SLOSH DESIGN HANDBOOK I - NASA · 2020. 8. 6. · SLOSH DESIGN HANDBOOK I By James R. Roberts,...

Preview:

Citation preview

N A S A C O N T R A C T O R N A S A C R - 4 0 6 R E P O R T

*o 0 d

rx: U

I

4 m 4 z

(GPO PRICE S

CFSTl Pfl ICE(S) S . 1 _,

Hard copy (HC)

Microfiche (MF) / . , ‘I

ff 653 July 65

SLOSH DESIGN HANDBOOK I

by James R. Roberts, Edzcdrdo R. Bnsurto, and Pei-Ying Chen

Prepared under Contract No. NAS 8-11111 by NORTHROP SPACE LABORATORIES

Huntsville, Ala.

for George C. Marshall Space Flight Center

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N W A S H I N G T O N , D. C. MAY 1966

SLOSH DESIGN HANDBOOK I

By James R. Roberts, Eduardo R. Basurto, and Pei-Ying Chen

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents res ides in the author o r organization that prepared it.

Prepared under Contract No. NAS 8-1.1111 by NORTHROP SPACE LABORATORIES

Huntsville, Ala.

f o r George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sole by the Cleoringhouse for Federal Scientific and Technicol lnformotion Springfield, Virginia 22151 - Price 33.25

Foreword

This Handbook was prepared by Northrop Space L a b o r a t o r i e s ,

H u n t s v i l l e , Alabama, f o r t h e Dynamics and Analys is Sec t ion of

t h e Aero-Astrodynamics Labora tory o f t h e George C. Marshal l

Space F l i g h t Center . I t s c o n t e n t s r e p r e s e n t a p a r t i a l f u l f i l l -

ment of t h e p r o j e c t s i n c e a d d i t i o n a l t o p i c s are forthcoming

which, upon complet ion, w i l l be i n t e g r a t e d i n t o t h e Handbook.

iii

Ab s t r a c t

Design information r e l a t e d t o t h e e f f e c t s of p r o p e l l a n t s l o s h i n g

i s presented f o r u se i n both contrnl =nd s t r u c t u r a l problems. Both

a n a l y t i c a l and experimental r e s u l t s a r e given and a l l p e r t i n e n t mater ia l

i s r e fe renced . Graphs have been included, whenever p o s s i b l e , t o exped i t e

p re l imina ry des ign c a l c u l a t i o n s . The a r e a s covered a re : (1) l i n e a r i z e d

f l u i d t h e o r y , ( 2 ) equ iva len t mechanical model t heo ry , ( 3 ) r e s u l t s of

a n a l y t i c a l s t u d i e s of l i q u i d o s c i l l a t i o n s i n v a r i o u s l y shaped c o n t a i n e r s

when sub jec t ed t o d i f f e r e n t t ypes of e x c i t a t i o n , i . e . , boundary c o n d i t i o n s ,

f l u i d v e l o c i t y p o t e n t i a l s , n a t u r a l f r equenc ie s , l i q u i d f o r c e and moment

r e s u l t a n t s and equ iva len t mechanical models, and ( 4 ) resu l t s o f both

a n a l y t i c a l and experimental s t u d i e s concerned wi th p r o p e l l a n t s l o s h

suppres s ion , w i th p a r t i c u l a r emphasis on f i x e d - r i n g b a f f l e s .

iv

SLOSH DESIGN HANDBOOK

Table of Contents

Foreword .................................................... Abstract .................................................... Definition of Symbols and para meters.............^^.........

I . Introduction ............................................ I1 . Linearized Fluid Theory ................................. 111 . Equivalent Mechanical Model .rheory ...................... IV . Rigid Tanks .............................................

4.1 Introduction ....................................... 4.2 Circular Cylindrical Tank .......................... 4.3 Sector Tank ........................................ 4.4 Quarter-Sectored Tank .............................. 4.5 Eighth-Sectored Tank ............................... 4.6 Annular Tank ....................................... 4.7 Annular-Sector Tank ................................ 4.8 Rectangular Tank ................................... Propellant Slosh Suppression ............................ 5.1 Anti-Slosh Devices .................................

V .

Hppendix .................................................... Refere.i.es ..................................................

iii

iv

vi

1-1

2-1

3-1

4-1

4-1

4-3

4-37

4-49

4-76

4-86

4-112

4-126

5-1

5-1

A- 1

B- 1

V

NOTAT I O N

Radius o f c i r c u l a r c y l i n d r i c a l t ank Outer r a d i u s of annu la r o r annu la r - sec to r t ank Length of r e c t a n g u l a r t ank i n x - d i r e c t i o n

a

Inner r a d i u s of r i n g b a f f l e a

b

0

Inner r a d i u s of annu la r o r annu la r - sec to r t ank

Loca 1 drag c o e f f i c i e n t cD

Radia l c l ea rance between tank w a l l and r i n g b a f f l e C

- C E f f e c t i v e damping c o e f f i c i e n t

Damping c o e f f i c i e n t of d i s c

Damping c o e f f i c i e n t of nth s l o s h mass

‘d

n

c.g.

C

Center of g r a v i t y of undis turbed l i q u i d

Baf f l e spacing Tank diameter

D

Tank diameter Depth of b a f f l e below undis turbed f r e e s u r f a c e

d

Depth of b a f f l e below undis turbed f r e e s u r f a c e dS

-1.

d Distance of b a f f l e above t h e undis turbed f r e e s u r f a c e , D - d

Force i n q - d i r e c t i o n i

Dimensionless l i q u i d f o r c e , Flpga 3

F q i

P

Laplace t ransform of t h e f o r c e F

A r b i t r a r y func t ion of t i m e

Acce lera t ion due t o g r a v i t y

Damping f a c t o r of nth l i q u i d mode

z-coord ina te f o r po in t o f a t tachment of nth pendulum

gn

Hn

Depth of l i q u i d measured from tank bottom

z-coord ina te of nth s l o s h mass

h

h*

I Mass moment o f i n e r t i a of f i x e d mass

vi

NOTATION (cont inued

Id

I

I

i

mn

S

,. i

J

K

k

mn

,. k

n L

M

m

mL

- E f f e c t i v e mass moment of i n e r t i a o f f l u i d

- Mass moment o f i n e r t i a of d i s c

- Mass moment of i n e r t i a o f mnth s l o s h mass

- Mass moment of i n e r t i a of s o l i d i f i e d f l u i d

- Imaginary u n i t

- Unit v e c t o r i n x - d i r e c t i o n

- Mass moment of i n e r t i a of f i x e d mass

- E f f e c t i v e mass moment of i n e r t i a of f l u i d

- Mass moment of i n e r t i a c f mnth s l o s h mass

S t - Bessel func t ion of t h e 1 kind o f o r d e r v a n d argument B

- F i r s t d e r i v a t i v e of J ( 8 ) w i th r e s p e c t t o t h e argument 6 V

- Unit v e c t o r i n y - d i r e c t i o n

- Torsional s t i f f n e s s c o e f f i c i e n t o f s h a f t

- Rat io of i nne r t o o u t e r r a d i u s o f annu la r o r annu la r - s e c t o r t a n k , b /a

- Unit v e c t o r i n z - d i r e c t i o n

- Pendulum l eng th

- Fixed mass

- Magnitude o f moment a f t e r n c y c l e s

- Magnitude o f i n i t i a l moment

- Moment about qi-axis

- Laplace t r ans fo rm of t h e moment M

- Laplace t r ans fo rm of t h e moment M on t h e b a f f l e

.- - Liquid mass

Mode of v i b r a t i o n i n t h e + - d i r e c t i o n o r y - d i r e c t i o n

vii

m n

I1

PO

r

1 r

I' ., - r3

s .s

T

t

U

U m + U

U

-b

V

'n

1 v' V

W

X

nth slosh iiiass

Norma 1 direct ion Flodc of v i b r a t i o n iii the r - d f r r c t i o n o r x - d i r e c t i o n Num1)c.r of IW cf I P S

Pressu re i n t h e q - d i r e c t i o n

Gauge presstire

i

Genera 1i zed coordina t c

Radius o f c i r c u l a r c y l i n d r i c a l tank

C v l j n d r i c a l coord ina te , (r,+,z>

Aspect r a t i o i n xz-plane f o r r e c t a n g u l a r t ank , h/a

Aspect r a t i o i n yz-plane f o r r e c t a n g u l a r t a n k , h / b

Aspect r a t i o i n xy-plane f o r r e c t a n g u l a r t a n k , a / b

La p 1 a c c t r a n s form va r i a b 1 e

Period of o s c i l l a t i o n

T i m e

P o t e n t i a l funct ion

Timewise maximum f l u i d v e l o c i t y

Ro ta t ion v e c t o r f o r v o r t i c i t y , s i + ,j -1- gk A 1 ..

