct

p ,p ,p p p i

∂ ∂= γ = =

∂ ∂

≡ = − ∇

( )( )2 2 p p m c p mc p mcμ κ λμ κ λ− = β + γ −

Explore ? ?

{ }{ }

0 1 2 3

0 1 2 3

, , ,

, , ,

κ

λ

β ≡ β β β β

γ ≡ γ γ γ γ

8 coefficients to be determined

( )( )2 2

2 2

p p m c p mc p mc

p p mc p mc p m c

μ κ λμ κ λ

κ λ κ λκ λ κ λ

− = β + γ −

= β γ − β + γ −

August‐September 2012  PCD STiAP Unit 3 40

( )( )2 2

2 2

p p m c p mc p mc

p p mc p mc p m c

μ κ λμ κ λ

κ λ κ λκ λ κ λ

− = β + γ −

= β γ − β + γ −

( ) p p p p mc pμ κ λ κ κμ κ λ κ= β γ − β − γ

p p p p mc p mc pμ κ λ κ κμ κ λ κ κ= β γ − β + γ

lhs: quadratic in momentum

quadratic in momentum

Linear term in momentum

κ κ⇒ β = γ4 terms 16 terms

p p p pμ κ λμ κ λ⇒ = γ γ

August‐September 2012  PCD STiAP Unit 3 41

p p p pμ κ λμ κ λ= γ γ

0 1 2 30 1 2 3p p p p p p p p p pμ λ λ λ λ

μ λ λ λ λ= γ γ + γ γ + γ γ + γ γ

0 0 1 0 2 0 3 00 0 1 0 2 0 3 0

0 1 1 1 2 1 3 10 1 1 1 2 1 3 1

0 2 1 2 2 2 3 20 2 1 2 2 2 3 2

0 3 1 3 2 3 3 30 3 1 3 2 3 3 3

+

+

+

p p p p p p p p p p

p p p p p p p p

p p p p p p p p

p p p p p p p p

μμ = γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

0123

λ =λ =λ =λ =

August‐September 2012  PCD STiAP Unit 3 42

0 0 1 0 2 0 3 00 0 1 0 2 0 3 0

0 1 1 1 2 1 3 10 1 1 1 2 1 3 1

0 2 1 2 2 2 3 20 2 1 2 2 2 3 2

0 3 1 3 2 3 3 30 3 1 3 2 3 3 3

+

+

+

p p p p p p p p p p

p p p p p p p p

p p p p p p p p

p p p p p p p p

μμ = γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

i j j ipp p p= we can combine the terms having common, equal, factors

August‐September 2012  PCD STiAP Unit 3 43

( ) ( )

( ) ( )

( ) ( )

0 0 1 1 2 2 3 30 0 1 1 2 2 3 3

0 1 1 0 0 2 2 00 1 0 2

0 3 3 0 1 2 2 10 3 1 2

1 3 3 1 2 3 3 21 3 2 3

+

p p p p p p p p p p

p p p p

p p p p

p p p p

μμ = γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

+ γ γ + γ γ + γ γ + γ γ

+ γ γ + γ γ + γ γ + γ γ

( ) ( ) ( ) ( )2 2 2 20 1 2 3lhs : p p p p p pμμ = − − −

August‐September 2012  PCD STiAP Unit 3 44

( ) ( )

( ) ( )

( ) ( )

0 0 1 1 2 2 3 30 0 1 1 2 2 3 3

0 1 1 0 0 2 2 00 1 0 2

0 3 3 0 1 2 2 10 3 1 2

1 3 3 1 2 3 3 21 3 2 3

+

p p p p p p p p p p

p p p p

p p p p

p p p p

μμ = γ γ + γ γ + γ γ + γ γ

γ γ + γ γ + γ γ + γ γ

+ γ γ + γ γ + γ γ + γ γ

+ γ γ + γ γ + γ γ + γ γ

( ) ( ) ( ) ( )2 2 2 20 1 2 3lhs : p p p p p pμμ = − − −

August‐September 2012  PCD STiAP Unit 3 45

0

1 0 0 00 1 0 00 0 1 00 0 0 1

⎡ ⎤⎢ ⎥⎢ ⎥γ =⎢ ⎥−⎢ ⎥−⎣ ⎦

1

0 0 0 10 0 1 00 1 0 01 0 0 0

⎡ ⎤⎢ ⎥⎢ ⎥γ =⎢ ⎥−⎢ ⎥−⎣ ⎦

3

0 0 1 00 0 0 11 0 0 0

0 1 0 0

⎡ ⎤⎢ ⎥−⎢ ⎥γ =⎢ ⎥−⎢ ⎥⎣ ⎦

2

0 0 00 0 00 0 0

0 0 0

ii

ii

−⎡ ⎤⎢ ⎥⎢ ⎥γ =⎢ ⎥⎢ ⎥−⎣ ⎦

2 21 ×

2 21 ×−

12 2×σ

12 2×−σ

22 2×σ

22 2×−σ

32 2×σ

32 2×−σ

August‐September 2012  PCD STiAP Unit 3 46

2 2

1 01

0 1×

⎡ ⎤= ⎢ ⎥⎣ ⎦

12 2

0 11 0×

⎡ ⎤σ = ⎢ ⎥

⎣ ⎦

22 2

00i

−⎡ ⎤σ = ⎢ ⎥

⎣ ⎦3

2 2

1 00 1×

⎡ ⎤−σ = ⎢ ⎥−⎣ ⎦

2 2 2 20

2 2 2 2

1 00 1

× ×

× ×

⎡ ⎤γ = ⎢ ⎥−⎣ ⎦

2 2 2 24 4

2 2 2 2

00

ii

i× ×

×× ×

⎡ ⎤σγ = ⎢ ⎥−σ⎣ ⎦

1 2 3i , ,=

August‐September 2012  PCD STiAP Unit 3 47

4 4 matrices×

( )( )2 20 p p m c p mc p mcμ κ λμ κ λ= − = γ + γ −

Factorization employing the

matrices is possible!4 4×γ

( ) 0p mcκκγ + = ( ) 0p mcκ

κγ − =

( ) 0p mcκκγ − = p i i i ,

x ctκ κ κ

∂ ∂⎛ ⎞= ∂ = = ∇⎜ ⎟∂ ∂⎝ ⎠

( ) 0i mcκκγ ∂ − ψ = ( )

4 1 4 14 4 0i mc

×

κκ ××

γ ∂ − ψ =

The Dirac Equation can be solved for the Coulomb potential exactly. ( ) 0p mc− ψ =

August‐September 2012  PCD STiAP Unit 3 48

( ) 0p mcκκγ − =

( )0 1 2 30 1 2 3 0p p p p mcγ + γ + γ + γ − =

1 2 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 1 2 31 2 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

1 0 0 0 00 1 0 0 0

1 00

0 1

p p p p

mc

× × × × × × × ×

× × × × × × × ×

× ×

× ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤σ σ σ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −σ −σ −σ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− =⎢ ⎥

⎣ ⎦

0 1 2 3

1 0 0 0 0 0 0 1 0 0 0 0 0 1 00 1 0 0 0 0 1 0 0 0 0 0 0 0 10 0 1 0 0 1 0 0 0 0 0 1 0 0 00 0 0 1 1 0 0 0 0 0 0 0 1 0 0

1 0 0 00 1 0 0

00 0 1 00 0 0 1

ii

p p p pi

i

mc

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎢ ⎥⎢ ⎥− =⎢ ⎥⎢ ⎥⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 49

( ) 0p mcκκγ − =

( )( )

0 3 1 2 1

0 1 2 3 2

3 1 2 0 3

1 2 3 0 4

00

00

0

p mc p p ip up mc p ip p u

p p ip (p mc) up ip p (p mc) u

− −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥− − − − +⎢ ⎥ ⎢ ⎥− + − +⎢ ⎥ ⎣ ⎦⎣ ⎦

0 1 21

2

3

43

1 0 0 0 0 0 0 1 0 0 00 1 0 0 0 0 1 0 0 0 00 0 1 0 0 1 0 0 0 0 00 0 0 1 1 0 0 0 0 0 0

0 0 1 0 1 0 0 00 0 0 1 0 1 0 01 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

ii

p p pi u

i uuu

p mc

⎧ ⎫−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎡⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − −⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪ ⎢⎨ ⎬

⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪− ⎣⎢ ⎥ ⎢ ⎥⎪ ⎪+ −⎢ ⎥ ⎢ ⎥−⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

0

⎤⎥⎥ =

⎢ ⎥⎢ ⎥

August‐September 2012  PCD STiAP Unit 3 50

( )4 1 4 14 4

0i mc×

κκ ××

γ ∂ − ψ =

Dirac equation introduces first-order time derivative operator,

p i i i ,x ctκ κ κ

∂ ∂⎛ ⎞= ∂ = = ∇⎜ ⎟∂ ∂⎝ ⎠

- but also note the fact that the momentum operators are only linear.

August‐September 2012  PCD STiAP Unit 3 51

2 2

1 01

0 1×

⎡ ⎤= ⎢ ⎥⎣ ⎦

12 2

0 11 0×

⎡ ⎤σ = ⎢ ⎥

⎣ ⎦

22 2

00i

−⎡ ⎤σ = ⎢ ⎥

⎣ ⎦3

2 2

1 00 1×

⎡ ⎤σ = ⎢ ⎥−⎣ ⎦

2 2 2 20

2 2 2 2

1 00 1

× ×

× ×

⎡ ⎤γ = ⎢ ⎥−⎣ ⎦

2 2 2 24 4

2 2 2 2

00

ii

i× ×

×× ×

⎡ ⎤σγ = ⎢ ⎥−σ⎣ ⎦1 2 3i , ,=

{ } { } { }0 1 2 3 0, , , , ,μγ = γ γ γ γ = γ γ = β βα

0 1 , −β = γ α = β γ

2 2 2 2

2 2 2 2

1 00 1

× ×

× ×

⎡ ⎤β = ⎢ ⎥−⎣ ⎦

2 2 2 24 4

2 2 2 2

00

ii

i× ×

×× ×

⎡ ⎤σα = ⎢ ⎥σ⎣ ⎦

PAULI Representation

DIRAC SPACE & ‘PAULI SPACE’August‐September 2012  PCD STiAP Unit 3 52

{ } { } { }0 1 2 3 0 : 4 matrices, , , , ,μγ = γ γ γ γ = γ γ = β βα

( )2

4 41 1 2 3 4 : 1 matrix, , ,μ×γ = ∀μ =

16 linearly independent Matrices built from Dirac matrices

; : 6 matricesi μ νμνσ = γ γ μ ≠ ν

2 2 2 25 0 1 2 3

2 2 2 2

0 11 0

= : 1 matrixi × ×

× ×

⎡ ⎤γ = γ γ γ γ ⎢ ⎥

⎣ ⎦5 0 1 2 3 : : 4 matrices, , ,μγ γ μ =

16 matrices constitute the “CLIFFORD ALGEBRA”

S

V

T

P

A

(S)

(V)

(T)

(P)

(A)

Γ

Γ

Γ

Γ

Γ

ψΓΨ

August‐September 2012  PCD STiAP Unit 3 53

0†ψ = ψ γHow does transform?ψΓψ

( )4 1 4 14 4

0i mc×

κκ ××

γ ∂ − ψ =

Electromagnetic potential:

Dirac equation:

{ } { } { }0 1 2 3 0A A ,A ,A ,A A ,A ,Aμ ≡ ≡ ≡ φ

212

qansatz : L mv q (r,t) v A(r,t)c

= − φ + i

0d L Ldt q q

∂ ∂− =

∂ ∂

0

also similar equations for y & zx

d L L ;dt v x

∂ ∂− =

∂ ∂

August‐September 2012  PCD STiAP Unit 3 54

( ) ( )2 2 212 x y z x x y y z z

qL m v v v q (r,t) v A (r,t) v A (r,t) v A (r,t)c

= + + − φ + + +

0x

d L Ldt v x

∂ ∂− =

∂ ∂

212

qL mv q (r,t) v A(r,t)c

= − φ + i

x xL qmv A (r,t)x c∂

= +∂

x x x xx

A (r,t) A (r,t) A (r,t) A (r,t)d L q dx dy dzmvdt x c x dt y dt z dt t

⎧ ⎫∂ ∂ ∂ ∂∂= + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂⎩ ⎭

xx

dA (r,t)d L qmvdt x c dt

∂= +

yx zx y z

A (r,t)A (r,t) A (r,t)L (r,t) q q qq v v vx x c x c x c x

∂∂ ∂∂ ∂φ= − + + +

∂ ∂ ∂ ∂ ∂

August‐September 2012  PCD STiAP Unit 3 55

x

d L Ldt v x

∂ ∂=

∂ ∂

August‐September 2012  PCD STiAP Unit 3 56

( ) ( )2 2 212 x y z x x y y z z

qL m v v v q (r,t) v A (r,t) v A (r,t) v A (r,t)c

= + + − φ + + +

x x x xx

A (r,t) A (r,t) A (r,t) A (r,t)d L q dx dy dzmvdt x c x dt y dt z dt t

⎧ ⎫∂ ∂ ∂ ∂∂= + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂⎩ ⎭

yx zx y z

A (r,t)A (r,t) A (r,t)L (r,t) q q qq v v vx x c x c x c x

∂∂ ∂∂ ∂φ= − + + +

∂ ∂ ∂ ∂ ∂

x x x xx

yx zx y z

A (r,t) A (r,t) A (r,t) A (r,t)q dx dy dzmvc x dt y dt z dt t

A (r,t)A (r,t) A (r,t)(r,t) q q qq v v vx c x c x c x

⎧ ⎫∂ ∂ ∂ ∂+ + + + =⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

∂∂ ∂∂φ= − + + +

∂ ∂ ∂ ∂

1 xx

yx z xy z

A (r,t)(r,t)mv qx c t

A (r,t)A (r,t) A (r,t) A (r,t)q qv vc y x c x z

∂∂φ⎧ ⎫= − +⎨ ⎬∂ ∂⎩ ⎭∂⎧ ⎫∂ ∂ ∂⎧ ⎫− − + −⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭⎩ ⎭

x y z

x y z

y yz z x xx y z

ˆ ˆ ˆe e e

B Ax y z

A A A

A AA A A Aˆ ˆ ˆe e ey z x z x y

⎡ ⎤⎢ ⎥∂ ∂ ∂⎢ ⎥= ∇× = ⎢ ⎥∂ ∂ ∂

⎢ ⎥⎢ ⎥⎣ ⎦∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

x y z

x y z

y yz z x x

ˆ ˆ ˆe e e

v B v v v

A AA A A Ay z x z x y

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥× = ⎢ ⎥⎢ ⎥∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎢ ⎥− − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) y x z xy zx

A A A Av B v vx y x z

∂⎛ ⎞∂ ∂ ∂⎛ ⎞× = − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 57

( ) ( ) y x z xy zx x

A A A Av v v vx y x z

B A∂⎛ ⎞∂ ∂ ∂⎛ ⎞× = × = − − −⎜ ⎟ ⎜ ⎟∂ ∂

∇×∂ ∂⎝ ⎠⎝ ⎠

( )1

1

xx x

x

A (r,t)(r,t) qmv q v Bx c t c

q E v Bc

∂∂φ⎧ ⎫= − + − ×⎨ ⎬∂ ∂⎩ ⎭⎛ ⎞= + ×⎜ ⎟⎝ ⎠

1LorentzF mv q E v B

c⎛ ⎞= = + ×⎜ ⎟⎝ ⎠

AEt

B A

∂= −∇φ −

∂= ∇×

Our ansatz for the Lagrangian is correct!