Veloc i ty component i n x - d i r e c t i o n

Ve loc i ty v e c t o r , u i + v j -t- wk 1 *

Veloc i ty component normal t o t ank wa l l

Ve loc i ty of conta i n e r

V e l o c i t y component i n y - d i r e c t i o n

B a f f l e width measured normal t o tank w a l l

Ve loc i ty component i n z - d i r e c t i o n

Rectangular coord ina te , ( x , y,z) Displacement i n x - d i r e c t i o n

v i i i

NOTATION (cont inued )

X - n -

xo’ *o

YO -

z -

T r a n s l a t i o n a l displacement of nth s l o s h mass

Amplitude of displacement f u n c t i o n , x = x e o r x = x sinwt

Laplace transformed r e c t a n g u l a r c o o r d i n a t e

Bessel f u n c t i o n of t h e 2nd kind o f o r d e r v and argument 0

i w t 0

0

F i r s t d e r i v a t i v e of Y,(P> with r e s p e c t t o argument@

Rectangular coord ina te , ( x , y , z > T r a n s l a t i o n a l displacement i n y - d i r e c t i o n

Amplitude of displacement f u n c t i o n , y =

Rectangular coord ina te , ( x , y , z > Cy1 i n d r i c a 1 coord ina te , ( r , $J , z )

i w t YO e

Note: The n o t a t i o n given i n a r t i c l e s 5.1.5.2 and 5.1.7.3 i s a p p l i c a b l e t o t h e s e a r t i c l e s only.

ix

GREEK LETTERS

- 'mn

r - n

y , y s , - 5, Cw' 51 -

8 -

P -

Q - 1

4 - 2

Rat io of apex ang le t o 2n, 612" B a f f l e width parameter i n Mi les ' equa t ion , 2a/W

Apex ang le of s e c t o r tank o r s i m i l a r c o n f i g u r a t i o n E f f e c t i v e b a f f l e a r e a f o r a b a f f l e l oca t ed below t h e undis turbed f r e e s u r f a c e

E f f e c t i v e b a f f l e a r e a f o r a b a f f l e l oca t ed above t h e undis turbed f r e e s u r f a c e

Angular displacement of mnth s l o s h mass

General ized coord ina te , - 8

Roots of an e igen func t ion where V = m n , n o r (2m-1,n)

Damping factor or damping r a t i o

Sur face displacement o f l i q u i d g e n e r a l l y measured a t t ank w a l l

Ra t io of n a t u r a l angu la r f requency t o f o r c i n g frequency, w v / U , where v = mn, n , o r (2m-1,n)

Angular displacement of tank f o r p i t c h i n g about y-axis

Amplitude of displacement func t ion , 8 = 9 0 eiwt o r 8 = 8 sinwt

Laplace t ransform of t h e displacement 8

Angular displacement o f nth pendulum

0

V i s c o s i t y of l i q u i d

Mass d e n s i t y of l i q u i d

2 Tota l v e l o c i t y p o t e n t i a l , Q1 4-

Veloc i ty p o t e n t i a l of c o n t a i n e r

V e l o c i t y p o t e n t i a l o f l i q u i d

C y l i n d r i c a l coord ina te , ( r , $ , z ) Angular displacement f o r r o l l about z -ax i s

Amplitude of displacement func t ion , 4 = $,e $, = 4osinwt

o r i w t

X

X

x O

IL

w

C R E E K LETTERS (continued)

- Angular displacement f o r pitching about x - a x i s

iwt - Amplitude of displacement function, x =

- Angular displacement of disc relative t o tank

X O e

- Forcing frequency

- Natural angular frequency for free liquid oscillations where v = mn, n, or (2m-1,n) - Gamma function of argument v

xi

SPECIAL IIEFINITIONS

2 = ( E or c v ) g / a i ~

y V V

h K = ( E " or L v )

= ( E or c,,) P" V

V

r

a = ( E or S,)k V V

z = ( E or 5,)

L V V

where V = mn, m, n, or (2m-1,n)

xi i

D E F I N I T I O N O F PARAMETERS

Sector Tank

K

mn E mn(otn- l bosh K~~ (1: 11 s i n h - [ Ymn + %) cosh +] a'mn

K a6mn (";[ (ymn - +) s i n h 2 mn - 2 cosh E -1)cosh Kmn m mn ( 'mn

- s ina

a a =- , m = o m -

m = l , 2 y 3 , . . . - 2; ( - 1 lm+ls i n i

m n -a 2 2 -2 a - m

1-cosa c = m = o m -

a

xiii

S e c t o r Tank ( C o n t i n u e d )

Quar te r -Sec tored Tank

K K - + Y m n ) cosh y] a a b m mn

E (n2 -1)cosh K~~

I

A = mn

mn mn

= - (-1)m’I a - , m = 1,2 ,3 , ...

n(m2- 1 / 4 ) m

= = a a b < mn

Flymn - s inh 2 - m mn P

-

E -1)cosh ymn Bmn

mn ( ‘mn

(E ) W 2

2 2 ( 2m+21~+3 (2m4-2~ - 1 ) J2m+2p+1 mn I 16a(m -1 /4) crnn

b = mn (E2 -4m )J ( E 1 p=o mn 2m mn

xv

m

m

( R e 2m > -1)

W

2m- 1 4m+2p - 1 ( E 1 ) = E (2m%-1)(2mq) J4m+2p-1 2m-l,n 2m-1,n p’o L1(E2m-1 ,n

( 1 J4m+2p - 1 E 2m- 1 ,n m 2 ( 4m- 1 ( 4m-3

2m- 1 ,n IJ- I = E 1 (4m+2p+l) (4m+2~1-3 L2(~2rn-1 ,n

xvi

Eighth -S ec to red Tank

Annular Tank

m/2a mn C(2m-1)/2a ( ~ 2 , , 1 , ~ ) = c (p ) given above i f whenever m

occur s , i t is r ep laced by (2m-1)

-

Annular-Sector Tank

K

a bmn ( a m ) E C s i n h - (3 + Ym) cosh %] (‘E) = 6mn(n:n -1) cosh Kmn m

2

a b Y mn (>)[(.- - %) s i n h 2 m - 2 cosh (’E)= E m n ( n L - l ) cosh Kmn m

- s i n a a -- 9 m = o

m B

n m = 1,2,3,.. - 2; ( - 1 F ’ s i n i

m ‘II -a 2 2 -2 a - m

xvi i

Annular-Sector Tank (continued)

- 1 - cosa

a c = - , m = o m

m - 2~[(-1) cosa - 11 , m = 1,2,3,*.-

2 2 'a2 c = m n - m

I+( 2m- 1 ) /2aC 2m-1 ,n

2m- 1 ,n ( 2m- 1 ) /2a (P 2m- ,n 2m- 1 ,n P

xviii

Annular -S e c t o r Tank (cont h u e d

J

1 = N (6,) if i n t h e above equa t ion f o r N (E ), m is 'j ('2m-1 ,n J j =

replaced by (2m-1).

xix

I. I n t r o d u c t i o n

Fuel s lo sh ing is de f ined a s any p e r i o d i c motion of a con ta ined l i q u i d

p r o p e l l a n t and r e s u l t s from t h e m i s s i l e ' s o s c i l l a t o r y motion about i t s

f l i g h t t r a j e c t o r y . The most l i k e l y causes of such d i s t u r b a n c e s a r e g u s t

l oads , c o n t r o l modes, and s t r u c t u r a l modes. I f any o f t h e s e e x c i t a t i o n s

have f r equenc ie s i n t h e v i c i n i t y of t h e r e sonan t frequency of a conta ined .

l i q u i d , v i o l e n t s l o s h i n g w i l l occur. S ince f u e l and o x i d i z e r amount t o an

extremely h igh percentage of t h e g r o s s v e h i c l e weight , t h e magnitudes of

t h e l i q u i d f o r c e and moment r e s u l t a n t s a r e s i g n i f i c a n t and cannot be

neglec ted . A thorough knowledge of t h e magnitude and l o c a t i o n of t h e

e x t e r n a l f o r c e s and moments a c t i n g on a space v e h i c l e is r e q u i r e d f o r

making s t a b i l i t y and s t r u c t u r a l i n v e s t i g a t i o n s . Consequently, t h e e f f e c t s

_ o f l i q u i d p r o p e l l a n t s on t h e i r c o n t a i n e r s wh i l e undergoing fo rced v i b r a t i o n s

The r e s u l t s o f have been i n v e s t i g a t e d both a n a l y t i c a l l y and exper imenta l ly .

such s t u d i e s are found i n Chapter IV .

The s t a b i l i t y of a m i s s i l e can be inc reased by reducing t h e force and

moment r e s u l t a n t s caused by t h e o s c i l l a t i n g p r o p e l l a n t and i n c r e a s i n g t h e

s l o s h i n g frequency. Inc reas ing t h e eigen f r equenc ie s of t he l i q u i d de-

c r e a s e s t h e depth below t h e s u r f a c e t o which t h e d i s t u r b a n c e s extend.

above f a c t can be accomplished by u t i l i z i n g l o n g i t u d i n a l p a r t i t i o n s which

The

e f f e c t i v e l y reduce t h e s l o s h i n g l i q u i d mass and i n c r e a s e t h e f r equenc ie s of

l i q u i d o s c i l l a t i o n s .

t o h e l p damp l i q u i d motion. To e v a l u a t e t h e e f f e c t i v e n e s s of such a n t i -

s l o s h dev ices , i t s damping f a c t o r and e f f e c t on t h e e igen f r equenc ie s o f

t h e f l u i d need t o be known. Consequently, t h e r e h a s been a c o n s i d e r a b l e

amount of a n a l y t i c a l and experimental work done i n t h i s area.

o f such i n v e s t i f i a t i o n s a r e found i n Chapter V.

Also v a r i o u s ' t y p e s of b a f f l e s and f l o a t s can be used

The rrrults

1-1

The exac t formula t ion and s o l u t i o n t o t h e problem of o s c i l l a t i o n s of

a contained l i q u i d wi th a f r e e s u r f a c e a r e extremely complex. To s i m p l i f y

t h e m a t t e r , i t i s convenient t o assume t h a t t h e f l u i d is nonviscous and

t h e flow is i r r o t a t i o n a l , thereby pe rmi t t i ng t h e use of p o t e n t i a l t heo ry .

The problem then reduces t o ob ta in ing t h e v e l o c i t y p o t e n t i a l from Lap lace ' s

equat ion solved with t h e a p p r o p r i a t e boundary cond i t ions .

The o v e r a l l problem of m i s s i l e s t a b i l i t y can be i n v e s t i g a t e d more

e a s i l y i f t h e l i q u i d i s rep laced with a dynamical ly equiva len t mechanical

model. The equat ions of motion f o r a model a r e d e r i v a b l e from e i t h e r La-

g range ' s equat ions o r s i m p l e equ i l ib r ium theory and from t h e s e equa t ions ,

t h e f o r c e and moment r e s u l t a n t s can be obta ined . The c h a r a c t e r i s t i c s of

t h e model a r e then determined so t h a t t h e f o r c e and moment r e s u l t a n t s ,

f requencies o f o s c i l l a t i o n , and mass and i n e r t i a l c h a r a c t e r i s t i c s a r e

i d e n t i c a l l y equal t o those of t h e l i q u i d .

chan ica l models, t h e non l inea r n a t u r e of forced damped l i q u i d o s c i l l a t i o n s

can be approximated by equiva len t Linear damping.

t o o b t a i n f i n i t e resu l t s near theresonant f r equenc ie s of t h e l i q u i d , which

was not p o s s i b l e i n t h e f l u i d a n a l y s i s , s i n c e t h e l i q u i d was assumed t o be

i n v i s c i d .

A l s o by us ing equ iva len t me-

This makes it p o s s i b l e

1-2

11. Flu id Theory (9)

2.1 Assumptions

The d i f f i c u l t y in formula t ing and o b t a i n i n g t h e exac t s o l u t i o n t o t1.e

problem of o s c i l l a t i o n s of a conta ined l i q u i d is s i m p l i f i e d by making s e v e r a l

assumptions concerning t h e n a t u r e of t h e f l u i d and t h e t y p e of flow encount-

ered. These assumptions a r e : ( 1 ) t h e f l u i d is both incompress ib le

( p = c o n s t a n t ) and f r i c t i o n l e s s ( v = 0 1 , ( 2 ) t h e flow is i r r o t a t i o n a l

(u = o ) , and ( 3 ) t h e r e a r e no sources o r s i n k s ; t h a t i s , t h e c 6 n t a i n e r i s

n e i t h e r d r a i n i n g nor filling.

+

2.2 Basic Equations

I r r o t a t i o n a l i t y is a necessa ry and s u f f i c i e n t c o n d i t i o n t h a t t h e v e l - +

o c i t y V can be expressed a s t h e g r a d i e n t of a v e l o c i t y p o t e n t i a l Q, t h a t i s ,

+ V Q = v (2-1)

I

Because of i n c o m p r e s s i b i l i t y and t h e nonexis tence of sou rces and s i n k s , t h e

equation of c o n t i n u i t y reduces to Lap lace ' s equa t ion ,

For an incampress ib le and f r i c t i o n l e s s f l u i d , i r r o t a t i o n a l f low, and con-

s e r v a t i v e body f o r c e s , t hose f o r c e s d e r i v a b l e from a p o t e n t i a l f u n c t i o n ,

B e r n o u l l i ' s energy equat ion is

f2 ao P 2 a t E + - + U +-=F(t)

2 -1

where U i s a p o t e n t i a l func t ion .

f o r c e , then U = g z , and s i n c e t h e v e l o c i t y is assumed t o be sma l l , t h e term

Since g r a v i t y i s t h e on ly important body

conta in ing ? is neg lec t ed . Also s i n c e any a r b i t r a r y func t ion of t ime can

be added t o t h e v e l o c i t y p o t e n t i a l without changing t h e flow it r e p r e s e n t s ,

t h e func t ion F ( t ) can be convenient ly absorbed by @. Consequently, t h e

equat ion of motion reduces t o

ao €. + gz + .- = 0 F a t

From t h i s express ion , t h e p re s su re p i s found t o be

p = - p [ E + BZ]

( 2 - 3 )

For zero o r uniform su r face gauge pressure ( p = 0 o r p = po = c o n s t . )

t h e s u r f a c e displacements can be found a s fol lows:

= = = < = - - , 1 2 g a t z su r f ace (2-5)

P O where, i n t h e case of uniform su r face gauge p r e s s u r e , t h e cons t an t - P

is absorbed by @. The r e s u l t a n t l i q u i d f o r c e a c t i n g on a con ta ine r i s then

given by I

F = dA q i J A pqi (2-6)

where qi i s a genera l ized coord ina te and F and p a r e components of t h e q i q i

f o r c e and pressure d i s t r i b u t i o n s i n t h e q i -d i rec t ion .

t o be. t h e long i tud ina l a x i s of t h e c o n t a i n e r , t h e r e s u l t a n t l i q u i d moment

about a l i n e perpendicular t o t h e xz-plane and pass ing through t h e po in t

Taking t h e z -ax i s I

P ( o , o , i ) i s given by

2 -2

2.3 Boundary Condit ions

2.3.1 Veloc i ty P o t e n t i a l . The t o t a l v e l o c i t y p o t e n t i a l 4 i s composed

of two p a r t s : 4 t h e v e l o c i t y p o t e n t i a l o f t h e c o n t a i n e r which is assumed

t o be small and 4 , t h e v e l o c i t y p o t e n t i a l of t h e l i q u i d . These p o t e n t i a l s

must s a t i s f y Lap lace ' s equat ion i n t h e fol lowing manner:

1'

2

Since f o r a p a r t i c u l a r e x c i t a t i o n t h e c o n t a i n e r v e l o c i t y i s known, t h e

v e l o c i t y p o t e n t i a l of t h e c o n t a i n e r can e a s i l y b e determined from equat ion

(2-1)

vo -'= v 1 1 (2-9)

2' where t h e r e s u l t i n g cons t an t of i n t e g r a t i o n can be absorbed by @

2.3.2 Free O s c i l l a t i o n s . Considerat ion o f f r e e o s c i l l a t i o n s is nec-

e s s a r y i n o r d e r t o determine t h e n a t u r a l f r equenc ie s o f l i q u i d s i n v a r i o u s l y

shaped c o n t a i n e r s . For t h e occurrence o f f r e e l i q u i d o s c i l l a t i o n s , t h e

c o n t a i n e r m u s t be a t res t (V

4 = #

over t h e wetted s u r f a c e , t h e v e l o c i t y of t h e f l u i d normal t o t h e c o n t a i n e r

w a l l must be i d e n t i c a l t o t h a t o f t h e c o n t a i n e r i t s e l f , t h a t is,

-P = 01, t h u s Q1 = c o n s t a n t . Consequently, 1

s i n c e t h e cons t an t can be absorbed by 4 I n o r d e r t o avoid s e p a r a t i o n 2 2'

(2-10)

Al so , t h e p r e s s u r e v a r i a t i o n over t h e f r e e s u r f a c e must b e equa l t o zero.

Accordingly, t h e l i n e a r i z e d f r e e s u r f a c e c o n d i t i o n is

I_ a 202 + g - = o a42 2 a z a t (2-11)

e r is sub je 2.3.2 Forced O s c i l l a t i o n s . When t h e c o n t a i t e d t o harmonic

e x c i t a t i o n , t h e t o t a l v e l o c i t y p o t e n t i a l , 0 -- @ 4 0 m u s t be cons ide red .

S i n c e ove r t h e wet ted s u r f a c e t h e normal v e l o c i t y o f t h e f l u i d m u s t be t h e

same a s t h a t of t h e c o n t a i n e r , i t fol lows t h a t

1 2 ’

(2-12)

The l i n e a r i z e d f r e e s u r f a c e c o n d i t i o n corresponding t o ze ro p re s su re v a r -

i a t i o n a t t h e f r e e s u r f a c e i s

a Q 0 a2q, 2 + g a z a t (2-13)

The f r e e s u r f a c e boundary cond i t ion i s a c t u a l l y composed of bo th a ze ro -

p re s su re v a r i a t i o n cond i t ion and a kinematic c o n d i t i o n .

c o n d i t i o n , second and h ighe r o r d e r terms were neg lec t ed the reby l i n e a r i z i n g

t h e f r e e s u r f a c e boundary cond i t ion . When t h e ampli tude of t h e f l u i d i s

l a r g e r e l a t i v e t o t h e tank dimensions, t h e e f f e c t of n o n l i n e a r i t y can become

important , i . e . , t h e magnitude of t h e h i g h e r o r d e r e f f e c t s might n o t be

In t h e kinematic

n e g l i g i b l e . Therefore , i n o rde r t h a t t h e s l o p e o f t h e f r e e s u r f a c e b e

sma l l , t h e r e s u l t i n g frequency of f l u i d o s c i l l a t i o n must not be i n t h e

immediate neighborhood of a n a t u r a l f r e e s u r f a c e frequency. Even s o ,

r e l a t i v e l y l a r g e ampli tudes a r e p o s s i b l e when t h e c o n t a i n e r i s a l s o l a r g e .