August‐September 2012  PCD STiAP Unit 3 58

1 xx

yx z xy z

A (r,t)(r,t)mv qx c t

A (r,t)A (r,t) A (r,t) A (r,t)q qv vc y x c x z

∂∂φ⎧ ⎫= − +⎨ ⎬∂ ∂⎩ ⎭∂⎧ ⎫∂ ∂ ∂⎧ ⎫− − + −⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭⎩ ⎭

( ) ( )2 2 212 x y z x x y y z z

qL m v v v q (r,t) v A (r,t) v A (r,t) v A (r,t)c

= + + − φ + + +

212

qL mv q (r,t) v A(r,t)c

= − φ + i

x x xL qp mv A (r,t)x c∂

→ = +∂

qp mv A(r,t)c

→ +ep mv A(r,t)c

→ −

e ep p A i Ac c

μ μ μ μ μ μ⎛ ⎞→ π = − → ∂ −⎜ ⎟⎝ ⎠

Quantization( )0 0

generalized energy momentum 4-vector

ep mc , p Ac

μ ⎧ ⎫⎛ ⎞π = π = = γ π = −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

August‐September 2012  PCD STiAP Unit 3 59

Generalized momentum

e ep p A i Ac c

μ μ μ μ μ→ − → ∂ −

e ep p A i Ac cκ κ κ κ κ→ − → ∂ −

( )4 1 4 14 4

0i mc×

κκ ××

γ ∂ − ψ =

( )( )4 1 4 14 4

0i mc×

κκ ××

γ ∂ − ψ =

4 1 4 14 4

0ei A mcc ×

κκ κ ×

×

⎛ ⎞⎛ ⎞γ ∂ − − ψ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

4 1 4 14 4

0ei A mcc ×

κ κκ κ ×

×

⎛ ⎞γ ∂ − γ − ψ =⎜ ⎟⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 60

( )( )

4 1

0 1 2 30 1 2 3

0 1 2 30 1 2 3 4 1

4 4

0

i

e A A A Ac

mc× ×

×

⎛ ⎞γ ∂ + γ ∂ + γ ∂ + γ ∂⎜ ⎟⎜ ⎟

− γ + γ + γ + γ ψ =⎜ ⎟⎜ ⎟

−⎜ ⎟⎝ ⎠

4 1 4 14 4

0ei A mcc ×

κ κκ κ ×

×

⎛ ⎞γ ∂ − γ − ψ =⎜ ⎟⎝ ⎠

( )4 1

1 2 3

0 1 2 34 1

4 4

0

x y z

x y z

ict x x xe A A A Ac

mc× ×

×

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞β + βα + βα + βα⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟⎜ ⎟

− β − βα − βα − βα ψ =⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟⎝ ⎠

{ } { }0, ,μγ = γ γ = β βα

00

11

22

33

AAAAAAAA

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 61

( )4 1

1 2 3

0 1 2 34 1

4 4

0

x y z

x y z

ict x x xe A A A Ac

mc× ×

×

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞β + βα + βα + βα⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟⎜ ⎟

− β − βα −βα −βα ψ =⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟⎝ ⎠

4 1 4 14 4

0e ei i A mcct c c × ×

×

∂⎛ ⎞β + βα ∇ − βφ + βα − ψ =⎜ ⎟∂⎝ ⎠i i

4 1 4 14 4

0e ei p A mcct c c × ×

×

∂⎛ ⎞β − βα − βφ + βα − ψ =⎜ ⎟∂⎝ ⎠i i

4 1

4 1

2

4 4

ei c p A mc et c×

×

×

∂ψ ⎛ ⎞⎛ ⎞= α − + β + φ ψ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠i

Dirac equation in ‘standard representation’

August‐September 2012  PCD STiAP Unit 3 62

( )4 1 4 1

2

4 4i c mc e

t × ××

∂ψ = α π + β + φ ψ

∂i

Dirac equation in ‘standard representation’

( )0 0

4

ep mc , p Ac

generalized energy momentum - vector

μ ⎧ ⎫⎛ ⎞π = π = = γ π = −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

( )2 1 2 12

4 42 1 2 1

i c mc et

× ×

×× ×

ϕ ϕ⎛ ⎞ ⎛ ⎞∂= α π + β + φ⎜ ⎟ ⎜ ⎟χ χ∂ ⎝ ⎠ ⎝ ⎠

i

4 1

2 1

2 1×

×

×

ϕ⎛ ⎞ψ = ⎜ ⎟χ⎝ ⎠

2 2 2 24 4

2 2 2 2

00

× ××

× ×

σ⎡ ⎤α = ⎢ ⎥σ⎣ ⎦

2 2 2 24 4

2 2 2 2

1 00 1

× ××

× ×

⎡ ⎤β = ⎢ ⎥−⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 63

( )4 1 4 1

2

4 4i c mc e

t × ××

∂ψ = α π + β + φ ψ

∂i

Dirac equation in ‘standard representation’( )0 0p mc ,

ep Ac

μ

⎧ ⎫π = = γ⎪ ⎪

π = ⎨ ⎬⎛ ⎞π = −⎪ ⎪⎜ ⎟⎝ ⎠⎩ ⎭

2 2 2 24 4

2 2 2 2

1 00 1

× ××

× ×

⎡ ⎤β = ⎢ ⎥−⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 64

( )4 1 4 1

2

4 4i mc

t × ××

∂ψ = β ψ

For a free electron at rest:

Solutions:

2 2

1 2

1 00 10 00 0

mc mci t i t

e e− −

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ψ = ψ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2 2

3 4

0 00 01 00 1

mc mci t i t

e e+ +

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ψ = ψ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Positive energy Negative energy

Resulting from 2 2 2 2 4H p c m c= +

Electron spin requires two components,- but Dirac equation admits

4-component wavefunctionDirac equation – admits ‘negative energy’ solutions-Positrons (anti particles)Carl D Anderson (1932)

All elementary particles in nature that obey Fermi statistics have two components and spin ½ (QFT)

4-component wavefunctionMulticomponent wavefunction : non-zero spin

2 2 4 2

2 4 2

E m c p.pc

E m c p.pc

= +

= ± +

August‐September 2012  PCD STiAP Unit 3 65

Emission of a positron with energy E is the same as the absorption of an electron of energy -E.

Where is all the anti-matter?

Electron spin requires two components,- but Dirac equation admits

4-component wavefunctionDirac equation – admits ‘negative energy’ solutions

4-component wavefunctionMulticomponent wavefunction : non-zero spin

2 2 4 2

2 4 2

E m c p.pc

E m c p.pc

= +

= ± +

August‐September 2012  PCD STiAP Unit 3 66

[1] Reduction to 2-component ‘Pauli’ relation.

[2] Foldy Wouthuysen Transformation: “…… as far as it goes……..” – Trigg’s QM

2s = σ

2g =

Wolfgang Pauli1900 - 1958

Questions? pcd@physics.iitm.ac.in

August‐September 2012  PCD STiAP Unit 3 67

2 2 4 2

2 4 2

E m c p.pc

E m c p.pc

= +

= ± +

Electron spin requires two components,- but Dirac equation admits

4-component wavefunction

( )4 1 4 1

2

4 4i c mc e

t × ××

∂ψ = α π + β + φ ψ

∂i

Paul Adrien Maurice Dirac1902-1984

P. C. Deshmukh Department of PhysicsIndian Institute of Technology MadrasChennai 600036

pcd@physics.iitm.ac.in

Unit 3(iii) Lecture 15

Relativistic Quantum Mechanics of the

Hydrogen Atom

Select/Special Topics in Atomic Physics

Reduction of Dirac Eq. to two-component formPAULI Equation

4 1

2 1

2 1×

×

×

ϕ⎛ ⎞ψ = ⎜ ⎟χ⎝ ⎠

Foldy-Wouthuysen Transformations - 1

August‐September 2012  PCD STiAP Unit 3 68

Electron spin requires two components,- but Dirac equation admits

4-component wavefunctionDirac equation – admits ‘negative energy’ solutions

4-component wavefunctionMulticomponent wavefunction : non-zero spin

2 2 4 2

2 4 2

E m c p.pc

E m c p.pc

= +

= ± +

August‐September 2012  PCD STiAP Unit 3 69

[1] Reduction to 2-component ‘Pauli’ relation.

[2] Foldy Wouthuysen Transformation: “…… as far as it goes……..” – Trigg’s QM

( )2 1 2 12

4 42 1 2 1

i c mc et

× ×

×× ×

ϕ ϕ⎛ ⎞ ⎛ ⎞∂= α π + β + φ⎜ ⎟ ⎜ ⎟χ χ∂ ⎝ ⎠ ⎝ ⎠

i

4 1

2 1

2 1×

×

×

ϕ⎛ ⎞ψ = ⎜ ⎟χ⎝ ⎠

2 2 2 2 2 2 2 24 4 4 4

2 2 2 2 2 2 2 2

0 1 0

0 0 1× × × ×

× ×× × × ×

σ⎡ ⎤ ⎡ ⎤α = β =⎢ ⎥ ⎢ ⎥σ −⎣ ⎦ ⎣ ⎦

2 2 2 2

2 2 2 2

2 2 2 2 2 12

2 2 2 2 2 1

2 2 2 2

2 2 2 2 4 4

00

1 0

0 1

1 00 1

c

r.h.s. mc

e

× ×

× ×

× × ×

× × ×

× ×

× × ×

⎛ ⎞σ⎡ ⎤π⎜ ⎟⎢ ⎥σ⎣ ⎦⎜ ⎟

⎜ ⎟ ϕ⎡ ⎤ ⎛ ⎞⎜ ⎟= + ⎜ ⎟⎢ ⎥− χ⎜ ⎟⎣ ⎦ ⎝ ⎠⎜ ⎟

⎡ ⎤⎜ ⎟+ φ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

i Vector algebra!

Matrix algebra

QM, operator algebra

August‐September 2012  PCD STiAP Unit 3 70

2 2 2 2

2 2 2 22 1 2 1

2 1 2 12 2 2 2 2 2 2 22

2 2 2 2 2 2 2 2 4 4

0 11 0

1 0 1 0

0 1 0 1

ci

tmc e

× ×

× ×× ×

× ×× × × ×

× × × × ×

⎛ ⎞⎡ ⎤σ π⎜ ⎟⎢ ⎥ϕ ϕ⎛ ⎞ ⎛ ⎞∂ ⎣ ⎦⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟χ χ∂ ⎡ ⎤ ⎡ ⎤⎝ ⎠ ⎝ ⎠⎜ ⎟+ + φ⎢ ⎥ ⎢ ⎥⎜ ⎟−⎣ ⎦ ⎣ ⎦⎝ ⎠

i

2 1 2 1 2 1 2 122 2

2 1 2 1 2 1 2 1

i c mc et

× × × ××

× × × ×

ϕ χ ϕ ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂= σ π + + φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟χ ϕ −χ χ∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i

[ ] 21 i c mc et∂ϕ = σ πχ + ϕ + φϕ

∂i

[ ] 22 i c mc et∂χ = σ πϕ − χ + φχ

∂i

August‐September 2012  PCD STiAP Unit 3 71

[1] Reduction to 2-component ‘Pauli’ relation.

( )4 1 4 1

2

4 4i c mc e

t × ××

∂ψ = α π + β + φ ψ

∂i 4 1

2 1

2 1×

×

×

ϕ⎛ ⎞ψ = ⎜ ⎟χ⎝ ⎠

2i c mc et∂ϕ = σ πχ + ϕ + φϕ

∂i

2i c mc et∂χ = σ πϕ − χ + φχ

∂i

02

0 where Ei t

e E mc−ϕ ϕ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥χ χ⎣ ⎦ ⎣ ⎦

slowly varying functions of time, :ϕ χ

20E i c mc e

tϕ ϕ χ ϕ ϕ⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

+ = σ π + + φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥χ ∂ χ ϕ −χ χ⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠i

Stationary state solution

Recall! Stationary state solution to the time-dependent Schrodinger equation results in time-independent equation.

August‐September 2012  PCD STiAP Unit 3 72

slowly varying functions of time, :ϕ χ

20E i c mc e

tϕ ϕ χ ϕ ϕ⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

+ = σ π + + φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥χ ∂ χ ϕ −χ χ⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠i

0 0E i c E et

ϕ ϕ χ ϕ ϕ⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂+ = σ π + + φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥χ ∂ χ ϕ −χ χ⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i

0

02i c e E

tϕ χ ϕ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂

+ = σ π + φ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ χ ϕ χ χ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦i

August‐September 2012  PCD STiAP Unit 3 73

2 02i c e mc

tϕ χ ϕ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂

+ = σ π + φ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ χ ϕ χ χ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦i

22i c e mct∂

+ χ = σ πϕ + φχ − χ∂

i2nd Eq.

20 2c mc≈ σ πϕ − χi

2mcσ πϕ ≈ χi2mcσ π

⇒ ϕ ≈ χi : small

: largeχ

⇒ϕ

2i c e

t mc∂ σ π

+ ϕ ≈ σ π ϕ + φϕ∂

ii1st Eq.

August‐September 2012  PCD STiAP Unit 3 74

slowly varying functions of time, :ϕ χ22since e mcφ

2 i e

t m∂ σ π σ π⎡ ⎤+ ϕ + φ ϕ⎢ ⎥∂ ⎣ ⎦

i i

a b a b i a bσ σ = + σ ×i i i i

iσ π σ π = π π + σ π× πi i i ie ep A p Ac c

⎛ ⎞ ⎛ ⎞π× π = − × −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 75

( )e p A A pc

π× π = − × + ×

August‐September 2012  PCD STiAP Unit 3 76

( )p A A p ?× + × =

( )p A A p f(r ) i Af(r ) A f(r )⎡ ⎤× + × = − ∇× + ×∇⎣ ⎦

( ) ( )p A A p f(r ) i A A f(r )× + × = − ∇× + ×∇

( ) ( )p A A p f(r ) i A f(r ) A f(r ) A f(r )⎡ ⎤× + × = − ∇× − ×∇ + ×∇⎣ ⎦

( ) ( ) ( )p A A p f(r ) i A f(r ) p A f(r )× + × = − ∇× = ×

( ) ( )p A A p p A× + × ≡ ×( ) ( )A A A∇× + ×∇ ≡ ∇×

( )e p A A pc

π× π = − × + ×

( ) ( )e e iep A i A Bc c c

π× π ≡ − × ≡ − − ∇× =

2 i e

t m∂ σ π σ π⎡ ⎤+ ϕ + φ ϕ⎢ ⎥∂ ⎣ ⎦

i i

a b a b i a bσ σ = + σ ×i i i i

iσ π σ π = π π + σ π× πi i i iie ieA Bc c

π× π = ∇× =

( )1 12 2

e Bm m c

⎛ ⎞σ π σ π = π π − σ⎜ ⎟⎝ ⎠

i i i i

2

2 2ei B e

t m mc⎡ ⎤∂ π

+ ϕ − σ + φ ϕ⎢ ⎥∂ ⎣ ⎦i

Pauli eq. for the ‘large’ component

August‐September 2012  PCD STiAP Unit 3 77

iei Bc

⎛ ⎞σ π σ π = π π + σ ⎜ ⎟⎝ ⎠

i i i i

2

2 2ei B e

t m mc⎡ ⎤∂ π

+ ϕ = − σ + φ ϕ⎢ ⎥∂ ⎣ ⎦i

( )

2

2 22

2

2 2

2 2 2

e ep A p Ac c

m mp e eA p p A Am mc mc

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠=

= − + +

i

i i

( )2 2

2 2 2p ie A A

m m mcπ

= + ∇ +∇i i

( )( )