Also, i t should be noted t h a t t h e f r e e s u r f a c e c o n d i t i o n given h e r e and

i n A r t i c l e 2.3.2 above i s v a l i d o n l y i n t h e c a s e of a cons t an t g r a v i t a t i o n a l

f i e l d . Consequently, t h e information presented i n t h i s handbook i s a p p l i c a b l e

on ly f o r ground t e s t a p p l i c a t i o n s .

The expres s ion f o r t h e n a t u r a l f r equenc ie s f o r f r e e l i q u i d o s c i l l a t i o n s

is as fol lows:

2 -4

h 0 2 =€i, tanh (a mn a mn (2-14)

where

g = t h e a c c e l e r a t i o n due t o g r a v i t y

a = t h e r a d i u s of t h e t a n k

h = t h e depth of l i q u i d i n t h e t ank

= t h e r o o t s of an eigen f u n c t i o n

It is observed t h a t t h e e igen f r equenc ie s a r e p r o p o r t i o n a l t o t h e square

r o o t of g.

nonnal t o t h e mean f r e e s u r f a c e of t h e f l u i d , g becomes t h e e f f e c t i v e

l o n g i t u d i n a l a c c e l e r a t i o n of t h e m i s s i l e . Therefore , t h e n a t u r a l f requencie:

of t h e l i q u i d remain a c o n s t a n t w h i l e t h e v e h i c l e is a t r e s t b u t v a r y when

t h e m i s s i l e is i n f l i g h t . It is a l s o seen t h a t t h e f r e q u e n c i e s a r e i n v e r s e l y

p ropor t iona l t o t h e square r o o t of a and the reby dec rease wi th an i n c r e a s e

i n t h e c r o s s - s e c t i o n a l a r e a of t h e con ta ine r .

metry upon t h e f r equenc ie s of t h e l i q u i d is a l s o e x h i b i t e d by t h e v a l u e of

E . The l i q u i d h e i g h t has r e l a t i v e l y no e f f e c t on t h e f r equenc ie s f o r mn

h>a.

However, when t h e v e h i c l e exper iences a l a r g e a c c e l e r a t i o n

The i n f l u e n c e of t ank geo-

As h dec reases below a , t h e f r equenc ie s tend t o ze ro .

2.4 I n i t i a l Conditions

Assume t h e harmonic f o r c i n g f u n c t i o n is equal t o ze ro f o r a l l t i m e

t equal t o and l e s s than ze ro (t < 0). -

111. Equivalent Mechanical Model Theory

An equ iva len t mechanical model i s an assemblage of s p r i n g s , dashpots ,

masses, and mass less rods arranged i n such a manner a s t o r e p r e s e n t t h e

dynamic behavior of a complex mechanical o r non-mechanical system.

s i d e r a t i o n i s g iven h e r e t o those models which a r e dynamical ly equiva len t

t o a l i q u i d o s c i l l a t i n g w i t h i n i t s con ta ine r . Dynamic equiva lence i s

taken t o mean t h e equivalence of f o r c e and moment r e s u l t a n t s , f r equenc ie s

of o s c i l l a t i o n , and mass and i n e r t i a l c h a r a c t e r i s t i c s .

Con-

There a r e two reasons f o r us ing equ iva len t mechanical models t o r ep re -

s e n t t h e s l o s h i n g behavior of a contained l i q u i d . S ince t h e problem of

forced damped l i q u i d o s c i l l a t i o n s is a c t u a l l y non l inea r i n n a t u r e , a n exac t

s o l u t i o n i s p r a c t i c a l l y impossible . However, through t h e use of a n equiva-

l e n t mechanical model, a good approximation can be made by in t roduc ing

equ iva len t l i n e a r damping i n t h e form of dashpots , thereby making it p o s s i b l e

t o o b t a i n f i n i t e r e s u l t s nea r t h e resonant f r equenc ie s of t h e l i q u i d . This

was n o t p o s s i b l e i n t h e f l u i d a n a l y s i s , s i n c e t h e l i q u i d was assumed t o he

i n v i s c i d . Secondly, t h e o v e r a l l problem of m i s s i l e s t a b i l i t y i s s i m p l i f i e d

i n t h a t t h e v e h i c l e ' s equa t ions of motion a r e no t so complex.

When a con ta ine r p a r t i a l l y f i l l e d wi th f l u i d i s e x c i t e d , t h e l i q u i d

i n t h e bottom of t h e t ank i s l i t t l e d i s t u r b e d , whereas t h e l i q u i d nea r t h e

f r e e s u r f a c e o s c i l l a t e s . Analogously, t h e model i s composed of a f ixed mass

i n t h e bottom of t h e c o n t a i n e r t o r e p r e s e n t t h e e s s e n t i a l l y r i g i d o r non-

s lo sh ing p a r t of t h e l i q u i d and a movable mass near t h e t o p of t h e con ta ine r

t o r e p r e s e n t t h e s lo sh ing p a r t o f t h e l i q u i d . The sum of t h e f i x e d and

movable masses of t h e model a r e taken equal t o t h e t o t a l mass of t h e l i q u i d

and t h e r a t i o of t h e movable mass t o t h e t o t a l mass of t h e l i q u i d i n c r e a s e s

3 -1

a s t h e depth of t h e l i q u i d i n t h e c o n t a i n e r dec reases . Also, t h e f i x e d mass

and t h e movable mass (when t h e f l u i d i s not o s c i l l a t i n g ) a r e loca t ed a long

t h e l o n g i t u d i n a l a x i s of t h e c o n t a i n e r a t such d i s t a n c e s from t h e t ank

bottom a s t o y i e l d t h e same i n e r t i a l c h a r a c t e r i s t i c s f o r r o t a t i o n about any

a x i s perpendicular t o and passing through t h e l o n g i t u d i n a l a x i s .

t h e f i x e d mass is l oca t ed near t h e c e n t e r of g r a v i t y of t h e undis turbed

f l u i d and t h e l o c a t i o n of t h e movable mass s h i f t s towards t h e c e n t e r of

g r a v i t y of t h e f l u i d a s t h e l i q u i d l e v e l dec reases .

Therefore ,

The kind of movable mass t o be used and i t s r e s t r a i n t s a r e dependent

on t h e type of e x c i t a t i o n encountered, namely: harmonic t r a n s l a t i o n ,

harmonic p i t c h i n g , o r harmonic r o l l . For a p a r t i c u l a r model, harmonic

t r a n s l a t i o n and harmonic p i t c h i n g have t h e fo l lowing r e l a t i o n s h i p : ( a )

t r a n s l a t i o n r e f e r s t o an e x c i t a t i o n i n a d i r e c t i o n pe rpend icu la r t o t h e

l o n g i t u d i n a l a x i s of t h e con ta ine r whi le ( b ) p i t c h i n g i m p l i e s an e x c i t a t i o n

about an a x i s pe rpend icu la r t o t h e d i r e c t i o n of t r a n s l a t i o n and t h e con-

t a i n e r ' s l o n g i t u d i n a l a x i s . For t r a n s l a t i o n a l and p i t c h i n g e x c i t a t i o n s , two

p o s s i b i l i t i e s e x i s t t o r e p r e s e n t a movable mass and i t s c o n s t r a i n t s ; e i t h e r

a spring-mass system whose motion is r e s t r a i n e d by s p r i n g s and dashpots

a l i g n e d i n t h e d i r e c t i o n of t r a n s l a t i o n o r a pendulum-mass system having i t s

massless lever arm a t t a c h e d t o t h e l o n g i t u d i n a l a x i s of t h e c o n t a i n e r .

Because "small o s c i l l a t i o n theory" h a s been assumed, t h e ampl i tude of t h e

pendulum motion must be small, the reby main ta in ing t h e pendulum mass a t a

r e l a t i v e l y c o n s t a n t d i s t a n c e from t h e c o n t a i n e r bottom. Therefore t h e

i n e r t i a l c h a r a c t e r i s t i c s of t h e pendulum mass a r e e s s e n t i a l l y t h e same a s

those of t h e s p r i n g mass.

For r o l l e x c i t a t i o n , which is always taken t o be about t h e l o n g i t u d i n a l

3 -2

a x i s of t h e c o n t a i n e r , two p o s s i b i l i t i e s e x i s t f o r r e p r e r e n t i n 8 a movable

mass and i t s c o n s t r a i n t s ; ( a ) a t o r s i o n a l pendulum whose s h a f t co inc ides

with t h e c o n t a i n e r ' s l ong i tud ina l a x i s o r ( b ) a t o r s i o n a l s p r i n g - m a r system

a t t ached t o t h e long i tud ina l a x i s of t h e con ta ine r .

Because of t h e def ined arrangement of t h e c o n s t r a i n t s of movable

masses with r e spec t t o t h e d i r e c t i o n of e x c i t a t i o n , t h e model becomes a

s i n g l e degree of freedom system, i . e . , o n l y one gene ra l i zed coord ina te

i s necessary t o s p e c i f y t h e p o s i t i o n of t h e movable mass a t any p a r t i c u l a r

t i m e . Note, however, t h a t when a con ta ine r p a r t i a l l y f i l l e d with f l u i d is

e x c i t e d , t h e l i q u i d can o s c i l l a t e i n va r ious modes of v i b r a t i o n depending

on t h e frequency and ampli tude of t h e f o r c i n g func t ion . Thus, f o r a

c i r c u l a r c y l i n d r i c a l t ank ,o r some o t h e r s i m i l a r c o n f i g u r a t i o n , it is p o s s i b l e

t o have modes of v i b r a t i o n i n both t h e r a d i a l and t a n g e n t i a l d i r e c t i o n . In

o t h e r words , an o s c i l l a t i n g l i q u i d can e x h i b i t s e v e r a l degrees of freedom.

In o rde r f o r a model t o s imula t e t h e s e va r ious modes of v i b r a t i o n , i t is

necessary t o add a d d i t i o n a l movable masses t o t h e model. Each new mass

i n c r e a s e s t h e model 's degree of freedom by one and the reby makes it poss ib l e

t o r e p r e s e n t a n a d d i t i o n a l l i q u i d mode of o s c i l l a t i o n . For t h i s reason t h e

s u b s c r i p t mn is used on va r ious parameters i n o r d e r t o c l a r i f y which mode of

v i b r a t i o n is of i n t e r e s t . m is t o r e p r e s e n t t h e mth mode of v i b r a t i o n i n t h e

t a n g e n t i a l d i r e c t i o n and n i s t o r e p r e s e n t t h e n t h mode i n t h e r a d i a l d i r e c t -

i o n f o r c i r c u l a r c y l i n d r i c a l t anks o r s i m i l a r conf igu ra t ions . I n many c a s e s ,

t h e o n l y mth mode t o be e x c i t e d is m=l.

used, it is t o be understood t h a t e l .

Thus, when o n l y t h e s u b r c r i p t n i s

T n o r d e r f n r n a r t i c u l a r movable mass t o o s c i l l a t e a t t h e r8me

3 -3

frequency a s t h e l i q u i d mode it r e p r e s e n t s , t h e fo l lowing d e f i n i t i o n s have

t o be made:

t h e square of t h e n a t u r a l angu la r frequency of t h e f l u i d , ( 2 ) t h e l eng th

( I ) t h e s p r i n g cons t an t is def ined a s t h e s l o s h mass t imes

of t h e pendulum a x i s is def ined a s t h e a c c e l e r a t i o n due t o g r a v i t y over thc;

square of t h e n a t u r a l angu la r frequency of t h e f l u i d , and ( 3 ) t h e damping

c o e f f i c i e n t is def ined as t h e s l o s h mass t imes t h e damping f a c t o r t imes t h e

n a t u r a l angu la r frequency of t h e f l u i d .

t h e t o r s i o n a l s t i f f n e s s of t h e s h a f t is defined as t h e mass moment of i n e r t i z

Also, f o r t h e t o r s i o n a l pendulum,

of t h e d i s c t i m e s t h e n a t u r a l angu la r frequency and t h e damping c o e f f i c i e n t

of t h e d i s c is defined a s t h e mass moment of i n e r t i a t imes t h e damping

f a c t o r times t h e square of t h e n a t u r a l angu la r frequency.

must be determined e i t h e r a n a l y t i c a l l y o r expe r imen ta l ly ( s e e Chapter V ) .

The damping f a c t o r

Component va lues of t h e model a r e determined so t h a t t h e f o r c e s and

moments exer ted by t h e model a r e i d e n t i c a l l y equal t o t h o s e exe r t ed by t h e

l i q u i d . This is done by making a term-wise comparison of t h e f o r c e and

moment equat ions de r ived from hydrodynamic a s p e c t s with t h o s e de r ived from

t h e model. In o rde r t o put t h e f l u i d and model equat ions i n t o similar form

f o r comparison, i t is many times necessa ry t o expand c e r t a i n terms of t h e s e

equat ions i n t o s e r i e s . Even though t h e model equat ions c o n t a i n damping

terms and t h e f l u i d equat ions do n o t , t h e comparison of equa t ions is s t i l l

v a l i d because t h e modes of v i b r a t i o n change l i t t l e as long as t h e amount

of damping remains small.

3 -4

~v. Rigid Tanks

4.1 I n t r o d u c t i o n

The fo l lowing s e c t i o n s p re sen t r e s u l t s of a n a l y t i c a l s t u d i e s of l i q u i d

o s c i l l a t i o n s i n c o n t a i n e r s of var ious shapes when sub jec t ed t o d i f f e r e n t

t ypes of e x c i t a t i o n .

shape, e i t h e r c i r c u l a r c y l i n d r i c a l , s e c t o r , q u a r t e r - s e c t o r e d , e igh th -

s e c t o r e d , annu la r , annu la r - sec to r , o r r e c t a n g u l a r and is preceded by a

t a b l e of c o n t e n t s , a diagram showing t h e c o n t a i n e r and i t s coord ina te system,

and o t h e r in format ion p e r t i n e n t t o t h e material t h a t fol lows. The c o n t a i n e r s

Each s e c t i o n is concerned wi th a p a r t i c u l a r c o n t a i n e r

a r e assumed t o have exh ib i t ed r ig id -body behavior.

and r e s u l t i n g f l u i d v e l o c i t y p o t e n t i a l s , n a t u r a l f r equenc ie s and l i q u i d

f o r c e and moment r e s u l t a n t s a r e g iven a long wi th equ iva len t mechanical

models. The elements of t h e s e models a r e de f ined both a n a l y t i c a l l y and

g r a p h i c a l l y .

The boundary c o n d i t i o n s

The or thogonal coord ina te systems t o which t h e f o r c e and moment r e s u l t -

a n t s a r e r e fe renced a r e i d e n t i c a l t o t h o s e shorn i n t h e f i g u r e s , t h e coord in-

a t e o r i g i n s always be ing located a t the c e n t e r of g r a v i t y of t h e undis turbed

f l u i d . However, i n t h e f l u i d a n a l y s i s , it is f r e q u e n t l y convenient t o

t r a n s l a t e t h e coord ina te o r i g i n a long t h e z -ax i s t o t h e f r e e s u r f a c e of t h e

undis turbed l i q u i d , t he reby r e f e r e n c i n g t h e v e l o c i t y p o t e n t i a l t o such a

system.

c a l c u l a t i n g t h e r e s u l t a n t moment,gives t h e moment r e fe renced t o any po in t

( o , ~ , ; ) .

p o t e n t i a l is r e fe renced t o t h e f l u i d s u r f a c e and z' = 0 when t h e v e l o c i t y

p o t e n t i a l is r e fe renced t o t h e c e n t e r of g r a v i t y of t h e undis turbed f l u i d -

This f a c t p r e s e n t s no d i f f i c u l t y s i n c e equa t ion ( 2 - 7 >, used f o r

Therefore , it is necessa ry t o t a k e = -h/2 when t h e v e l o c i t y

The or thogonal coord ina te system t o which a p a r t i c u l a r v e l o c i t y

4-1

p o t e n t i a l i s r e fe renced i s determined i n t h e fol lowing manner. The z - a x i s

is always i d e n t i c a l t o t h a t shown i n t h e a p p r o p r i a t e f i g u r e . The l o c a t i o n

of t h e coord ina te o r i g i n along t h e z -ax i s w i l l be e i t h e r a t t h e c e n t e r of

g r a v i t y o f t h e undis turbed f l u i d o r a t t h e undis turbed f r e e l i q u i d s u r f a c e .

Upon examination of t h e z -coord ina te a t which t h e corresponding f r e e s u r f a c e

boundary c o n d i t i o n i s eva lua ted , t h e l o c a t i o n of t h e c o o r d i n a t e o r i g i n i s

obvious.

Also, i t should be mentioned t h a t , f o r a p a r t i c u l a r c o n t a i n e r , supe r -

p o s i t i o n of f o r c e and moment r e s u l t a n t s r e s u l t i n g from s e v e r a l t ypes of

e x c i t a t i o n s is p o s s i b l e because o f t h e l i n e a r i z e d t h e o r y used h e r e i n .

4 -2

4.2 C i r c u l a r C y l i n d r i c a l Tank

Table o f Contents

General ................................................. Exc i t a t ion : Harmonic Trans l a t ion and/or P i t ch ing

Boundary Condit ions. Veloc i ty P o t e n t i a l .

and Natura l Frequency ........................... Liquid Force and Moment Resu l t an t s ................. Spring-Mass Model

Analys is ...................................... Diagram ....................................... Force and Moment Resu l t an t s ................... Elements ...................................... Graphs ........................................