2

A A f A f Af

A f A f A f

A f

∇ +∇ = ∇ +∇

= ∇ + ∇ + ∇

= ∇

i i i i

i i i

i

120

now, for uniform ,B

A r B

A

A B

= − ×

∇ =

∇× =

i

( )2 2

22 2 2

p ie Am m mcπ

= + ∇i2

2p e A pm mc

= − i

Pauli eq. for the large component

2 12 2p e r B pm mc

⎛ ⎞= − − ×⎜ ⎟⎝ ⎠

i

August‐September 2012  PCD STiAP Unit 3 78

2 2 12 2 2

p e r B pm m mcπ ⎛ ⎞= − − ×⎜ ⎟

⎝ ⎠i

2 2 12 2 2

p e r B pm m mcπ

= + × i2 2 1

2 2 2p e B r p

m m mcπ

= − × i

2 2 21 12 2 2 2 2

p e p eB r p Bm m mc m mcπ

= − × = −i i

2 2 12 2 2

p e Bm m mcπ

= − i

August‐September 2012  PCD STiAP Unit 3 79

2

2 2ei B e

t m mc⎡ ⎤∂ π

+ ϕ = − σ + φ ϕ⎢ ⎥∂ ⎣ ⎦i

Pauli eq. for the large component

2 2 12 2 2 2

and p e B sm m mcπ

= − = σi

2 12 2p e ei B s B e

t m mc mc⎡ ⎤∂

+ ϕ = − − + φ ϕ⎢ ⎥∂ ⎣ ⎦i i

( )2

22 2p ei s B e

t m mc⎡ ⎤∂

+ ϕ = − + + φ ϕ⎢ ⎥∂ ⎣ ⎦i

August‐September 2012  PCD STiAP Unit 3 80

22e s Bmc

i

August‐September 2012  PCD STiAP Unit 3 81

ei

r p= ×

1 ˆiA Ac

μ =

r

p

2e vi eT r

= =π ( )21 1

2 21 1

2 2 2

v evrˆ ˆe r A Ac r c

e e ev r L Lc c m mc

⎛ ⎞μ = π =⎜ ⎟π⎝ ⎠

= − × = − = −

12B Le ; gmc

μ = =

s s Bsgμ = − μ

2L L Be L Lgmc

⎛ ⎞ ⎛ ⎞⎛ ⎞μ = − = − μ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

L sB

g L g s+μ = −μ 1

2L

s

gg

=

=2B

s+μ = −μ

μ

August‐September 2012  PCD STiAP Unit 3 82

Gyromagnetic ratio; g=2g value: measure of MAGNETIC MOMENT- Dimensionless magnetic moment

( )2

22 2p ei s B e

t m mc⎡ ⎤∂

+ ϕ = − + + φ ϕ⎢ ⎥∂ ⎣ ⎦i

( )

2

22 2

2 2

B

B

s

emce s e smc mc

+μ = −μ

μ =

+μ = − = − +

4 1

4 1

2

4 4

ei c p A mc et c×

×

×

∂ψ ⎛ ⎞⎛ ⎞= α − + β + φ ψ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠i

Dirac equation in ‘standard representation’

( )2 1 2

2 2p ei s B e

t m mc⎡ ⎤∂

+ ϕ = − + + φ ϕ⎢ ⎥∂ ⎣ ⎦i

4 1

2 1

2 1×

×

×

ϕ⎛ ⎞ψ = ⎜ ⎟χ⎝ ⎠

02

0 where Ei t

e E mc−ϕ ϕ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥χ χ⎣ ⎦ ⎣ ⎦

Pauli2-component

2-components: required for the two spin degrees of freedom for the electron with j=½

To determine expectation values to order , one has to employ all the four components

2

2

vc

August‐September 2012  PCD STiAP Unit 3 83

4 1

4 1

2

4 4

ei c p A mc et c×

×

×

∂ψ ⎛ ⎞⎛ ⎞= α − + β + φ ψ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠i

2 2 2 24 4

2 2 2 2

00

× ××

× ×

σ⎡ ⎤α = ⎢ ⎥σ⎣ ⎦

2 2 2 24 4

2 2 2 2

1 00 1

× ××

× ×

⎡ ⎤β = ⎢ ⎥−⎣ ⎦

‘Odd’ operators scramble the upper two components with the lower two components.

Dirac equation describes both electrons (positive energy states) and the positrons (the "negative energy' states).

Also, it describes both the spin orientations, hence the solution has four components.

August‐September 2012  PCD STiAP Unit 3 84

2 2 2 4E p pc m c= +i 2 2 4

2 2 4

E p pc m c

E p pc m c

= + +

= − +

i

i0

0

E : empty

E : occupied

in vacuum

Fully occupied and fully unoccupied states are not observable

Particle-AntiParticle annihilation

2hν Singly occupied particle, or anti-particle state is observable.

August‐September 2012  PCD STiAP Unit 3 85

Canonical transformations of the wavefunction – i.e. changes in the representation of the wavefunction

mix/unmix particle / anti-particle components.

Admixture of particle and anti-particle states?T.D.Newton & E.P.Wigner (1949, Rev. Mod.Phys.)

Interference between positive and negative energy components produces fluctuations (at ~1021Hz: zitterbewegung) of the position of an electron.

August‐September 2012  PCD STiAP Unit 3 86

Electron charge is smeared out over a distance of the Compton wavelength of the electron.

The problems of generalizing the classical ‘position’ to relativistic quantum theory

- several contributors:

Dirac,

Pryce,

Newton and Wigner,

Foldy and Wouthuysen

August‐September 2012  PCD STiAP Unit 3 87

"Zitterbewegung" is eliminated when you take expectation values for wave-packets made up completely positive energy states (or completely negative energy states), as achieved by the Foldy - Wouthuysen transformation.

The Zitterbewegung is caused by interference between the positive and negative energy components of the wave packet.• It vanishes if the wave packet is a superposition of only positive or only negative energy solutions.

August‐September 2012  PCD STiAP Unit 3 88

L. L. Foldy and S. A. Wouthuysen, Phys Rev., 78, 29(1950)J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill (1964).

August‐September 2012  PCD STiAP Unit 3 89

August‐September 2012  PCD STiAP Unit 3 90

The Foldy-Wouthuysen

transformations also enable us cast

the Dirac theory in a form which

displays the different interaction terms

between an electron and an applied

field in easily interpretable form.Ref.: Bjorken & Drell, RQM, Ch.4

August‐September 2012  PCD STiAP Unit 3 91

Non-Relativistic limit of the Dirac equation for an electron in an external potential is not reached simply by

The limiting process is attained by carrying out a unitary transformation which block diagonalizes the Dirac Hamiltonian and separates the positive and negative energy part of its spectrum.

This unitary transformation, is the Foldy–Wouthuysen transformation, and it is equivalent to a change of picture.

c →∞

August‐September 2012  PCD STiAP Unit 3 92

( ) 2 1 2 12

4 42 1 2 1

mc c e it

× ×

×× ×

ϕ ϕ⎛ ⎞ ⎛ ⎞∂β + α π + φ =⎜ ⎟ ⎜ ⎟χ χ∂⎝ ⎠ ⎝ ⎠

i

Foldy-Wouthuysen transformations:

- Systematic procedure to go from 4-component Dirac theory to a 2-component theory.

H it

∂ψψ =

H it

∂ψψ =

∂'H' ' i

t∂ψ

ψ =∂

FW ''H'' '' it

∂ψψ =

∂'''H''' ''' i

t∂ψ

ψ =∂

- Transform the relativistic equations in such a way that the odd operators play an ignorable role inthe transformed representation.

( )2

4 4 DiracH mc c

×= β + θ + ε

August‐September 2012  PCD STiAP Unit 3 93

August‐September 2012  PCD STiAP Unit 3 94

4 1

4 1

2

4 4

ei c p A mc et c×

×

×

∂ψ ⎛ ⎞⎛ ⎞= α − + β + φ ψ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠i

2 2 2 2 2 2 2 24 4 4 4

2 2 2 2 2 2 2 2

0 1 0

0 0 1× × × ×

× ×× × × ×

σ⎡ ⎤ ⎡ ⎤α = β =⎢ ⎥ ⎢ ⎥σ −⎣ ⎦ ⎣ ⎦

( )4 1

4 1

2

4 4Free electron: i c p mc

××

∂ψ= α + β ψ

∂i

iS

' iS iSop op op

' ee e−

ψ → ψ = ψ

Ω → Ω = Ω

iS iS iS iSH' e He i e et

+ − + −∂= −

2i pS p

mc m− ⎛ ⎞= βα⋅ ω⎜ ⎟

⎝ ⎠

For free electron, consider time-independent

Hermitian operator:

2s = σ2g = Wolfgang Pauli

1900 - 1958

Questions? pcd@physics.iitm.ac.in

August‐September 2012  PCD STiAP Unit 3 95

2 2 4 2

2 4 2

E m c p.pc

E m c p.pc

= +

= ± +

Electron spin requires two components,- but Dirac equation admits

4-component wavefunction

( )4 1 4 1

2

4 4i c mc e

t × ××

∂ψ = α π + β + φ ψ

∂i

Paul Adrien Maurice Dirac1902-1984

( )2 1 2

2 2p ei s B e

t m mc⎡ ⎤∂

+ ϕ = − + + φ ϕ⎢ ⎥∂ ⎣ ⎦i

P. C. Deshmukh Department of PhysicsIndian Institute of Technology MadrasChennai 600036

pcd@physics.iitm.ac.in

Unit 3(iv) Lecture 16

Relativistic Quantum Mechanics of the

Hydrogen Atom

Select/Special Topics in Atomic Physics

Reduction of Dirac Eq. to two-component formPAULI Equation

4 1

2 1

2 1×

×

×

ϕ⎛ ⎞ψ = ⎜ ⎟χ⎝ ⎠

Foldy-Wouthuysen Transformations - 2

August‐September 2012  PCD STiAP Unit 3 96

H it

∂ψψ =

iS' eψ → ψ = ψ

August‐September 2012  PCD STiAP Unit 3

( ) 2 1 2 12

4 42 1 2 1

mc c e it

× ×

×× ×

ϕ ϕ⎛ ⎞ ⎛ ⎞∂β + α π + φ =⎜ ⎟ ⎜ ⎟χ χ∂⎝ ⎠ ⎝ ⎠

i

97

iS iS'i e H i e 't t

+ −⎡ ⎤∂ψ ∂⎛ ⎞= − ψ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

iS iS iS iSH' e He i e et

+ − + −∂⇒ = −

'i H' 't

∂ψ= ψ

OBJECTIVE: odd operators play an ignorable role.

August‐September 2012  PCD STiAP Unit 3 98

( )4 1

4 1

2

4 4Free electron: i c p mc

××

∂ψ= α + β ψ

∂i

iS iSH' e He+ −=2i pS p

mc m− ⎛ ⎞= βα⋅ ω⎜ ⎟

⎝ ⎠

( )2iS iScH' e ep mc+ −α + β= i

( )2iS iS c p me cH' e+ − βα= β +i

( )( )

1 2

2

iS iS

iS iS

H' e e

e

c p mc

c p mc e

+ −

+ −

β

=

= β

β β α +

α +

i

i

12 2

iiiS

p pp pmc m mc me e e

⎡ ⎤ ⎡ ⎤− −⎛ ⎞ ⎛ ⎞βα⋅ ω βα⋅ ω⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠

−⎦ ⎦− ⎣ ⎣β = β = β

( ) 2 1 2 12

4 42 1 2 1

mc c e it

× ×

×× ×

ϕ ϕ⎛ ⎞ ⎛ ⎞∂β + α π + φ =⎜ ⎟ ⎜ ⎟χ χ∂⎝ ⎠ ⎝ ⎠

i

August‐September 2012  PCD STiAP Unit 3 99

( )4 1

4 1

2

4 4Free electron: i c p mc

××

∂ψ= α + β ψ

∂i

2i pS p

mc m− ⎛ ⎞= βα⋅ ω⎜ ⎟

⎝ ⎠1

2 2ii

iSp pp p

mc m mc me e e⎡ ⎤ ⎡ ⎤− −⎛ ⎞ ⎛ ⎞βα⋅ ω βα⋅ ω⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎝ ⎠ ⎝ ⎠−

⎦ ⎦− ⎣ ⎣β = β = β

0

n

x

n

xen!

=

= ∑

( )

0 0

1 12 2

nnnn

iS

n n

p pp pmc m mc me

n! n!

∞ ∞−

= =

⎡ ⎤ ⎡ ⎤− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞βα ⋅ ω βα ⋅ ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝β

β = β =⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦∑ ∑

( )2iS iS c p me cH' e+ − βα= β +i

August‐September 2012  PCD STiAP Unit 3 100

( ) ( ) ( )Now: 1n nnp pβα ⋅ βα ⋅β = − β

( ) ( )

0

1 12

nnn

iS

n

n ppe

n!mc m∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞− βα ⋅ ω⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦β

β = ∑

( ) ( ) ( )

0

1 1

12

nn

iS

n

nnn pp

men!

c m∞−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞− βα ⋅ ω⎜ ⎟ ⎜ ⎟⎢ ⎥⎝− β

β ⎝ ⎠⎣ ⎦= ⎠∑

( )0

1 2

∞−

=

βα ⋅β = β

⎡ ⎤⎛ ⎞ ⎛ ⎞ω⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦∑

niS

n

nn

en

pm!

pmc

iS iSe e− +β = β

0

n

x

n

xen!

=

= ∑

2i pS p

mc m− ⎛ ⎞= βα⋅ ω⎜ ⎟

⎝ ⎠

0 0 =

12 2

n n

iS

n n

n i p pi pe

n! nm c m

!

pmc m∞ ∞

= =

⎡ ⎤ ⎡ ⎤− ⎛ ⎞ ⎛ ⎞βα ⋅ ω βα ⋅ ω⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦= ∑ ∑likewise

August‐September 2012  PCD STiAP Unit 3 101

( )2iS iS c p me cH' e+ − βα= β +i iS iSe e− +β = β

( )2 2i S c p' mcH e+ β= β α +i

( )( )

2 2 2

2 2

i S

i S

c p mcH' e

c p mce

+

+

β α += β

βα +=

i

i0

12

=

n

iS

n

pc

!

pe

nm m∞

=

⎡ ⎤⎛ ⎞βα ⋅ ω⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∑

( )0

2

1n

n

ppmc m c p mcH'

n!

=

⎧ ⎫⎪ ⎪⎪ ⎪= β⎨ ⎬

⎡ ⎤⎛ ⎞βα ⋅ ω

⎪ ⎪⎪ ⎪⎩ ⎭

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ α +∑ i

August‐September 2012  PCD STiAP Unit 3 102

( )0

2

1n

n

ppmc m c p mcH'

n!