Pendulum Model

Analysis ...................................... Diagram ....................................... Force and Moment Resu l t an t s ................... Elements ...................................... Graphs .......................................

E x c i t a t i o n : A r b i t r a r y Trans l a t ion and/or P i t ch ing

Pendulum Model

Analysis ...................................... Diagram ....................................... Force and Moment R e s u l t a n t s ................... Elements ......................................

4-4

4-5

4-7

4-8

4-10

4-11

4-12

4-13

4-25

4-27

4-28

4-29

4-30

4-33

4-34

4-35

4-36

4 -3

t

" I I r X

X '

Container : The t ank i s a r i g h t c i r cu la r c y l i n d e r of r a d i u s a and is f i l l e d with a l i q u i d t o a depth h .

Coordinate System: The o r i g i n of t h e xyz-system i s loca ted a t t h e c e n t e r of g r a v i t y of t h e undis turbed f l u i d and t h e o r i g i n of t h e x f y l x l system i s loca ted a t t h e geometric c e n t e r of t h e t ank base.

References: (4,44,and 52)

Comments: The terms 1 and c , occur r ing i n t h e model elements, must be expe r imen ta l ly determined, g e n e r a l l y from t o r s i o n s p r i n g experiments of a s ea l ed c o n t a i n e r of f l u i d . Their va lues a r e dependent upon c o n t a i n e r shape and t h e type of l i q u i d .

4 -4

h U c Q) 1 CT Q) & L

m & 3 u m z U c m

d

- 4 0

-rl U c 0, U 0

P.i

h U ' I 4

U 0

Q) > d

0.

2 0 rl U 'rl W c 0 u h & m U c 1 0 a

d I

al

P m w

d

C 0 .d U m d v1 c m & w V ?-I c

E m T

.. C 0 .I4 u cp U rl V X w

-

3 C m w m V d & a C rl 4 h V & m 1 V & rl V

4

d

.. cn g d U d a C 0 0

h k rd 1) C 7 0 19

d

0

II

n P W

8

m 0 0

U 3 rl . .

al

3 xo d

n

W m

.. d m d U

U 0 PI

h U

5

.I4 V 0

cv

n

ICP E

+ E

Y W

3 0 0 n

C Q

W

d c, h(

C Y

3 0 0

n

w C W

d c, n d

I

N C E

n W

d

I

N C w W

+ &I a - 8

m 0 V

U 3 's(al

f d

II 8

.. h 0

7 v 9)

5 k w C

Y Lc

4 -5

n a aJ 7 C .rl U C 0 0

h 0

7 U 9) k

b.4

d m k 7 U m z 71 C a d m d U

v

E

L

E U 0 PI

h U d 0 0 d Q, > rn

d U d a

W h & m a C 7 0 In

d I 4 aJ

m I9

4 n

d

M C

‘rl

5 U ‘rl E4

V -4 C 0 E Li m X

.. e 0 ‘d U m U 4 0 X w

-

Y C a

4 m 0 d k a c

h V Ll m 7 V Ll d V

+rl rl

d

.. (0

0 h d 3 C

aJ

5

M C d c 0 U d al

h k m a

d

n m

W

.. d m

.rl u E U 0 a h U d 0 0

aJ > d

N

n

Q C

W

d rl

N

C Y

fi 0 V

n

w

9 n

C v d

d

I

N C c n W

d

I

N C W

C W

w

+ N

8

U 3 d

aJ Q3

0

d

I

II e

.. L b. E 7 w aJ & VI C k m 7 60 C m C

Y

-2 4 m U

w d m a d m

I I & 7 U Q z “aC

m

n m I 4 a, .-(

% w a, a, rn

W

0

II h

C W W - 4 c, ru 0 v) U 0 0 k

a, k m

W

aJ & a

C

9

4 -6

a C

s L L .I-

*I-

n. L 0

C 0 .,-I U m m C m h e

A

u C 0

.d

E m .- I

.. C 0 .d U m c)

V X w

.r(

-

Y C c - m V -+-I h

7 .n c >, V & m 3 V h .d

U

c

C Y

c c u m

C 2 w

I

0)

X

I1 X

C 0 .d U u aJ I4

.rl W I K W

? C

.I

5 c

c 0

‘rl U m v1 C a k w

‘rl

d

n m

4\ c * W

n

el + r(

U

U

.r( 3 a x 0

N

3 I1

c4 X

#-I

n C

Y

c 5 IJ n N \

e + h d

I

E Y

c,

5

0 u \ rJ

Y \ d v

n #-I

I

N C c n W

4

I

W

C w

a - &

u 3

.I4

a x 3 m

0

cv

Ed I I h r:

cv

E Y

s c m U

n N \ #-I

+ E

E:

Y \

* + W

n d

I

E Y

-5

XE

0 0 \ #-I

Y \

s

n 4

I

cv rc W

d

I

n

N C

C

w W

w

U

‘ T I 3 a

Q) 0

cv 3 m Ed N

I

u .rl 3 a,

Q)

bo

0

Ed I

It x

c4

4

n 4

I

“rc W

r(

I

n

“ C

C

w W

w

U 3

.rl W

Q) 0

cv N 3 m Ed I

N

T Y

c c m U

n

*I YC

I

I

C Y I* v

C 41 w + n

+

w

#-I! w c +

I

r(

L

4-7

Table 4 - 3 . Model Analys is

C i r c u l a r C y l i n d r i c a l Tank I Spring-Mass Model

E x c i t a t i o n : Harmonic Trans l a t i o n and / o r P i t c h i n g

Figure 4-1 shows a diagram of t h e spring-mass model used i n r e p r e s e n t i n g t h e dynamic response of a l i q u i d i n a c i r c u l a r c y l i n d r i c a l t ank when sub- j e c t e d t o harmonic t r a n s l a t i o n i n t h e x - d i r e c t i o n and/or p i t c h i n g about t h e y-axis .

Coordinate System :

The o r i g i n i s loca ted a t t h e c e n t e r of g r a v i t y of t h e undis turbed 1 iquid . Model Descr ip t ion :

The components o f t h e system a r e a s fo l lows:

1. A f ixed mass M having a moment of i n e r t i a I i s r i g i d l y connected t o t h e tank and i s loca ted on t h e z -ax i s a t a d i s t a n c e H below t h e coord ina te o r i g i n .

A s e t of movable masses mn is d i s t r i b u t e d a long t h e z -ax is when the tank i s a t rest a t d i s t a n c e s h above t h e o r i g i n . These modal masses a r e cons t ra ined by spr ing-dashpot systems, having s p r i n g s t i f f n e s s c o e f f i c i e n t s kn and v iscous damping c o e f f i c i e n t s cn, t o remain i n t h e xy-plane and t o move o n l y i n a d i r e c t i o n p a r a l l e l t o t h e x -ax i s . r e s p e c t t o t h e con ta ine r a r e denoted by x

coord ina te o r i g i n . I ts motion is confined t o r o t a t i o n about t h e y-axis and i s cushioned by a dashpot having a v i scous damping c o e f f i c i e n t c t h e tank i s def ined by $.

2.

n

T r a n s l a t i o n a l displacements of t h e s e masses wi th

n 3 . A mass less d i s c having a moment of i n e r t i a I is l oca t ed a t t h e

d

The angular displacement of t h e d i s c r e l a t i v e t o d '

Equations o f Mot ion :

The equa t ions , ob ta ined through Lagrange 's equa t ions , a r e a s fo l lows:

1. Force Equation:

2. Moment Equation:

0 W M = - ( f i- MH 2 >e .. - Id(g + $ ) + g 1 m x - 1 m h ( i n -I- hn i )

n n n n Y n=l n=l

4-8

Table 4 . 3 Model Analysis ( con t inued)

C i r c u l a r C y l i n d r i c a l Tank Spring-Mass Model I E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g

Equations of Motion (cont inued):

3 . Disc Equation:

Id (8 + $1 + c,;t = 0

4 . Slosh-Mass Equation:

- m g e = O + knXn n n n n n n n m (3 + I + h n 8 ) + m i w ;

From t h e s e equa t ions , t h e model f o r c e i n t h e x - d i r e c t i o n and t h e moment about t h e y-axis can be found ( s e e Table 4 - 4 ) .

4 -9

C n - 2

C I _jn h

H

i ut x = x e 0

- + x

C i r c u l a r C y l i n d r i c a l Tank I Spring-Mass Model

E x c i t a t i o n : Harmonic T r a n s l a t i o n and /o r P i t c h i n g

Figure 4-1. Equivalent Mechanical Model

4-10

- a 'c 0 r: (I: (I:

3 b C L C v:

..-

-

3 C

3 d m u

*rl k a C 'rl d * u k m 3 0 k

' r l u

4

N a N N

3U V

b E

.c L

P

& C

T E (I

E C L n: (I: E

F

U

C

t. m !z

.r

.r

%

*r

7

2 .I-

.. C 0

' r l U m U 'd V X w

"-a H

H 3 +

N U U

U

.I4 3 aJ X I1 X

C 0

.I4 U u aJ & 'rl a X aJ

C

..

5 d

C 0 d U m d rn

k F

-d

5

c N a C H C N

'2 d

N U H

N 3 +

N U 0

m

rl

M C

E: IM d

+ rl

4-11

I

+

U

d 3 a)

a 0

N

N 3

2 I

I I

zh

N

U

d 3 8

a 3 .rl

0

C

C c 160 d

rl + d

I

N C c

N

3 +

W

8 f - f

+

4 0

M 0

C

0

0

0

3 2

F

5

.rl a

C

0 U

a 0)

a .rl 3 r( Frr

Iu 0

0 .rl U Q

p?;

n

4 -16

3

0

- e " E '

.

0

I

0

+ 7- -+--

f I i

ca nt k u U

aJ d W

aJ -0

d

3 0 d. I

.5 Q) k 1 M d r=i

4 -21

ca

E

m &l c9

U

E aJ w d a, a

d

i2 d 3 I 4

aJ &l 7 M 4 Pa

z1

a - I -

4 -23

Table 4-6. Model Ana lys i s

I ~~

C i r c u l a r C y l i n d r i c a l Tank Pendulum Model

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g

Figure 4-14shows a diagram o f t h e pendulum model used i n r e p r e s e n t i n g t h e dynamic response o f a l i q u i d i n a c i r c u l a r c y l i n d r i c a l t ank when s u b j e c t e d t o harmonic t r a n s l a t i o n i n t h e x - d i r e c t i o n and/or p i t c h i n g about t h e y-axis .

Coordinate System :

The o r i g i n i s located a t t h e c e n t e r of g r a v i t y o f t h e undis turbed l i q u i d .

Model Desc r ip t ion :

The components o f t h e system a r e a s fol lows:

1.

2.

3 .

A f i x e d mass M having a t h e t ank and i s located coord ina te o r i g i n .

A se t of movable masses t ank is a t r e s t . These l e v e r arms o f length L-

moment o f i n e r t i a I i s r i g i d l y connected t o on t h e z - a x i s a t a d i s t a n c e H below t h e

m i s d i s t r i b u t e d along t h e z -ax i s when t h e modal masses a r e pendulums having mass l e s s a t t a c h e d t o t h e z - a x i s a t d i s t a n c e s H- above

n

t h e o r i g i n . c o e f f i c i e n t approximate pendulum w i

They a r e gons t r a ined by dashpots having v i scous aamping s cn t o remain approximately i n t h e xy-plane and t o move l y p a r a l l e l t o t h e x -ax i s . Angular displacements of t h e t h r e s p e c t t o t h e t ank ( z - a x i s ) a r e denoted by X . n

A mass l e s s d i s c having a moment o f i n e r t i a I i s loca ted a t t h e coord ina te o r i g i n . I t s motion i s confined t o r o t a t i o n about t h e y - a x i s and is cushioned by a dashpot having a v iscous damping c o e f f i c i e n t cd. t h e t ank i s def ined by JI.

d

The angu la r displacement o f t h e d i s c r e l a t i v e t o

E q ua t ions o f Mot ion :

The equa t ions , obtained through Lagrange f s e q u a t i o n s , a r e as fo l lows :

1. Force Equation: ..

F = - ~ ( i + - 1 m 1; + L x + (Hn - L ~ ) G J X n n n n=l

2 . Moment Equation: W a0

M = - ( I + MH 2 1; - ~ ~ ( i j + $1 + g 1 mnLnAn - 1 mn(Hn - L ~ >

n=l n=l Y

[ L n n + (H - L,);]

4-25

Figure 4-6. Model Ana lys i s ( con t inued)

C i r c u l a r C y l i n d r i c a l Tank Pendulum Model

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g I

Equations of Motion ( con t inued) :

3 . Disc Equation:

Id (i + $1 + Cdj, = 0

4 . Slosh-Mass Equation:

m [ ; + L i n - mngQ = o n n n

From t h e s e e q u a t i o n s , t h e model f o r c t i n t h e x - d i r e c t i o n and t h e moment about t h e y-axis can be found ( s e e Table 4-71.

4 -26

n - n - 2 2

'd

1 iwt x = x e 0

X -

i

C i r c u l a r C y l i n d r i c a l Tank Pendulum Model I E x c i t a t i o n : Harmonic Trans l a t i o n and /o r P i t c h i n g

F igu re 4-14. Equivalent Mechanical Model

4-27

"Ha N 3 0

N a

3 a +

N"

N a V

N A.

I4 C

I

C X W

EC

n

N

3 u

U 3 d

aJ a 3 d

0

t + - N a - 1 ,

N w -1%

+ d

I

N C c

4

U 3 .rl aJ X

II X

C 0 d U V aJ k *rl a X

aJ

0

*

5 C

C 0 *rl U m

d

d

2 a Fc w

+

t

t 8 W i P C

U

.rl 3

3 d a

C D 0

N

N 3

U

aJ

X

.3 0

N

3

aJ

X

3

0

N

2 + I

II II

LU X

I4

II

zh

N N

Table 4-8. Model Elements

Ci rcu lar C y l i n d r i c a l Tank Pendulum Model I I I

Natural Frequency

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g

Pendulum Length

Damping C o e f f i c i e n t o f Slosh Mass

I Damping C o e f f i c i e n t of Disc

Ra t io of Slosh Mass t o F lu id Mass

Rat io of Fixed Mass t o Fluid Mass

Rat i o of Pendulum Mass Coordinate t o F lu id Depth

Ra t io of Fixed Mass Coordinate t o Fluid Depth

Moment o f I n e r t i a of S o l i d i f i e d F lu id

Moment of I n e r t i a of Disc (cd = 0 1

Moment of I n e r t i a of Disc (cd # 0)

Moment of I n e r t i a o f Fixed Mass

n a n E tanh K n ( f i g . 4-15) w 2 = g

Ln = g / w L n

c = m g w n n n n

1 -2 c , = C [ l + C

w ( I s - n2 m 2 tanh (Kn>

- n - - "L (E2 - 1) Kn

n

( f i g . 4-16, 4-17)

2 IHn - L n l 1 4 1 - - tanh - = - [

K n h 2

I

m h L 12 a

2 [I - (2/Kn) tanh (Kn/2)]

2 n (E - 1) E n n=o

-2 -=s I d C

"Lh - TI2 2

4-29

Y z Q t-

u LL O * K

> Q

+ o c (3

T I

I cu c

4-32

Table 4-9. Model Analysis

C i r c u l a r C y l i n d r i c a l Tank Pendulum Model I E x c i t a t i o n : A r b i t r a r y T r a n s l a t i o n and/or P i t c h i n g

Figure 4-Bshows a diagram of t h e pendulum model used i n r e p r e s e n t i n g t h e dynamic response of a l i q u i d i n a c i r c u l a r c y l i n d r i c a l t ank when sub jec t ed t o an a r b i t r a r y t r a n s l a t i o n i n t h e x - d i r e c t i o n and/or p i t c h i n g about t h e y-axis .

Coordinate System :

The o r i g i n i s loca t ed a t t h e geometric c e n t e r o f t h e t ank bottom.

Model Desc r ip t ion :

The components o f t h e system a r e a s fol lows:

1. A f ixed mass M having a moment o f i n e r t i a I i s r i g i d l y connected t o t h e tank and i s located on t h e z -ax i s a t a d i s t a n c e H above t h e coord ina te o r i g i n .

A set o f movable masses mn i s d i s t r i b u t e d a long t h e z -ax i s when t h e tank i s a t r e s t . The modal masses a r e pendulums having mass l e s s l e v e r arms of length L, a t t a c h e d t o t h e z - a x i s a t d i s t a n c e s Hn above t h e o r i g i n . Angular displacements of t h e pendulums wi th r e s p e c t t o t h e t ank ( z - a x i s ) i s denoted by A n and 8 i s a space f i x e d c o o r d i n a t e d e f i n i n g t h e p i t c h i n g ang le of t h e c o n t a i n e r . Angular displacements of t h e pendulums a r e t h e r e f o r e def ined by a g e n e r a l i z e d space f i x e d coord ina te , r n = 1 n - 0.

2.

Equations o f Motion:

The equa t ions , ob ta ined through Lagrange's e q u a t i o n s , a r e a s fo l lows :

1. Force Equation:

2 . Moment Equation:

n M = - [MH + mn(Hn

+ [ M H + mn(Hn - Ln)] e - m L (Hn - L )I n n n n

+ mngL X n n

3 . Slosh Mass Equation:

2 1 n n L

.. x + w A = - - [; + (Hn - ~ ~ ) i - geJ

n Using t h e method o f Laplace t r ans fo rms , t h e f o r c e and moment have been r e p r e - s en ted a s transformed v a r i a b l e s , which the reby become a f u n c t i o n of t h e La- place- t ransform o p e r a t o r s ( s e e Table 4 - 10).