=

⎧ ⎫⎪ ⎪⎪ ⎪= β⎨ ⎬

⎡ ⎤⎛ ⎞βα ⋅ ω

⎪ ⎪⎪ ⎪⎩ ⎭

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ α +∑ i

( ) ( )0

21 n nn

n

p p c p mcm

'! m

Hnc

=

βα ⋅ ⎡ ⎤⎛ ⎞ ⎛ ⎞ω α +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣

⎧ ⎫⎪ ⎪= β⎨ ⎬⎪⎩ ⎭⎦ ⎪∑ i

( )

22

23 43 4

12

1 13 4

1 p p p pm mc ! m

c p mcp p p p

mc ! m

mcH'

.....mc ! m

⎡ ⎤βα ⋅ βα ⋅⎛ ⎞⎛ ⎞ ⎛ ⎞ω + ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ α +⎡ ⎤ ⎡ ⎤βα ⋅ βα ⋅⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ω ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎧ ⎫+⎪ ⎪

⎪ ⎪= β⎨ ⎬⎪ ⎪+ +⎪ ⎪⎩ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎭⎦ ⎣

i

August‐September 2012  PCD STiAP Unit 3 103

( )

22

23 43 4

12

1 13 4

1 p p p pm mc ! m

c p mcp p p p

mc ! m

mcH'

.....mc ! m

⎡ ⎤βα ⋅ βα ⋅⎛ ⎞⎛ ⎞ ⎛ ⎞ω + ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ α +⎡ ⎤ ⎡ ⎤βα ⋅ βα ⋅⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ω ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎧ ⎫+⎪ ⎪

⎪ ⎪= β⎨ ⎬⎪ ⎪+ +⎪ ⎪⎩ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎭⎦ ⎣

i

Γ = βα ⋅NOW, let : p

2 2 2 2 2 2 2 22

2 2 2 2 2 2 2 2

22 2 2 24 4

2 2 2 2

0 00 0

01

0

p pp p

p pp

p p

× × × ×

× × × ×

× ××

× ×

−σ ⋅ −σ ⋅⎡ ⎤ ⎡ ⎤Γ = ⎢ ⎥ ⎢ ⎥σ ⋅ σ ⋅⎣ ⎦ ⎣ ⎦

−σ ⋅ σ ⋅⎡ ⎤= = − ×⎢ ⎥−σ ⋅ σ ⋅⎣ ⎦

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

1 0 0 00 1 0 0

× × × × × ×

× × × × × ×

σ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤βα = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− σ −σ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 00 0

pp

p× × × ×

× × × ×

σ σ ⋅⎡ ⎤⎡ ⎤Γ = ⋅ = ⎢ ⎥⎢ ⎥−σ −σ ⋅⎣ ⎦ ⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 104

( )

22

23 43 4

12

1 13 4

1 p p p pm mc ! m

c p mcp p p p

mc ! m

mcH'

...m ! m

.c

⎡ ⎤βα ⋅ βα ⋅⎛ ⎞⎛ ⎞ ⎛ ⎞ω + ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ α +⎡ ⎤ ⎡ ⎤βα ⋅ βα ⋅⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ω ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠

⎡ ⎤+⎢ ⎥

⎢ ⎥= β⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦ ⎣ ⎦

i

( ) 222 24 41 ×Γ = βα ⋅ = − × = −p p p

( )

( )( ) ( )( )

222

23 43 4

22 2

1 12

1 1 13 4

1

1

p p ppm mc ! m

c p mcp pp p p

mc ! m m

mc

c ! m

H'

.....

⎡ ⎤βα ⋅ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ω + − ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ α +⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞βα ⋅ − ω − ω⎜ ⎟ ⎜ ⎟ ⎜

⎧ ⎫+⎪ ⎪

⎪ ⎪= β⎨ ⎬⎪ ⎪+ +⎪ ⎪⎩ ⎭

⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

i

( ) ( )

( )( )

2 42 422 2

233

3

1 1 1 12 4

1

1 13

.....H'

pp mc

p pp pmc ! m mc ! m

c p mcp p p pp .....

m mc p ! m

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − ω − ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ α +⎡ ⎤⎛ ⎞βα ⋅ βα ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞ω − ω +⎜ ⎟⎜ ⎟ ⎜

⎧ ⎫+⎪ ⎪

⎪ ⎪= β⎨ ⎬⎪ ⎪+ +⎪ ⎪⎩

⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎭⎦

i

Even powers

Odd powers

August‐September 2012  PCD STiAP Unit 3 105

( )

( ) ( )

( )

2 2 4 6

0

1 2 1 3 5 7

1

11

2 2 4 6

12 1 3 5 7

n n

n

n n

n

cos

sin

....n! ! ! !

....n ! ! ! !

=

− −∞

=

⎡ ⎤− ξ ξ ξ ξ⎢ ⎥ = − + − +⎢ ⎥⎣ ⎦⎡ ⎤− ξ ξ ξ ξ⎢ ⎥ = ξ − + − +

−⎢ ⎥⎣

=

ξ

ξ =

( ) ( )

( )( )

2 42 422 2

233

3

1 1 1 1 12 4

1 13

.....

H'p

p m

p pp pmc ! m mc ! m

c p mcp p pp .....

m mcc ! m

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − ω − ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦α +

⎧ ⎫⎡ ⎤βα ⋅ ⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ω − ω +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫+⎪ ⎪

⎪ ⎪= β⎨ ⎬⎪ ⎪+ +⎪ ⎪⎩ ⎭

i

( )2p p p p pcos c p mcmc m mc

H' sim

np

βα ⋅⎛ ⎞ ⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞= + β⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ω ω α +⎜ ⎟ ⎜ ⎟

⎣ ⎠ ⎝ ⎠ ⎦⎝i

( )2p p pcos c p mcmc mc

H' sinp

⎡ ⎤⎛ ⎞ ⎛ ⎞ω β= + β⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

α ⋅ ωα +i

pm

⎛ ⎞ω = ω⎜ ⎟⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 106

( )2p p pcos c p mcmc mc

H' sinp

⎡ ⎤⎛ ⎞ ⎛ ⎞ω β= + β⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

α ⋅ ωα +i

pm

⎛ ⎞ω = ω⎜ ⎟⎝ ⎠

( )

( )( )

2

2

p pcos c p cos mcmc mcp p p p pc mc

m

H'

sin sinp pc mc

ω ωα + +

β α ⋅ α ω βα

⎛ ⎞ ⎛ ⎞= β⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ β⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⋅ ω+

i

i

( ) 2

22

H'

sin sinp p

p pcos c p cos mcmc mc

p p p pc mcmc mc

⎛ ⎞ ⎛ ⎞=ω ω

α + +

β ω βα ⋅

β⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ β⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝

ω+

i

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 22 2 2 2 2 2 2 2

2 2 2 22 2 2 2 2 2

1 0 0 00 1 0 0

00

1 00 00 10

pp

p

p pp

p p

× × × × × ×

× × × × × ×

× ×

× ×

× ×× × × ×

× ×× × ×

σ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤βα = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− σ −σ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

σ ⋅⎡ ⎤βα ⋅ = ⎢ ⎥−σ ⋅⎣ ⎦

σ ⋅ −σ ⋅⎡ ⎤ ⎡ ⎤βα ⋅ β = =⎢ ⎥ ⎢ ⎥−−σ ⋅ −σ ⋅⎣ ⎦⎣ ⎦ 2 20

⎡ ⎤= −α ⋅⎢ ⎥

⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 107

( ) 2

22

H'

sin sinp p

p pcos c p cos mcmc mc

p p p pc mcmc mc

⎛ ⎞ ⎛ ⎞=ω ω

α + +

β ω βα ⋅

β⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ β⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝

ω+

i βα ⋅ β = −α ⋅p p

( ) 2

22

ω ωα + +

β

⎛ ⎞ ⎛ ⎞= β⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ ⎜ ⎟ ⎜ ⎟⎝

ω α ⋅ ω−

⎠ ⎝ ⎠

iH'

sin sinp p

p pcos c p cos mcmc mc

p p p pc mcmc mc

2

2

⎡ ⎤ω⎛ ⎞ ⎛ ⎞= β +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝

ω+⎢ ⎥

⎣ ⎦α ⋅ ω

−⎠⎣ ⎦

ω

H' sin

si

p pmc cos pcmc mc

p p ppc cos mcmcp mc

n

2 2H p p p p pmc cos pc pc cos mcmc mc mc mc

' sin sinp

⎡ ⎤ω ω α ⋅ ω ω+ −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= β +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 108

2 1p p p p mc pmc cos pc sin pc cosmc mc

H' tam mc

np c p

⎡ ⎤ω ω α ⋅ ω ω+

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= β +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦−⎢ ⎥

⎣ ⎦

1choose: p mc ptanm p mc

−⎛ ⎞ω = ω =⎜ ⎟⎝ ⎠

11 1 1 1 0tan tanmc p mc p mc ptanp mc p mc p mc

−⎛ ⎞⎛ ⎞ = − = − =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

ω−

only ‘even’ operatorno ‘odd’ operator

p

mc

2 2 2m c p+

FW triangle

2 p pmc cos pc sinmc mc

H' ⎡ ⎤ω ω⎛ ⎞ ⎛ ⎞= β ⎜ ⎟ ⎜+⎢ ⎥⎣

⎟⎝ ⎠ ⎠⎦⎝

August‐September 2012  PCD STiAP Unit 3 109

1choose: p mc ptanm p mc

−⎛ ⎞ω = ω =⎜ ⎟⎝ ⎠ p

mc

2 2 2m c p+

2 p pmc cos pc sinmc mc

H' ⎡ ⎤ω ω⎛ ⎞ ⎛ ⎞= β ⎜ ⎟ ⎜+⎢ ⎥⎣

⎟⎝ ⎠ ⎠⎦⎝

1 1 1

2 2USING:

1 1− − −δ δδ = =

+ δ + δtan sin cos

2 2 2 2

2 2

2 2 2 2

1

1 1

pmcmc pH' cc m c p

p pm c m c

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥+ = +⎢ ⎥

+ +

β

⎢ ⎥⎣ ⎦

= β

August‐September 2012  PCD STiAP Unit 3 110

4 1

4 1

2

4 4

ei c p A mc et c×

×

×

∂ψ ⎛ ⎞⎛ ⎞= α − + β + φ ψ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠i

iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

( )A,φElectron in an EM field

CHOICE of the operator S?

iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

1 iS iS i S i S' e e lim e e+ − + ξ − ξ

ξ→Ω = Ω = Ω

1 where i S i S' lim F( ) F( ) e e+ ξ − ξ

ξ→Ω = ξ ξ = Ω

1 0 0

n n

nn

F( )' limn!

ξ→= ξ=

⎧ ⎫⎡ ⎤ξ ∂ ξ⎪ ⎪Ω = ⎨ ⎬⎢ ⎥∂ξ⎣ ⎦⎪ ⎪⎩ ⎭∑

0 2 2 3 3 4 4

2 3 410 0 0 0

00 1 2 3 4

F F F F' lim F( ) ...! ! ! ! !ξ→

ξ= ξ= ξ= ξ=

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ξ ξ ∂ ξ ∂ ξ ∂ ξ ∂⎪ ⎪Ω = ξ = + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ξ ∂ξ ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

2 3 4

2 3 40 0 0 0

1 1 102 6 24

F F F F' F( ) ..ξ= ξ= ξ= ξ=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂Ω = ξ = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ξ ∂ξ ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0

n

n

Fn, ?ξ=

⎛ ⎞∂∀ =⎜ ⎟∂ξ⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 111

iS iS iS iSH' e He i e et

+ − + −∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

1 where i S i S' lim F( ) F( ) e e+ ξ − ξ

ξ→Ω = ξ ξ = Ω

2 3 4

2 3 40 0 0 0

1 1 102 6 24

F F F F' F( ) ..ξ= ξ= ξ= ξ=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂Ω = ξ = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ξ ∂ξ ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0

n

n

Fn, ?ξ=

⎛ ⎞∂∀ =⎜ ⎟∂ξ⎝ ⎠

( ) ( )= iS i S i S i S i SF( ) e e e iSe+ ξ − ξ + ξ − ξ∂ ξΩ + Ω −

∂ξ

=i i S i S i S i SF( ) e S e i e Se+ ξ − ξ + ξ − ξ∂ ξΩ − Ω

∂ξ [ ]i S i Sie S, e+ ξ − ξ−

= Ω

August‐September 2012  PCD STiAP Unit 3 112

1 where i S i S' lim F( ) F( ) e e+ ξ − ξ

ξ→Ω = ξ ξ = Ω

2 3 4

2 3 40 0 0 0

1 1 102 6 24

F F F F' F( ) ..ξ= ξ= ξ= ξ=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂Ω = ξ = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ξ ∂ξ ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[ ] i S i SF( ) ie S, e+ ξ − ξ−

∂ ξ= Ω

∂ξ[ ]

22

2 i S i SF( ) i e S, S, e+ ξ − ξ∂ ξ ⎡ ⎤= Ω⎣ ⎦∂ξ

[ ]3

33 i S i SF( ) i e S, S, S, e+ ξ − ξ∂ ξ ⎡ ⎤⎡ ⎤= Ω⎣ ⎦⎣ ⎦∂ξ

[ ] n

n i S i Sn

F( ) i e S, S, S,... S, e+ ξ − ξ∂ ξ ⎡ ⎤⎡ ⎤⎡ ⎤= Ω⎣ ⎦⎣ ⎦⎣ ⎦∂ξ

[ ]0

n

nn

F( ) i S, S, S,... S,ξ=

⎡ ⎤∂ ξ ⎡ ⎤⎡ ⎤⎡ ⎤= Ω⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦∂ξ⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 113

[ ]0

n

nn

F( ) i S, S, S,... S,ξ=

⎡ ⎤∂ ξ ⎡ ⎤⎡ ⎤⎡ ⎤= Ω⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦∂ξ⎣ ⎦

0

For 0 0 n

n

F( )n , F( )ξ=

⎡ ⎤∂ ξ= = ξ = = Ω⎢ ⎥∂ξ⎣ ⎦

[ ]0

For 1 F( )n , i S,ξ=

⎡ ⎤∂ ξ= = Ω⎢ ⎥∂ξ⎣ ⎦

[ ]2

22

0

For 2 F( )n , i S, S,ξ=

⎡ ⎤∂ ξ ⎡ ⎤= = Ω⎢ ⎥ ⎣ ⎦∂ξ⎣ ⎦

[ ]3

33

0

For 3 F( )n , i S, S, S,ξ=

⎡ ⎤∂ ξ ⎡ ⎤⎡ ⎤= = Ω⎢ ⎥ ⎣ ⎦⎣ ⎦∂ξ⎣ ⎦

2 3 4

2 3 40 0 0 0

1 1 102 6 24

F F F F' F( ) ..ξ= ξ= ξ= ξ=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂Ω = ξ = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ξ ∂ξ ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 114

iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 115

iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

+ S, S,H +.... 4

iS iS

i iH' H i S,H S,! !

i S, S, e i e! t

+ −

⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎣ ⎦

∂⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤ + −⎜ ⎟⎣ ⎦⎣ ⎦⎣ ⎦ ∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 116

iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

+ S, S,H +.... 4

iS iS

i iH' H i S,H S,! !

i S, S, e i e! t

+ −

⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎣ ⎦

∂⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤ + −⎜ ⎟⎣ ⎦⎣ ⎦⎣ ⎦ ∂⎝ ⎠

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

+ S, S,H +.... 4

1 2 6

i iH' H i S,H S,! !

i S, S,!

iS S,S S, S,S .....

⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− − + +⎣ ⎦ ⎣ ⎦⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 117

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

+ S, S , H +.... 4

1 2 6

i iH' H i S,H S,! !

i S, S,!

iS S,S S, S,S .....

⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− − + +⎣ ⎦ ⎣ ⎦⎣ ⎦

( )2

2

H mc c p eA e

mc

=β + α⋅ − + φ

=β + θ+ ε S such that the role of odd operators

1diminishes by

Choose

m⎛ ⎞⎜ ⎟⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 118

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

+ S, S , H +.... 4

1 2 6

i iH' H i S,H S,! !

i S, S,!

iS S,S S, S,S .....

⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− − + +⎣ ⎦ ⎣ ⎦⎣ ⎦

( )2

2

H mc c p eA e

mc

=β + α⋅ − + φ

=β + θ+ ε

2H mc≈β

S such that the role of odd operators 1diminishes by

Choose

m⎛ ⎞⎜ ⎟⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 119

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

+ S, S , m + 4

1 2 6

i iH' H i S,H S,! !

i S, S,!

iS S,S S, S,S .

⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤β⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− − +⎣ ⎦ ⎣ ⎦⎣ ⎦

[ ] [ ] [ ]

[ ]

1 S, S,H S, S,H +2 6

1 + S, S , m + 24

1 2 6

iH' H i S,H S,

S, S,

iS S,S S, S,S .

⎡ ⎤⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤β⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− − +⎣ ⎦ ⎣ ⎦⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 120

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

1 + S, S , m 4 2 6

i iH' H i S,H S,! !

i iS, S, S S,S S, S,S .!

⎡ ⎤⎡ ⎤ ⎡ ⎤≡ + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤β − − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

( )2

2

H mc c p eA e

mc

= β + α⋅ − + φ

= β + θ+ ε - in the first four terms

1 22iSmc−βθ

=

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 22

1 0 00 1 0

2

× × × ×

× × × ×

σ⎡ ⎤ ⎡ ⎤ ⎛ ⎞− ⋅ −⎜ ⎟⎢ ⎥ ⎢ ⎥− σ ⎝ ⎠⎣ ⎦ ⎣ ⎦=

ei c p Ac

mc

choose

First Foldy-Wouthuysen transformation ……

August‐September 2012  PCD STiAP Unit 3 121

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

1 + S, S , m 4 2 6

i iH' H i S,H S,! !

i iS, S, S S,S S, S,S .!

⎡ ⎤⎡ ⎤ ⎡ ⎤≡ + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤β − − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

1 22iSmc−βθ

=I FWT:[ ] 222

ii S,H i , mcmc−

− βθ⎡ ⎤= β + θ + ε⎢ ⎥⎣ ⎦

22 −

βθ⎡ ⎤θ −⎢ ⎥⎣ ⎦,

mc2

22 −

βθ⎡ ⎤= β +⎢ ⎥⎣ ⎦, mc

mc 22 −

βθ⎡ ⎤ε⎢ ⎥⎣ ⎦,

mc

( ) ( ) ( )2 22 2

1 1 12 2 2mc mc

= βθβ −β θ + βθ − θβθ + βθε − εβθ

( ) ( ) ( )2 22 2

1 1 12 2 2mc mc

= −ββθ −β θ + βθ + βθθ + βθε −βεθ

βθ = −θββε = εβ

[ ] [ ]2

2 2

12

i S,H ,mc mc− −

βθ= −θ + + β θ ε

August‐September 2012  PCD STiAP Unit 3 122

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

1 + S, S , m 4 2 6

i iH' H i S,H S,! !

i iS, S, S S,S S, S,S .!

⎡ ⎤⎡ ⎤ ⎡ ⎤≡ + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤β − − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

1 22iSmc−βθ

=I FWT:

βθ = −θββε = εβ

[ ] [ ]{ }2

2 2i iS, S,H S, i S,H

− −− −⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

[ ] [ ]

[ ]

2 2

2 2

2

2 2 2

1 2 2 2

1 2 2 2

i iS, S,H S, ,mc mc

i i , ,mc mc mc

− −−−

−−

⎡ ⎤βθ⎡ ⎤ = −θ + + β θ ε⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤− βθ βθ= −θ + + β θ ε⎢ ⎥

⎣ ⎦

[ ] [ ]2 2 3

2 2 4 2 4

12 2 2 8i S, S,H , ,

mc m c m c− −

βθ θ⎡ ⎤ ⎡ ⎤= − − − θ θ ε⎣ ⎦⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 123

[ ] [ ]2

2 2

12

i S,H ,mc mc− −

βθ= −θ + + β θ ε

[ ] [ ] [ ]

[ ]

2 3

4

+ S, S,H + S, S,H +2 3

1 + S, S , m 4 2 6

i iH' H i S,H S,! !

i iS, S, S S,S S, S,S .!

⎡ ⎤⎡ ⎤ ⎡ ⎤≡ + ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤β − − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

1 22−βθ

=iSmc

I FWT:

2 2 4 2 2 2 8i i i iS,S S, ,

mc m c −−−

⎡ ⎤⎛ ⎞− − − βθ −⎡ ⎤ ⎡ ⎤= = θ θ⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦ ⎝ ⎠⎣ ⎦

1 22iSmc−βθ

=

2

1'odd' terms

H' mc ' '

m

⇒ ≡ β + ε + θ

⎛ ⎞Ο⎜ ⎟⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 124

[ ]

[ ]

2

2 4

2 3 6 2 4 2 4

3

2 2 4 2

12 8 8 8

2 3 2

H' mc ' 'where

i' , , ,mc m c m c m c

i' ,mc m c mc

= β + ε + θ

βθ βθ ⎡ ⎤⎡ ⎤ε = ε + − − θ θ ε − θ θ⎣ ⎦ ⎣ ⎦

β θ βθθ = θ ε − +

The leading ‘odd’ term is now of 1 m⎛ ⎞⎜ ⎟⎝ ⎠

2

2

eH mc c p A ec

mc

⎛ ⎞= β + α⋅ − + φ⎜ ⎟⎝ ⎠

= β + θ+ ε

1 1 1 1 iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 125

Questions? pcd@physics.iitm.ac.in

August‐September 2012  PCD STiAP Unit 3 126

1 1 1 1 iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

[ ]

[ ]

2 4

2 3 6 2 4 2 4

3

2 2 4 2

12 8 8 8

2 3 2

βθ βθ ⎡ ⎤⎡ ⎤ε = ε + − − θ θ ε − θ θ⎣ ⎦ ⎣ ⎦

β θ βθθ = θ ε − +

i' , , ,mc m c m c m c

i' ,mc m c mc

The leading ‘odd’ term is now of

2= β + ε + θH' mc ' '

1 m⎛ ⎞⎜ ⎟⎝ ⎠

P. C. Deshmukh Department of PhysicsIndian Institute of Technology MadrasChennai 600036

pcd@physics.iitm.ac.in

Unit 3(v) Lecture 17

Relativistic Quantum Mechanics of the

Hydrogen Atom

Select/Special Topics in Atomic Physics

Reduction of Dirac Eq. to two-component formPAULI Equation

4 1

2 1

2 1×

×

×

ϕ⎛ ⎞ψ = ⎜ ⎟χ⎝ ⎠

Foldy-Wouthuysen Transformations - 3

August‐September 2012  PCD STiAP Unit 3 127

The Foldy-Wouthuysen

transformations also enable us cast

the Dirac theory in a form which

displays the different interaction terms

between an electron and an applied

field in easily interpretable form.Ref.: Bjorken & Drell, RQM, Ch.4

August‐September 2012  PCD STiAP Unit 3 128

Bransden & Joachain: Physics of Atoms & Molecules

[ ]

[ ]

2

2 4

2 3 6 2 4 2 4

3

2 2 4 2

12 8 8 8

2 3 2

H' mc ' 'where

i' , , ,mc m c m c m c

i' ,mc m c mc

= β + ε + θ

βθ βθ ⎡ ⎤⎡ ⎤ε = ε + − − θ θ ε − θ θ⎣ ⎦ ⎣ ⎦

β θ βθθ = θ ε − +

The leading ‘odd’ term is now of 1 m⎛ ⎞⎜ ⎟⎝ ⎠

2

2

eH mc c p A ec

mc

⎛ ⎞= β + α⋅ − + φ⎜ ⎟⎝ ⎠

= β + θ+ ε

1 1 1 1 iS iS iS iSH' e He e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 129

To reduce the importance of the ‘odd’ terms further:

2 22i 'Smc−βθ

=II FWT:

2 2 2 2 iS iS iS iSH'' e H'e e i et

+ − + −∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

2H'' mc ' "= β + ε + θ III FWT: 3 22i "Smc−βθ

=

3 3 2iS iSH''' e H" i e mc 't

+ −∂⎛ ⎞= − = β + ε⎜ ⎟∂⎝ ⎠

[ ]2 4

22 3 6 2 4 2 4

12 8 8 8

iH''' mc , , ,mc m c m c m cβθ βθ ⎡ ⎤⎡ ⎤= β + ε + − − θ θ ε − θ θ⎣ ⎦ ⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 130

2

2

2 2

12 2 2

ec p Ac e ep A p A

mc mc m c c

⎛ ⎞⎛ ⎞α ⋅ −⎜ ⎟⎜ ⎟ ⎧ ⎫⎧ ⎫θ ⎛ ⎞ ⎛ ⎞⎝ ⎠⎝ ⎠= = α ⋅ − α ⋅ −⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭⎩ ⎭

2

2

0 012 2 0 0

0 012 0 0

mc m

m

⎧ ⎫⎧ ⎫⎛ ⎞ ⎛ ⎞σ σθ ⎪ ⎪⎪ ⎪= ⋅ π ⋅ π⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟σ σ⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭⎩ ⎭

⎛ ⎞⎛ ⎞σ ⋅ π σ ⋅ π= ⎜ ⎟⎜ ⎟

σ ⋅ π σ ⋅ π⎝ ⎠⎝ ⎠

{ }2

24 42

1 1 2 2

imc m ×

θ= π + σ ⋅ π× π

August‐September 2012  PCD STiAP Unit 3 131

[ ]2 4

22 3 6 2 4 2 4

12 8 8 8

iH''' mc , , ,mc m c m c m cβθ βθ ⎡ ⎤⎡ ⎤= β + ε + − − θ θ ε − θ θ⎣ ⎦ ⎣ ⎦

2

2

4 4

012 2 0

1 12

mc m

m ×

σ ⋅ π σ ⋅ π⎛ ⎞θ= ⎜ ⎟σ ⋅ π σ ⋅ π⎝ ⎠

= σ ⋅ π σ ⋅ π

{ }2

24 42

1 1 2 2

imc m ×

θ= π + σ ⋅ π× π

( ) ( )

( )

2

2

e ep A p Ac c

e ep p p A A p A Ac c

ie A Ac

⎛ ⎞ ⎛ ⎞π× π = − × −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= × − × + × + ×

= ∇× + ×∇

( ) ( ) ( )( ) ( ) ( )

A A f Af A f

A f A f A f

∇× + ×∇ = ∇× + ×∇

= ∇× − ×∇ + ×∇

( ) A A f Bf∇× + ×∇ =

August‐September 2012  PCD STiAP Unit 3 132

{ }2

24 42

1 1 2 2

imc m ×

θ= π + σ ⋅ π× π

( ) A A f Bf∇× + ×∇ ≡

22

4 42

1 1 2 2

e Bmc m c ×

θ ⎧ ⎫= π − σ ⋅⎨ ⎬⎩ ⎭ 2

2

contributes to

in 2

H'''mcβθ

( )A A A B A∇× ≡ ∇× − ×∇ ≡ − ×∇

Note the difference!

August‐September 2012  PCD STiAP Unit 3 133

( )ie A Ac

π× π = ∇× + ×∇

[ ]2 4

22 3 6 2 4 2 4

12 8 8 8

iH''' mc , , ,mc m c m c m c

⎛ ⎞θ θ ⎡ ⎤⎡ ⎤= β + − + ε − θ θ ε − θ θ⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

[ ]{ }2 4

22 3 6 2 4

1 2 8 8

H''' mc , , imc m c m c

⎛ ⎞θ θ ⎡ ⎤= β + − + ε − θ θ ε + θ⎜ ⎟ ⎣ ⎦⎝ ⎠

[ ] ( ) ( )d, i c p eA ,e icdt

d dc p,e ce A,e icdt dt

⎡ ⎤θ ε + θ = α ⋅ − φ + α ⋅ π⎣ ⎦

⎧ ⎫α π⎛ ⎞ ⎛ ⎞⎡ ⎤= α ⋅ φ − α ⋅ φ + ⋅ π + α ⋅⎡ ⎤ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎩ ⎭

[ ] d d, i i ec , icdt dt

⎧ ⎫α π⎛ ⎞ ⎛ ⎞⎡ ⎤θ ε + θ = − α ⋅∇ φ + ⋅ π + α ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎩ ⎭( )

( ) ( ) ( ), f f

f f f f f f

⎡ ⎤α ⋅∇ φ = α ⋅∇φ − φα ⋅∇⎣ ⎦

= α ⋅∇φ − φα ⋅∇ = α ⋅∇φ + α ⋅∇ φ − φα ⋅∇ = α ⋅∇φ

August‐September 2012  PCD STiAP Unit 3 134

[ ]{ }2 4

22 3 6 2 4

1 2 8 8

H''' mc , , imc m c m c

⎛ ⎞θ θ ⎡ ⎤= β + − + ε − θ θ ε + θ⎜ ⎟ ⎣ ⎦⎝ ⎠

[ ] d d, i i ce , icdt dt

⎧ ⎫α π⎛ ⎞ ⎛ ⎞⎡ ⎤θ ε + θ = − α ⋅∇ φ + ⋅ π + α ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎩ ⎭

( ) 1 A, Ec t

⎛ ⎞∂⎡ ⎤α ⋅∇ φ = α ⋅∇φ = α ⋅ − −⎜ ⎟⎣ ⎦ ∂⎝ ⎠

[ ] 1 A d d, i i ce E icc t dt dt

⎛ ⎞ ⎧ ⎫∂ α π⎛ ⎞ ⎛ ⎞θ ε + θ = α ⋅ + + ⋅ π + α ⋅⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠

[ ] A d d, i i ce E i e ict dt dt

⎧ ⎫∂ α π⎛ ⎞ ⎛ ⎞θ ε + θ = α ⋅ + α ⋅ + ⋅ π + α ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎩ ⎭

[ ] [ ]1 1 d d,H ; ,Hdt i t dt i tα ∂α π ∂π⎧ ⎫ ⎧ ⎫= α + = π +⎨ ⎬ ⎨ ⎬∂ ∂⎩ ⎭ ⎩ ⎭

August‐September 2012  PCD STiAP Unit 3 135

[ ]{ }2 4

22 3 6 2 4

1 2 8 8

H''' mc , , imc m c m c

⎛ ⎞θ θ ⎡ ⎤= β + − + ε − θ θ ε + θ⎜ ⎟ ⎣ ⎦⎝ ⎠

[ ], iθ ε + θ

[ ]

[ ]

1

1

,Hi tAi ce E i e ic

t A,H ei t

⎧ ⎫∂α⎧ ⎫α + ⋅ π⎨ ⎬⎪ ⎪∂⎩ ⎭∂ ⎪ ⎪= α ⋅ + α ⋅ + ⎨ ⎬⎛ ⎞⎧ ⎫∂ ∂⎪ ⎪⎪ ⎪+ α ⋅ π −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪∂⎪ ⎪⎩ ⎭⎝ ⎠⎩ ⎭

[ ] [ ]1 1 A Ai ce E i e c ,H ,H iet t

⎧ ⎫∂ ∂⎪ ⎪= α ⋅ + α ⋅ + α ⋅ π + α ⋅ π − α ⋅⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭

[ ], i i ce Eθ ε + θ = α ⋅

[ ]{ }2 4 2 4

1 8 8

i ce, , i , Em c m c

⎡ ⎤⎡ ⎤θ θ ε + θ = θ α ⋅⎣ ⎦ ⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 136

2 48ie c c , Em c

ep Ac

⎛ ⎞−⎜ ⎟⎝ ⎠

⎡ ⎤= α ⋅ α ⋅⎢ ⎥

⎣ ⎦

2 28ie , Em c

p⎡ ⎤= α ⋅ α ⋅⎣ ⎦ ( )2 2 8

ie Ec

pEpm

= α ⋅ α ⋅ − α ⋅ α ⋅

[ ]{ } ( )2 4 2 2 1 8 8

ie, , i E Em c m

pc

p⎡ ⎤θ θ ε + θ = α ⋅ α ⋅ − α ⋅ α ⋅⎣ ⎦

[ ]{ }2 4 2 2

0 00 01 8 8 0 00

0

p pE Eie, ,p p

im c m c E E

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞σ ⋅ σ ⋅σ ⋅ σ ⋅⎡ ⎤θ θ ε + θ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟ ⎜ ⎟σ ⋅ σ ⋅σ ⋅ σ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

⎧ ⎫⎪ ⎪⎨ ⎬⎪ ⎪⎩ ⎭⎝ ⎠

[ ]{ }2 4 2 2

0 01

8 8 0 0

E Eie, , im c m

pc E

p

p E p

⎛ ⎞ ⎛ ⎞σ ⋅ σ ⋅ σ ⋅ σ ⋅⎡ ⎤

⎧ ⎫⎪ ⎪⎨ ⎬θ θ ε + θ = −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟ ⎜ ⎟σ ⋅ σ ⋅ σ ⋅ σ ⋅⎪ ⎪⎩ ⎠ ⎭⎝ ⎠ ⎝

[ ]{ } ( )2 4 2 2 4 41

8 81ie, , i E E

mp

cp

c m ×⎡ ⎤θ θ ε + θ = σ ⋅ σ ⋅ − σ ⋅ σ ⋅⎣ ⎦

[ ]{ } ( )2 2 42 44

1 1 8 8

ie, , i E i Ep E i Em c m

p pc

p ×⎡ ⎤θ θ ε + θ = ⋅ + σ⋅ − ⋅ − σ⋅ ×⎣ ⎦ ×

August‐September 2012  PCD STiAP Unit 3 137

[ ]{ }2 4

22 3 6 2 4

1 2 8 8

H''' mc , , imc m c m c

⎛ ⎞θ θ ⎡ ⎤= β + − + ε − θ θ ε + θ⎜ ⎟ ⎣ ⎦⎝ ⎠

[ ]{ } ( )2 2 42 44

1 1 8 8

ie, , i E i Ep E i Em c m

p pc

p ×⎡ ⎤θ θ ε + θ = ⋅ + σ⋅ − ⋅ − σ⋅ ×⎣ ⎦ ×

( ) ( )( ) ( )( ) ( ) ( )

Ef i Ef i E f i E f

i E E i

p

p pf E E f

⋅ = − ⋅ = − ⋅ − ⋅

⎡ ⎤= − ⋅ +

∇ ∇ ∇

⎡ ⎤∇ ∇⎣ ⎦⋅ − = ⋅ + ⋅⎣ ⎦

[ ]{ }( ) ( )

2 4

2 2 2 2 2 2 2 2 2 2

1 8

8 8 8 8 8

, , im c

ie ie e ie eE E E E Em c m c

pm c m c m c

p p p p

⎡ ⎤θ θ ε + θ =⎣ ⎦

= ⋅ + ⋅ − σ ⋅ − ⋅ + σ ⋅ ××

( ) ( )p E p E E p⋅ = ⋅ + ⋅The range of applicability of the gradient does not go beyond the bracket in the first term on the rhs

August‐September 2012  PCD STiAP Unit 3 138

[ ]{ }2 4

22 3 6 2 4

1 2 8 8

H''' mc , , imc m c m c

⎛ ⎞θ θ ⎡ ⎤= β + − + ε − θ θ ε + θ⎜ ⎟ ⎣ ⎦⎝ ⎠

[ ]{ }( )

2 4

2 2 2 2 2 2

1 8

8 8 8

, , im c

ie e eE E Em c

p pm

pc m c

×

⎡ ⎤θ θ ε + θ =⎣ ⎦

= ⋅ − σ ⋅ + σ ⋅ ×

( )p E p E E p× = × − ×

( )2 2 2 2 2 2 2 28 8 8 8ie e e eE E E Em c m

p p p pc m c m c

⋅ − σ ⋅ + σ= × ×⋅ + σ ⋅ ×

( )2 2

2 2 2 2 2 2 8 8

cur 4

le ie ediv E E Em c m c m c

p+ σ + ×⋅ ⋅= σ

August‐September 2012  PCD STiAP Unit 3 139

[ ]{ }2 4

22 3 6 2 4

1 2 8 8

H''' mc , , imc m c m c

⎛ ⎞θ θ ⎡ ⎤= β + − + ε − θ θ ε + θ⎜ ⎟ ⎣ ⎦⎝ ⎠

ec c p Ac

⎛ ⎞θ = α π = α −⎜ ⎟⎝ ⎠

i i

( )

2

42

3 2

2 2

2 2 2 2 2 2

12 8 2

curl 8 8

4

H''' mc e Bm m c mc

e ie ee div E

ep Apc

pE Em c m c m c

⎛ ⎞⎜ ⎟⎜ ⎟= β + − −β σ ⋅ +⎜ ⎟⎜ ⎟⎝ ⎠

+ φ

⎛ ⎞−⎜

− − σ ⋅ − σ

⎟⎝ ⎠

×⋅

1r

V VˆE e rr r r

∂ ∂= − = −

∂ ∂

2 2

14

Vrm

r pr

ec

∂×

∂σ ⋅

August‐September 2012  PCD STiAP Unit 3 140

[ ]{ }2 4

22 3 6 2 4

1 2 8 8

H''' mc , , imc m c m c

⎛ ⎞θ θ ⎡ ⎤= β + − + ε − θ θ ε + θ⎜ ⎟ ⎣ ⎦⎝ ⎠

22

4 42

1 1 2 2

e Bmc m c ×

θ ⎧ ⎫= π − σ ⋅⎨ ⎬⎩ ⎭

[ ]{ } ( )2 2

2 4 2 2 2 2 2 2

1 8 8 8

curl 4

e ie e, , i div E E Em c m c m c m c

p⎡ ⎤θ θ ε + θ = + σ ⋅ + σ ⋅⎣ ⎦ ×

Relativistic K.E. correction

( )

2

12 2 2 4 22

12 2 2

2 4 22 4 1

RelK.E.T E mc

p c m c mc

p cm c mcm c

= −

= + −

⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠1

2 22

2 2

2 42

2 4

3 2

1 1

1 11 12 8

2 8

RelK.E.

pT mcm c

p pmc ..mc mc

p p ....m m c

⎡ ⎤⎛ ⎞⎢ ⎥= + −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

= − +

August‐September 2012  PCD STiAP Unit 3 141

August‐September 2012  PCD STiAP Unit 3 142

( )

2

42

3 2

2 2

2 2 2 2 2 2

12 8 2

1 cu8 8 4

rl

epH''' mc e B e

m m c mc

e ie ediv E Em c m

Ap

c m c

c

V r pr r

⎛ ⎞⎜ ⎟⎜ ⎟= β + − −β σ ⋅ + φ⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞−⎜ ⎟⎝ ⎠

∂×

∂− − σ ⋅ + σ ⋅

( )

2

42

3 2

2 2

2 2 2 2 2 2

12 8 2

1c l8 4

r 8

u

H''' mc e Bm m c mc

e ie ee div E Em c m

ep Apc

Vrc rc m

⎛ ⎞⎜ ⎟⎜ ⎟= β + − −β σ ⋅ +⎜ ⎟⎜ ⎟⎝ ⎠

+

⎛ ⎞−⎜ ⎟⎝ ⎠

∂∂

φ − − σ ⋅ + σ ⋅

Magnetic dipole term

Relativistic K.E. correction

Darwin correctionzitterbewegung

Spin-orbit interaction (Thomas)

( )

2 24 2 2

3 2 2 2

2 2 22 2

1 18 2 2 2 2

1 1 22 2n n n

p p pm c m m c m c m

E V E E V Vm c m c

⎛ ⎞ ⎛ ⎞−− = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− − ⎡ ⎤= − = − +⎣ ⎦

2ZeVr

= − 2 23 2

1 1 1 112

r n a r n a= =

⎛ ⎞+⎜ ⎟⎝ ⎠

&

( )

2 4 2 2 2

2 2 2 2

2 22 22 2

2 2

12 2

2 2

nmZ e me Z eE

n nZe Zmc mc

c n n

= − = −

α⎛ ⎞= − = −⎜ ⎟

⎝ ⎠

H.W.Show that:

August‐September 2012  PCD STiAP Unit 3 143

2ec

⎛ ⎞α = ⎜ ⎟

⎝ ⎠

2 3142

Rel. nK.E.

Z nE En

⎡ ⎤⎢ ⎥α⎛ ⎞ ⎢ ⎥Δ = − −⎜ ⎟ ⎛ ⎞⎢ ⎥⎝ ⎠ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Ref.: Bransden & Joachain – Physics of Atoms & Molecules / Ch 5

( )

2 2 2 2

2 2 3

1 14 4

1 24

spin orbitradial

e V e VHm c r r m c r re sZe

m c r

∂ ∂= σ ⋅ = σ ⋅

∂ ∂

−= − ⋅

( ){ }

2

2 2 3

2 3 2

2 23 3

12

1 1 112 212

spin orbitZeH sm c r

Ze Z j( j ) ( ) s(s )m c n a

− = ⋅

⎡ ⎤= + − + − +⎢ ⎥⎛ ⎞ ⎣ ⎦+ +⎜ ⎟

⎝ ⎠

Spin-orbit correction- same order as ‘relativistic mass’ correction

August‐September 2012  PCD STiAP Unit 3 144

2s = σ

2ec

⎛ ⎞α = ⎜ ⎟

⎝ ⎠

2 2

14

Vrm

r pr

ec

∂×

∂σ ⋅

( )

2 4

2 2

22

2

12

2

nmZ eE

nZ

mcn

= −

α= −

( )

( )

( )

2 32

2 23 3

332 2 2

2 2 23

424 2

3

31 14

14 12

31 14

14 12

31 14

14 12

spin orbit

Z j( j ) ( )ZeHm c n a

Z j( j ) ( )Ze mem c n

j( j ) ( )eZ mcc n

⎧ ⎫+ − + −⎨ ⎬⎩ ⎭=

⎛ ⎞+ +⎜ ⎟⎝ ⎠⎧ ⎫+ − + −⎨ ⎬⎛ ⎞ ⎩ ⎭= ⎜ ⎟ ⎛ ⎞⎝ ⎠ + +⎜ ⎟

⎝ ⎠⎧ ⎫+ − + −⎨ ⎬⎛ ⎞ ⎩ ⎭= ⎜ ⎟ ⎛ ⎞⎝ ⎠ + +⎜ ⎟

⎝ ⎠Spin-orbit correction- same order as ‘relativistic mass’ correction

August‐September 2012  PCD STiAP Unit 3 145

2s = σ

2

2

2

ec

ame

⎛ ⎞α = ⎜ ⎟

⎝ ⎠

=

( )

2 4

2 2

22

2

12

2

nmZ eE

nZ

mcn

= −

α= −

Ref.: Bransden & Joachain – Physics of Atoms & Molecules / Ch 5

( )( )

4 2

3

31 14

14 12

1 3 1 3 3for 1 1 12 4 2 2 4

1 3 1 1 3for 1 1 12 4 2 2 4

spin orbit

j( j ) ( )H Z mc

n

j , j( j ) ( ) ( )

j , j( j ) ( ) ( )

⎧ ⎫+ − + −⎨ ⎬⎩ ⎭= α

⎛ ⎞+ +⎜ ⎟⎝ ⎠

⎧ ⎫⎧ ⎫ ⎛ ⎞⎛ ⎞= + + − + − = + + − + − =⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟⎩ ⎭ ⎝ ⎠⎝ ⎠⎩ ⎭

⎧ ⎫⎧ ⎫ ⎛ ⎞⎛ ⎞= − + − + − = − + − + −⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟⎩ ⎭ ⎝ ⎠⎝ ⎠⎩

1= − −⎭

Spin-orbit correction- same order as ‘relativistic mass’ correction

August‐September 2012  PCD STiAP Unit 3 146

( )22

22n

ZE mc

= −

( )( )

2

31 14

12 12

spin orbit n

j( j ) ( )H E Z

n−

⎧ ⎫+ − + −⎨ ⎬⎩ ⎭= − α

⎛ ⎞+ +⎜ ⎟⎝ ⎠

Ref.: Bransden & Joachain – Physics of Atoms & Molecules / Ch 5

August‐September 2012  PCD STiAP Unit 3 147

( )2

2

1 3142

Rel. nK.E.

nE E Zn

⎡ ⎤⎢ ⎥⎢ ⎥Δ = − α −

⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( )( )

( )

( )

( )

4 2

3

4 2

3

4 2

3

31 14

14 12

1when 12 4 12

1when 12 42

spin orbit

spin orbit

spin orbit

j( j ) ( )H Z mc

n

Z mcj , H

n

Z mcj , H

n

⎧ ⎫+ − + −⎨ ⎬⎩ ⎭= α

⎛ ⎞+ +⎜ ⎟⎝ ⎠

α= + =

⎛ ⎞+ +⎜ ⎟⎝ ⎠

− α= − =

⎛ ⎞+⎜ ⎟⎝ ⎠

( )

2 4

2 2

22

2

12

2

nmZ eE

nZ

mcn

= −

α= −

Ref.: Bransden & Joachain – Physics of Atoms & Molecules / Ch 5

( )( )

( )

( )

( )

4 2

3

4 42 2

1 13 32 2

31 14

14 12

1 14 1 42 2

spin orbit

spin orbit spin orbitj j

j( j ) ( )H Z mc

n

Z mc Z mcH ; H

n n

− −= + = −

⎧ ⎫+ − + −⎨ ⎬⎩ ⎭= α

⎛ ⎞+ +⎜ ⎟⎝ ⎠

α − α= =

⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

0≠

August‐September 2012  PCD STiAP Unit 3 148

( )( )

( )

( )

4 2

3

4 2

3

1 1 114 12

114 12

spin orbitsplitting

Z mcn

Z mcn

− ⎡ ⎤αΔ = −⎢ ⎥

+ ⎛ ⎞⎢ ⎥⎣ ⎦ +⎜ ⎟⎝ ⎠

⎡ ⎤⎢ ⎥α −⎢ ⎥=⎛ ⎞⎢ ⎥+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( )

2 4

2 2

22

2

12

2

nmZ eE

nZ

mcn

= −

α= −

Ref.: Bransden & Joachain – Physics of Atoms & Molecules / Ch 5

August‐September 2012  PCD STiAP Unit 3 149

( )

( )

2 2 2

2 2 2 2 2

2 2 2 23

2 2 2 2 2

2 23

2 2

8 8

48 8

2

'''Darwin r

r

e e Ze ˆh div E em c m c r

eZe Ze (r )m c r m c

Ze (r )m c

⎛ ⎞−= − = − ∇ ⋅⎜ ⎟

⎝ ⎠⎛ ⎞

= ∇ ⋅ = πδ⎜ ⎟⎝ ⎠

π= δ

( )

2 23

0 0 0 02 2

22 22

0 02 2

2

02

'''Darwin n, ,m n, ,m

n, ,m n

Zeh (r )m c

ZZe (r ) Em c n

= = = =

= =

π= ψ δ ψ

απ= ψ = = −0=

( )

2 4

2 2

22

2

12

2

nmZ eE

nZ

mcn

= −

α= −

Ref.: Bransden & Joachain – Physics of Atoms & Molecules / Ch 5

August‐September 2012  PCD STiAP Unit 3 150

( )

2 23

0 0 0 02 2

2 22 2

0 02 2

2

0 2

'''Darwin n, ,m n, ,m

nn, ,m

Zeh (r )m c

EZe (r ) Zm c n

= = = =

= =

π= ψ δ ψ

π= ψ = = − α

( )2

2

1 3142

Rel. nK.E.

nE E Zn

⎡ ⎤⎢ ⎥⎢ ⎥Δ = − α −

⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( )( )

2

31 14

12 12

spin orbit n

j( j ) ( )H E Z

n−

⎧ ⎫+ − + −⎨ ⎬⎩ ⎭= − α

⎛ ⎞+ +⎜ ⎟⎝ ⎠

0=

0≠

August‐September 2012  PCD STiAP Unit 3 151

( )2

2

1 3142

Rel. nK.E.

nH E Zn

⎡ ⎤⎢ ⎥⎢ ⎥= − α −

⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( )( )

2

31 14

12 12

spin orbit n

j( j ) ( )H E Z

n−

⎧ ⎫+ − + −⎨ ⎬⎩ ⎭= − α

⎛ ⎞+ +⎜ ⎟⎝ ⎠

( )2

2

31 42

Relativistic Relativisticall nj n

Z nEn j

⎛ ⎞⎜ ⎟α

Δ = Δ = −⎜ ⎟⎜ ⎟+⎝ ⎠

( )2 ''' nDarwin

Eh Zn

= − α

( )2

2

31 1 42

Relativisticnj n

Z nE En j

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟α

= + −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 152

Dirac Equation for spherically symmetric potential

References:

Bjorken and Drell: Relativistic Quantum MechanicsGriener: Relativistic Quantum MechanicsTrigg: ‘Quantum Mechanics’Messiah: Quantum Mechanics

FOR THE COULOMB POTENTIAL,

THE DIRAC EQUATION HAS EXACT ANALYTICAL

SOLUTIONS

August‐September 2012  PCD STiAP Unit 3 153

Strategy for the Coulomb potential:

Eliminate all features except the radial features using constants of motion.

2DiracHamiltonian

eH mc c p A ec

⎛ ⎞= β + α⋅ − + φ⎜ ⎟⎝ ⎠

2

2

DiracElectrostaticfield

H mc c p e

mc c ei

= β + α⋅ + φ

= β + α⋅ ∇ + φ

2DiracFreeparticle

H mc e= β + φ

0DiracFreeparticle

H ,−

⎡ ⎤≠⎢ ⎥

⎣ ⎦0Dirac

Freeparticle

H ,s−

⎡ ⎤≠⎢ ⎥

⎣ ⎦

0DiracCoulombH ,

−⎡ ⎤ ≠⎣ ⎦ 0Dirac

CoulombH ,s−

⎡ ⎤ ≠⎣ ⎦

2zH, j , j

j s= + & 'parity '

August‐September 2012  PCD STiAP Unit 3 154

2Spherical symmetryDirac HamiltonianH c p mc V(r)= α⋅ + β +

Strategy:

separation into

radial and angular parts

How shall we handle this term?

August‐September 2012  PCD STiAP Unit 3 155

1

0 1 001 0 0

0 D Diracσ⎛ ⎞ σ⎛ ⎞ ⎛ ⎞ρ = Ξ = = σ = σ⎜ ⎟ ⎜ ⎟σ⎝

α = ⎜ ⎟σ⎝⎠ ⎠⎠ ⎝

1

1

0 1 0 01 0 0 0

0 1 0 01 0 0 0

σ σ⎛ ⎞⎛ ⎞ ⎛ ⎞ρ Ξ = = = α⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠⎝ ⎠ ⎝ ⎠

σ σ⎛ ⎞⎛ ⎞ ⎛ ⎞ρ α = = = Ξ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠⎝ ⎠ ⎝ ⎠

0 1 02 0 2 0 1 2

sσ⎛ ⎞ ⎛ ⎞

= = σ = Ξ⎜ ⎟ ⎜ ⎟σ⎝ ⎠ ⎝ ⎠

0 1 00 0 1

p p pσ⎛ ⎞ ⎛ ⎞

Ξ ⋅ = ⋅ = σ ⋅⎜ ⎟ ⎜ ⎟σ⎝ ⎠ ⎝ ⎠

2

1p r r pr

Ξ ⋅ = Ξ ⋅ Ξ ⋅ Ξ ⋅

August‐September 2012  PCD STiAP Unit 3 156

2

1p r r pr

Ξ ⋅ = Ξ ⋅ Ξ ⋅ Ξ ⋅

( ) ( )2

1 rep r r p i r p r p ir r

Ξ ⋅Ξ ⋅ = Ξ ⋅ ⋅ + Ξ ⋅ × = ⋅ + Ξ ⋅

( ) 1 1θ ϕ

⎛ ⎞∂ ∂ ∂⋅ = ⋅ − ∇ = − ⋅∇ = − ⋅ + +⎜ ⎟∂ ∂θ θ ∂ϕ⎝ ⎠

r r r rˆ ˆ ˆr p re i i re i re ˆ ˆ ˆr r r sin

e e e

∂⋅ = − = +

∂ rr p i r rp ir

1∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠∂

= − −∂

rp ir r

iir r

since =

∂− −

rrp

i r ir

( )r riˆp e pr

⎛ ⎞Ξ ⋅ = Ξ ⋅ + + Ξ ⋅⎜ ⎟⎝ ⎠

( )1

0 11 0 r r

iˆp p e pr

⎛ ⎞ ⎛ ⎞α ⋅ = ρ Ξ⋅ = Ξ⋅ + +Ξ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 157

( )r rip pr

⎛ ⎞α ⋅ = α + +Ξ⋅⎜ ⎟⎝ ⎠

( ) ( )1

0 11 0 r r r r

i iˆp p e p pr r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞α ⋅ = ρ Ξ⋅ = Ξ⋅ + +Ξ⋅ = α + +Ξ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ( )r ri i ip i i

r r r r r∂ ∂⎛ ⎞ ⎛ ⎞α ⋅ = α − − + +Ξ⋅ = α − + Ξ⋅⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2= α⋅ +β + SphDiracH c p mc V(r)

( ) ( )4 4 4 4 4 4 4 4 4 4 4 4 4 41 i.e. 1K Kβ β× × × × × × ×= + Ξ ⋅ = +Ξ ⋅

2⎛ ⎞= α + α β + β +⎜ ⎟⎝ ⎠

SphDirac r r r

iH c p K mc V(r)r

r rip p Kr

⎛ ⎞α ⋅ = α + β⎜ ⎟⎝ ⎠

New operator:Ref: Greiner page 174

August‐September 2012  PCD STiAP Unit 3 158

2⎛ ⎞= α + α β + β +⎜ ⎟⎝ ⎠

SphDirac r r r

iH c p K mc V(r)r

Questions? pcd@physics.iitm.ac.in

Next: solution to the H atom

2Spherical symmetryDirac HamiltonianH c p mc V(r)= α⋅ + β +

( )( )

4 4 4 4 4 4 4 4

4 4 4 4 4 4

1

i.e. 1

× × × ×

× × ×

= +Ξ ⋅

= +Ξ ⋅

K

K

β

β

Reference: Greiner page 174

21SphDirac rH - ic K mc V(r)

r r r∂⎛ ⎞= α + − β + β +⎜ ⎟∂⎝ ⎠

P. C. Deshmukh Department of PhysicsIndian Institute of Technology MadrasChennai 600036

pcd@physics.iitm.ac.in

Unit 3(vi) Lecture 18

Relativistic Quantum Mechanics of the

Hydrogen AtomSpherical symmetry of the Coulomb potential

Select/Special Topics in Atomic Physics

August‐September 2012  PCD STiAP Unit 3 159

August‐September 2012  PCD STiAP Unit 3 160

2Spherical symmetryDirac HamiltonianH c p mc V(r)= α⋅ + β +

Strategy:

separation into

radial and angular parts

How shall we handle this term?

Hydrogen atom – solution to Dirac Hamiltonian

August‐September 2012  PCD STiAP Unit 3 161

1

0 1 001 0 0

0 D Diracσ⎛ ⎞ σ⎛ ⎞ ⎛ ⎞ρ = Ξ = = σ = σ⎜ ⎟ ⎜ ⎟σ⎝

α = ⎜ ⎟σ⎝⎠ ⎠⎠ ⎝

1

1

0 1 0 01 0 0 0

0 1 0 01 0 0 0

σ σ⎛ ⎞⎛ ⎞ ⎛ ⎞ρ Ξ = = = α⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠⎝ ⎠ ⎝ ⎠

σ σ⎛ ⎞⎛ ⎞ ⎛ ⎞ρ α = = = Ξ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠⎝ ⎠ ⎝ ⎠

0 1 02 0 2 0 1 2

sσ⎛ ⎞ ⎛ ⎞

= = σ = Ξ⎜ ⎟ ⎜ ⎟σ⎝ ⎠ ⎝ ⎠

0 1 00 0 1

p p pσ⎛ ⎞ ⎛ ⎞

Ξ ⋅ = ⋅ = σ ⋅⎜ ⎟ ⎜ ⎟σ⎝ ⎠ ⎝ ⎠

2

1p r r pr

Ξ ⋅ = Ξ ⋅ Ξ ⋅ Ξ ⋅

August‐September 2012  PCD STiAP Unit 3 162

2

1p r r pr

Ξ ⋅ = Ξ ⋅ Ξ ⋅ Ξ ⋅

( ) ( )2

1 rep r r p i r p r p ir r

Ξ ⋅Ξ ⋅ = Ξ ⋅ ⋅ + Ξ ⋅ × = ⋅ + Ξ ⋅

( ) 1 1θ ϕ

⎛ ⎞∂ ∂ ∂⋅ = ⋅ − ∇ = − ⋅∇ = − ⋅ + +⎜ ⎟∂ ∂θ θ ∂ϕ⎝ ⎠

r r r rˆ ˆ ˆr p re i i re i re ˆ ˆ ˆr r r sin

e e e

∂⋅ = − = +

∂ rr p i r rp ir

1∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠∂

= − −∂

rp ir r

iir r

since =

∂− −

rrp

i r ir

( )r riˆp e pr

⎛ ⎞Ξ ⋅ = Ξ ⋅ + + Ξ ⋅⎜ ⎟⎝ ⎠

( )1

0 11 0 r r

iˆp p e pr

⎛ ⎞ ⎛ ⎞α ⋅ = ρ Ξ⋅ = Ξ⋅ + +Ξ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 163

( )r rip pr

⎛ ⎞α ⋅ = α + +Ξ⋅⎜ ⎟⎝ ⎠

( ) ( )1

0 11 0 r r r r

i iˆp p e p pr r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞α ⋅ = ρ Ξ⋅ = Ξ⋅ + +Ξ⋅ = α + +Ξ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ( )r ri i ip i i

r r r r r∂ ∂⎛ ⎞ ⎛ ⎞α ⋅ = α − − + +Ξ⋅ = α − + Ξ⋅⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2= α⋅ +β + SphDiracH c p mc V(r)

( ) ( )4 4 4 4 4 4 4 4 4 4 4 4 4 41 i.e. 1K Kβ β× × × × × × ×= + Ξ ⋅ = +Ξ ⋅

2⎛ ⎞= α + α β + β +⎜ ⎟⎝ ⎠

SphDirac r r r

iH c p K mc V(r)r

r rip p Kr

⎛ ⎞α ⋅ = α + β⎜ ⎟⎝ ⎠

New operator:Ref: Greiner page 174

August‐September 2012  PCD STiAP Unit 3 164

2⎛ ⎞= α + α β + β +⎜ ⎟⎝ ⎠

SphDirac r r r

iH c p K mc V(r)r

2Spherical symmetryDirac HamiltonianH c p mc V(r)= α⋅ + β +

( )( )

4 4 4 4 4 4 4 4

4 4 4 4 4 4

1

i.e. 1

× × × ×

× × ×

= +Ξ ⋅

= +Ξ ⋅

K

K

β

β

Reference: Greiner page 174

21SphDirac rH - ic K mc V(r)

r r r∂⎛ ⎞= α + − β + β +⎜ ⎟∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 165

2⎛ ⎞= α + α β + β +⎜ ⎟⎝ ⎠

SphDirac r r r

iH c p K mc V(r)r

2Spherical symmetryDirac HamiltonianH c p mc V(r)= α⋅ + β +

( )( )

4 4 4 4 4 4 4 4

4 4 4 4 4 4

1

i.e. 1

× × × ×

× × ×

= +Ξ ⋅

= +Ξ ⋅

K

K

β

β

21SphDirac rH - ic K mc V(r)

r r r∂⎛ ⎞= α + − β + β +⎜ ⎟∂⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 166

( ) ( ) ( )( )( )

2 2 2

2 2 2

2 2 2

2

2

since 2

j j j s s s s

s j s

j s s

= ⋅ = + ⋅ + = + ⋅ +

⋅ = − −

⋅σ = − − → = σ

( )( ) ( )2 2

2

i i iσ ⋅ σ ⋅ = + σ ⋅ × = + σ ⋅

= − σ ⋅

( ) ( )( )2 2j s⋅ σ = − σ ⋅ σ ⋅ − σ ⋅ −

( )( )2 = σ ⋅ σ ⋅ + σ ⋅

( )

( )

22 2

22

324

14

j = σ ⋅ + σ ⋅ +

⎡ ⎤= σ ⋅ + −⎣ ⎦

quantum numberκ

August‐September 2012  PCD STiAP Unit 3 167

( ) 22 2 1

4j ⎡ ⎤+ = σ ⋅ +⎣ ⎦

( )( )

4 4 4 4 4 4 4 4

4 4 4 4 4 4

1

i.e. 1

× × × ×

× × ×

= +Ξ ⋅

= +Ξ ⋅

K

K

β

β

( )( )2 2

2

1 0 1 014 0 1 0 1

0 0 1 00 0 0 1

j K K K K

K KK

K K

⎛ ⎞ ⎛ ⎞+ = β β = ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2 2 2 21 11 14 4

j( j ) j( j )⎡ ⎤κ = + + = + +⎢ ⎥⎣ ⎦2

2 1 114 2

j( j ) j⎡ ⎤ ⎛ ⎞κ = + + = +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

121for 2

j

j

⎛ ⎞κ = ± +⎜ ⎟⎝ ⎠

= ∓

2The operator would give a good quantum number

K

August‐September 2012  PCD STiAP Unit 3 168

Dirac ‘Good Quantum Numbers’:

1 0 0

0 1 0D

PP P P

P⎛ ⎞ ⎛ ⎞

= β = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

0DH , j−

⎡ ⎤ =⎣ ⎦

[ ] 0DH ,K−=

[ ] 0D DH ,P−=

( )4 4 4 4 4 4 4 41 × × × ×= +Ξ ⋅K β

0 1 02 0 2 0 1 2

sσ⎛ ⎞ ⎛ ⎞

= = σ = Ξ⎜ ⎟ ⎜ ⎟σ⎝ ⎠ ⎝ ⎠

j s= +

n, ,m n, j, ,mκ ≡ ω12

j⎛ ⎞κ = + ω⎜ ⎟⎝ ⎠

11 for 211 for 2

j

j

ω = + = −

ω = − = +

121for 2

j

j

⎛ ⎞κ = ± +⎜ ⎟⎝ ⎠

= ∓

August‐September 2012  PCD STiAP Unit 3 169

2

12

12

32

32

52

52

12

10 1 1 1 0 1211 1 1 1 1 1231 1 2 1 1 1232 1 2 1 2 1252 1 3 1 2 1253 1 3 1 3 12

jOrbital Parity j j ( )

s

p

p

d

d

f

ω+ω

κ ω + −

+ − − +

− + + −

− − − −

+ + + +

+ − − +

− + + −

11 for 211 for 2

j

j

ω = + = −

ω = − = +

12

j⎛ ⎞κ = + ω⎜ ⎟⎝ ⎠

121for 2

j

j

⎛ ⎞κ = ± +⎜ ⎟⎝ ⎠

= ∓

August‐September 2012  PCD STiAP Unit 3 170

2SphDirac r r r

cH c p i K mc V(r)r

= α + α β + β +

21SphDirac rH - ic K mc V(r)

r r r∂⎛ ⎞= α + − β + β +⎜ ⎟∂⎝ ⎠

2r r r n m nj n m

cc p i K mc V(r) u E ur κ κ

⎡ ⎤α + α β + β + =⎢ ⎥⎣ ⎦

2r r r n m nj n m

cc p i mc V(r) u E ur κ κ

κ⎡ ⎤α + α β + β + =⎢ ⎥⎣ ⎦

2r r r n m nj n m

cc p i mc V(r) u E ur κ κ

κ⎡ ⎤β α + α β + β + = β⎢ ⎥⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 171

2r r r n m nj n m

cc p i mc V(r) u E ur κ κ

κ⎡ ⎤− α β − α + + β = β⎢ ⎥⎣ ⎦

2 1r r ;βα = −α β β =

2r r r n m nj n m

cc p i mc V(r) u E ur κ κ

κ⎡ ⎤α + α β +β + =⎢ ⎥⎣ ⎦

2r r r n m nj n m

cc p i mc V(r) u E ur κ κ

κ⎡ ⎤β α + α β + β + = β⎢ ⎥⎣ ⎦

(Eq.A)

(Eq.B)

( )12

Eq.A Eq.B+ →

( ) ( )

( ) ( )( )

2

1 1 1 12 2 11 1 21 12 2

r r r

n m nj n m

i cc pr u E u

mc V(r)κ κ

κ⎡ ⎤α −β − α −β +⎢ ⎥= + β⎢ ⎥

⎢ ⎥+ + β + + β⎢ ⎥⎣ ⎦

August‐September 2012  PCD STiAP Unit 3 172

( ) ( )

( ) ( )( )

2

1 1 1 12 2 11 1 21 12 2

r r r

n m nj n m

i cc pr u E u

mc V(r)κ κ

κ⎡ ⎤α −β − α −β +⎢ ⎥= + β⎢ ⎥

⎢ ⎥+ + β + + β⎢ ⎥⎣ ⎦

1 n mn m

n m

ˆ uP (r) (r)u

ˆ uiQ (r) (r)r+κ κ

κ−κ −κ

Ω⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠

( ) 01 0 1 0 0 01 2

0 1 0 1 0 2u u uu u u u+ + +

− − − −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− β = − = =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) 1 0 1 0 2 01 2

0 1 0 1 0 0 0u u u uu u u+ + + +

− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ β = + = =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2

0 01 2 22 2 1 2

2 01 12 22 0 2 0

r r r

nj

i cc pu ur u

Eu u

mc V(r)

− − +

+ +

⎡ ⎤⎛ ⎞ ⎛ ⎞κα − α +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥ = ⎜ ⎟⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎝ ⎠⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

Spherical Harmonic Spinors j mΩ

August‐September 2012  PCD STiAP Unit 3 173

2

0 01 2 22 2 1 2

2 01 12 22 0 2 0

r r r

nj

i cc pu ur u

Eu u

mc V(r)

− − +

+ +

⎡ ⎤⎛ ⎞ ⎛ ⎞κα − α +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥ = ⎜ ⎟⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎝ ⎠⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

( )200 0r r r nj

u ucc p i mc V(r) Eur

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞κ⎛ ⎞α − α + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 174

( )200 0r r r nj

u ucc p i mc V(r) Eur

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞κ⎛ ⎞α − α + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

00 1 0 1 0 001 0 1 0 0 0

rr r r r

r

ˆ ˆ ˆe e eσσ σ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

α = Ξ⋅ = ⋅ = ⋅ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ σσ σ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

'odd' r :α

( )200 0r r r nj

u uccp i mc V(r) Eur

+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞κ⎛ ⎞α − α + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

[ ] 0 r r,p−

α = ⇒

( )20 0 00 0 0 0

r rr nj

r r

u uccp i mc V(r) Eur

+ +

⎛ ⎞σ σ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞κ− + + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟σ σ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 175

( )20 0 00 0 0 0

r rr nj

r r

u uccp i mc V(r) Eur

+ +

⎛ ⎞σ σ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞κ− + + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟σ σ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

( )2

00

0 00

r r

nj

r r

ccp iu ur

mc V(r) Euccp i

r

+ +

⎛ ⎞κ⎛ ⎞− σ⎜ ⎟⎜ ⎟ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠⎜ ⎟ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟κ⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠− σ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )2r r nj

ccp i u mc V(r) u E ur − + +

κ⎛ ⎞− σ + + =⎜ ⎟⎝ ⎠This result has neither the ‘odd’ operators, nor angle-dependent operators. Essentially, we have separated the radial part.

4 1 2 1 reductionNOTE! × → ×

August‐September 2012  PCD STiAP Unit 3 176

2r r r n m nj n m

cc p i mc V(r) u E ur κ κ

κ⎡ ⎤α + α β +β + =⎢ ⎥⎣ ⎦ (Eq.A)

( )We had operated upon Eq.A by .Now, we do so by r .

β

α

2r r r r n m nj r n m

cc p i mc V(r) u E ur κ κ

κ⎡ ⎤α α + α β + β + = α⎢ ⎥⎣ ⎦

2r r r n m nj r n m

ccp i mc V(r) u E ur κ κ

κ⎡ ⎤+ β + α β + α = α⎢ ⎥⎣ ⎦

2r r r n m nj r n m

ccp i mc V(r) u E ur κ κ

κ⎡ ⎤β + β + α β + α = β α⎢ ⎥⎣ ⎦

2r r r n m nj r n m

ccp i mc V(r) u E ur κ κ

κ⎡ ⎤β + − α + βα = βα⎢ ⎥⎣ ⎦

(Eq.X)

(Eq.Y)

August‐September 2012  PCD STiAP Unit 3 177

2r r r n m nj r n m

ccp i mc V(r) u E ur κ κ

κ⎡ ⎤+ β + α β + α = α⎢ ⎥⎣ ⎦

2r r r n m nj r n m

ccp i mc V(r) u E ur κ κ

κ⎡ ⎤β + − α + βα = βα⎢ ⎥⎣ ⎦

(Eq.X)

(Eq.Y)

( )12

Eq.X Eq.Y+ →

( ) ( )

( ) ( )( )

2

1 11 1 12 2 11 1 21 12 2

r

n m nj r n m

r r

ccp ir u E u

mc V(r)κ κ

κ⎡ ⎤+ β + β +⎢ ⎥= α −β⎢ ⎥

⎢ ⎥+ α β − + α −β⎢ ⎥⎣ ⎦

+

( ) ( )

( ) ( )( )

2

1 11

1 1

rn m nj r n m

r r

ccp ir u E u

mc V(r)κ κ

κ⎡ ⎤+ β + + β⎢ ⎥ = α −β⎢ ⎥−α −β + α −β⎢ ⎥⎣ ⎦

+

August‐September 2012  PCD STiAP Unit 3 178

( ) ( )

( ) ( )( )

2

1 11

1 1

rn m nj r n m

r r

ccp ir u E u

mc V(r)κ κ

κ⎡ ⎤+ β + + β⎢ ⎥ = α −β⎢ ⎥−α −β + α −β⎢ ⎥⎣ ⎦

+

( ) ( )01 2 & 1 2

0u u uu u u+ + +

− − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− β = + β =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 n mn m

n m

ˆ uP (r) (r)u

ˆ uiQ (r) (r)r+κ κ

κ−κ −κ

Ω⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠

( )2 0 00r r nj r

uccp i V(r) mc Eu ur

+

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞κ⎛ ⎞+ + − α = α⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( )2r r nj r

: 'odd'ccp i u V(r) mc u E u

r + − −

α ⇒

κ⎛ ⎞+ + − σ = σ⎜ ⎟⎝ ⎠

4 1 2 1 reductionNOTE! × → ×

August‐September 2012  PCD STiAP Unit 3 179

Spherical Harmonic Spinors j mΩ

( )12

11 22

1 12 2'

s'

s

definition

j m m ' s,mm m

ˆY (r) m m jm=−

→=−

⎛ ⎞Ω = χ ζ ⎜ ⎟⎝ ⎠

∑ ∑

( ) ( ) ( )12

11 22

1 12 2' s

ss

j m ' s sm m m ,mm

ˆY (r) , m m m , m jm= −

=−

⎛ ⎞Ω = χ ζ = − ⎜ ⎟⎝ ⎠

( )

( )

1 112 22

1 112 22

1 1 1 12 2 2 2

1 1 1 1 2 2 2 2

s'

'

j m ',mm m

',m m

ˆY (r) , m m , , jm

ˆY (r) , m m , , jm

⎛ ⎞ =−= +⎜ ⎟⎝ ⎠

⎛ ⎞= −⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞Ω = χ ζ = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+

⎛ ⎞ ⎛ ⎞χ ζ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 180

( )

( )

1 112 22

1 112 22

1 1 1 12 2 2 2

1 1 1 1 2 2 2 2

s'

'

j m ',mm m

',m m

ˆY (r) , m m , , jm

ˆY (r) , m m , , jm

⎛ ⎞ =−= +⎜ ⎟⎝ ⎠

⎛ ⎞= −⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞Ω = χ ζ = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+

⎛ ⎞ ⎛ ⎞χ ζ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

12

12

0 1 1 1 11 2 2 2 2

1 1 1 1 1 0 2 2 2 2

'

'

j m 'm m

'm m

ˆY (r) , m m , , jm

ˆY (r) , m m , , jm

⎛ ⎞= +⎜ ⎟⎝ ⎠

⎛ ⎞= −⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ω = = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

12

12 2 rows 1 column

1 1 1 12 2 2 2

1 1 1 12 2 2 2

'

'

'm m

j m

'm m

ˆY (r) , m m , , jm

ˆY (r) , m m , , jm

⎛ ⎞= −⎜ ⎟⎝ ⎠

⎛ ⎞= +⎜ ⎟⎝ ⎠ ×

⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟Ω = ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 181

12

12

1 1 1 12 2 2 2

1 1 1 12 2 2 2

'

'

'm m

j m

'm m

ˆY (r) , m m , , jm

ˆY (r) , m m , , jm

⎛ ⎞= −⎜ ⎟⎝ ⎠

⎛ ⎞= +⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟Ω = ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

1 1 1 12 2 2 2

1 1 1 12 2 2 2

'

'

, m m , , jm ?

, m m , , jm ?

⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Depends on12

j = ±

1 1 1 1 12 2 2 2 2 2

1 1 1 1 12 2 2 2 2 2

'

'

j m, m m , , j mj

j m, m m , , j mj

+⎛ ⎞ ⎛ ⎞⎛ ⎞= − = + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

−⎛ ⎞ ⎛ ⎞⎛ ⎞= + − = + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

1 1 1 1 1 12 2 2 2 2 2 2

1 1 1 1 1 12 2 2 2 2 2 2

'

'

j m, m m , , j mj

j m, m m , , j mj

− +⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎝ ⎠

+ +⎛ ⎞ ⎛ ⎞⎛ ⎞= + − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎝ ⎠

1 2

j← = +

1 2

j = − →

August‐September 2012  PCD STiAP Unit 3 182

1 12 2

1 12 2

1 2

2

2

'

'

j , m m

j m

j , m m

for j

j m ˆY (r)j

j m ˆY (r)j

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= +

⎛ ⎞+⎜ ⎟⎜ ⎟

Ω = ⎜ ⎟−⎜ ⎟

⎜ ⎟⎝ ⎠

1 12 2

1 12 2

1 2

12 2

12 2

'

'

j , m m

j m

j , m m

for j

j m ˆY (r)j

j m ˆY (r)j

⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= −

⎛ ⎞− +−⎜ ⎟

+⎜ ⎟Ω = ⎜ ⎟

+ +⎜ ⎟⎜ ⎟+⎝ ⎠

Spherical HarmonicSpinors j mΩ

August‐September 2012  PCD STiAP Unit 3 183

( )2r r nj

ccp i u mc V(r) u E ur − + +

κ⎛ ⎞− σ + + =⎜ ⎟⎝ ⎠

( )2r r nj r

ccp i u V(r) mc u E ur + − −

κ⎛ ⎞+ + − σ = σ⎜ ⎟⎝ ⎠

1 12 2

1 12 2

1 2

2

2

'

'

j , m m

j m

j , m m

for j

j m ˆY (r)j

j m ˆY (r)j

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= +

⎛ ⎞+⎜ ⎟⎜ ⎟

Ω = ⎜ ⎟−⎜ ⎟

⎜ ⎟⎝ ⎠

1 12 2

1 12 2

1 2

12 2

12 2

'

'

j , m m

j m

j , m m

for j

j m ˆY (r)j

j m ˆY (r)j

⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= −

⎛ ⎞− +−⎜ ⎟

+⎜ ⎟Ω = ⎜ ⎟

+ +⎜ ⎟⎜ ⎟+⎝ ⎠

1 n mn m

n m

ˆ uP (r) (r)u

ˆ uiQ (r) (r)r+κ κ

κ−κ −κ

Ω⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠

August‐September 2012  PCD STiAP Unit 3 184

( )2

n mr r

n m n mnj

ˆiQ (r) (r)ccp ir r

ˆ ˆP (r) (r) P (r) (r)mc V(r) Er r

κ −κ

κ κ κ κ

Ωκ ⎛ ⎞⎛ ⎞− σ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠Ω Ω⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1 n mn m

n m

ˆ uP (r) (r)u

ˆ uiQ (r) (r)r+κ κ

κ−κ −κ

Ω⎛ ⎞ ⎛ ⎞= = ⇒⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠

( )2

n mr

n m n mr nj r

ˆP (r) (r)ccp ir r

ˆ ˆiQ (r) (r) iQ (r) (r)V(r) mc Er r

κ κ

κ −κ κ −κ

Ωκ ⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠Ω Ω⎛ ⎞ ⎛ ⎞+ − σ = σ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

{ }

{ }

n mr r

nr m

nm

ˆP (r) (r)ur

P (r) ˆ(r)r

P (r) ˆ(r)r

κ κ+

κκ

κ−κ

Ωσ = σ

= σ Ω

= −Ω

{ }

{ }

n mr r

nr m

nm

ˆiQ (r) (r)ur

iQ (r) ˆ(r)r

iQ (r) ˆ(r)r

κ −κ−

κ−κ

κκ

Ωσ = σ

= σ Ω

= −Ω

ru ?σ ± =

August‐September 2012  PCD STiAP Unit 3 185

2

2

n

n

dP(r)c c P(r) (E mc V(r))Q(r)dr r

dQ(r)c c Q(r) (E mc V(r))P(r)dr r

κ

κ

κ− + = − + −

κ+ = − − −

and G(r) iP(r) F(r) iQ(r)= − = −

2

2

n

n

dP(r)c c P(r) (E mc V(r))Q(r)dr r

dQ(r)c c Q(r) (E mc V(r))P(r)dr r

κ

κ

κ− − = − + −

κ− = − − −

writing for instead of

− κ+ κ

2

2

n

n

dP(r)c c P(r) (E mc V(r))Q(r)dr rdQ(r)c c Q(r) (E mc V(r))P(r)

dr r

κ

κ

κ+ = + + −

κ− + = − −

August‐September 2012  PCD STiAP Unit 3 186

and G(r) iP(r) F(r) iQ(r)= − = −

2

2

n

n

dP(r)c c P(r) (E mc V(r))Q(r)dr rdQ(r)c c Q(r) (E mc V(r))P(r)

dr r

κ

κ

κ+ = + + −

κ− + = − −

References:

Eq.4.13/p.55/Bjorken and Drell

Eq.XX.170/p928/Messiah, Vol.II

Eq.2.14/Ian P. Grant, Adv. in Phys. 19 (1970)

Eq.4.2.20/Pratt, Ron, Tseng, Rev.Mod.Phys. (1973)

Eq.2/Burke & Grant/Proc.Phys.Soc. 90 (1967)

2 1 1 1 2 2 dimensions

c ML T LT L ML Tr

− − − −⎡ ⎤ = × × =⎢ ⎥⎣ ⎦

Questions? pcd@physics.iitm.ac.in

Recommended