4-33

H

I/

- r, - A, - e

Tank Base - %

Circular Cylindrical Tank Pendulum Model I Excitation: Arbitrary Translation and/or Pitching

Figure 4-18. Equivalent Mechanical Model

4 -34

bo C -4

5 U .d PI

k 0 \ V

5 C 0 4 U m 3

2 m k w h k m k U -d P Ll a .. C 0 .d U m U .d u X w

v ) c v w 3 (D

X c v

X I

c +

+ m

EC

8 - f C

cv m M

d

4

bo

+ cv

v)

v)

0 h

- W

N s + H v

I

N v) n

v) W

H I

II n v)

W c

N

4-35

Table 4-11. Model Elements

Nat ional Frequency n u: = f cn tanh K

I I

Moment of I n e r t i a of Fixed Mass

L = L n U:

Pendulum Length

2

I = 8wn+(2w n -8)sinhKn-2K n coshK n ] - M H 2

- 1 ) cosh Kn *n('n

Slosh Mass r 2 tanh K~

mn = "L I+:. - ,,I

Slosh Mass Coordinate

Fixed Mass Coordinate

2

L n 4h Kn(En

2(2 + K s inh Kn-cosh K ~ ) n

- 1 ) cosh K~

4-36

4.3 Sector Tank

Table of Contents

G e n e r a l . . . . . . . . . . . . . . . . . . . . . . . . . . . b ~ ~ ~ . . ~ . ~ ~ ~ o ~ o . . . ~ . e . ~ . . . 4-38

Excitation: Harmonic Translat ion

Boundary Conditions, Velocity Po ten t i a l ,

and Natural Frequency.............................. 4-39

4-41 Liquid Force and Moment Resultants...............o.~o~

Excitation: Harmonic Pi tching

Boundary Conditions, Velocity Po ten t i a l ,

and Natural Frequency.............................. 4-42

Liquid Force and Moment Resultants.................... 4-44

Exci ta t ion: Harmonic Roll

Boundary Conditions, Velocity Po ten t i a l ,

and Natural Frequency.............*................ 4-46

Liquid Force and Moment Resultants.................... 4-47

4-37

t

Conta iner : The t ank i s a s e c t o r of a r i g h t c i r c u l a r c y l i n d e r of r a d i u s a and f i l l e d wi th a l i q u i d t o a depth h . The v e r t e x a n g l e i s denoted by a.

Coordinate System: The o r i g i n i s loca ted a t t h e c e n t e r of g r a v i t y of t h e undis turbed f l u i d which would be conta ined i n a r i g h t c i r c u l a r c y l i n d e r generated by r evo lv ing t h e s e c t o r t ank about t h e z -ax i s . must l i e i n t h e s e c t o r wa l l .

The x-axis

References: ( 4 )

51 3 n The r e s u l t s g iven i n t h i s s e c t i o n a r e no t v a l i d f o r a = -' - Comments: 2 2 '

4-38

$4 Frr

m k 7 U m z Q C m

d

- 4 m .d U

E U 0

PI

h U -4 u 0 aJ > d

- In C 0 -4 U .d

n 9)

W

l a C

'I4 In

U 3 .rl

aJ

0

I1

- 8 . N lm n n v

0

II Q C 0 V

C E

tl hl \

w W

- E c,

h k m a C 7 0 m

8

E W E

+ 8

In 0 V

k - U

.d 3

9)

X 3 0

*d

II e

.. h

+J 3 .rl

Q) 0

3" .d

u N d I

4

aJ d

0 In U Y 0 c 0

C & m U 9)

k C m E

MI w

C E

C E

w

0

I1

R 8

.. d m .d U

E U 0 a h U .r(

I I

I? k

k m 9 M C m r(

m k 7 U m z

d

r, 0

n 0

W

- W m

r(

9) >

N m

4-39

r\

-0 aJ 3 C -d U c 0 0

h u

3 w a, k L

m k 3 U m z -0

W

G

d

E *

d m -4 U

E U 0 PI

h U .d U 0 a, > d

I

v1 c 0 -4 U -4 -0 c 0 0

h k m -0 c 1 0 tn

N d I

4

aJ d P m

E-r

C 0 'd U m cn e m & w V

C

d

*d

E m z .. e 0 'd U m U .r(

u X w

-

Y E

F F. C L L

v: a

n P v

8

C d a

U

.rl 3 aJ

h" 3 a

C .d

.. II

0 a d

U d a C k 0 0

IT"

m v

0 In

+ 8

C !-.I .d a a .d U k

.. - E

II > e

0

a, l-4

hl

.. h V

5 5 I9 al k

W

k m r(

3 M C m

m k 3 U a z

d

0

II n

w i3 v

8 N \

- E c, W 0

" a u B u

5 k 0 0

a U al

k m

C E

!4 W

MI a w

4 -40

m U C m U I4

7 m aJ !x U

E s E

a C m aJ u k 0 a a rl 7 U -I4 4

m ,.-I

I e e,

P m w

d

16

m 0 @

w W 0

d

+

n - a lm @ do

w W

+ U

Q) 2 h' II h

C 0 -4 U u aJ k .rl a

1 h al

a

5 C

C 0 -4 U m d

'rl

2

g 5

m k U

a

.I

0)

X C

I I X

C 0 .I4 U u aJ & rl -0 I

X

al

.L

5 C

C 0 rl U 0 d m

.rl

s I8

2 Y n

.5 I 7

7 & E m u T- Y

- +" E n d I

v

+ + n m

@ Y

d

c, 0 u

I

I

rl

5 0 u

d 7

E E m u -'j J d

-kn d I

W CJ

+ 5 - 2 m u + E

Y

- N

8 w 1; 8 w 1;

U m \

d E L I

C E w

U

do

+ U

'd 3 aJ U

-I4 3 -

0 0 X h

al

N

I - N 3

2 I I

2

N

2 I

II

cx

I I

h h X

h

d N m

4-41

a, 0 0 x

X 3" -4

n a

W

.. 3r 0 E 5 a k

W

k m 3 00

4

2 I-4 m k 7 U m z

0

W 0 s * 2 Y .. a N

.G C m U a

k C m E

d m w C E

W

4 -42

J

? a c 0

I x

U

U 3 0 n m

E 4

V U

:i 0 .r(

U o ) - d L O

C 0 V

h k m

W 3 c c

3 0

L C C

* m 0 V

1 1 I/

n n -0 W

n v

8 m 0 V

U 3 .d

W

0 0

I

I! m I' Fc

0

1 :

CJ

2 N

n 0

W

n

Q W

a N i E

T,

8 W lg

8 v)

0 rl 0 m N 4 k U -

U C W U 3 0 .4 a a h aJ U 3

-4 0 0 I

..

0

d . . I1 e s

cu

.. h 0

3

k u k m 3

E x

l-4

5 d m &I 7 U a z

m

0

II - E: E w

W U cv \

- E T,

Ll . . 0 (A 0 k al

E Y

-2 N m U al

Fc C m E C

E w

a o l m w 9) &I W c 3

I I

4-43

M C *rl c u U *rl cu

u C .d

E *. c

.rl

a .d

w

W

a - z u 3 4

W 0

o x II

u x u - x m

.rl

%

5 X W

U 1 0 m M C -rl c u U -rl a a e a

- n

U 3 4

W

a3 0

I1

= m 2 V I .rl

L X o m U I U h

C n W

5 U 7 0 D m M C 4 c 0 U .I4 PI

n m

d \ c 4 W

lhl ii

W v 0

Gl +

1 n

H W W

0 Gl + rr)

\ N n Kl \ c W

N

n C E

W W

do

+

+

NI Y $ I

n

21 N W

Y E l i < u

c C

.rl v1 - I

n

U

-rl 3 a,

U

.rl 3

W - 0 0

w x ZLI

0 0 o x hl 3

EJ

N 3 Ed I

U 3 .rl a

U

.rl 3

0)

2 I I

I I

x h m

I I

kl X

+ +

d

4 -44

C

L

-

4 c F c C L L 9. K

+

4-45

n

._. h V

7 0- a, &I c4

m s4 7 U m z a C m

5

d

rn d m ..-I U

5 U 0 ch

h U *d V 0

Q) >

v) C 0 .d u -.-I a C 0 V h s4 m a C 7 0

4

rn

m

\D +-4 I

.rt

Q, d

n m e

,-+ d 0 d u E: ..-I

m ... e .. C 0

.r(

U m U ..-I V X w

-

r t n F

L C L c a G?

d

A N

n W

& hl > I4

d l

a d W I I

N I=

E n- u) 0 0

I & a3

hl

N n d

A

A

hl Iv1 n d

N

I= W

n

I IN

U 3 .r(

al

8 0

II 8

0.

v) .d X m N

al

5 ‘ U 7 0 P m d d 0 p:

U 3 ..-I ..

h 0

1 U al k w k m I4 3 M

E

5 d m k 1 U

2

m

. . a 8 k 3

0

4 .. d m *I4 U

I I

E U 0 a h U

R 8 -

.. C 0 *I4 U .d a C 0 c)

h k m -3

0 5 a

d

0

I I

I? k c

21 k - n m

W

+ 0 0 0)

W > n d

cy

4 -46

n V

d

A W Y

e, d

i4 N Y

.”, 0

5 6 ,

N A

d

w N

d d I 1 w w

W

U

n U \D

+

I

N 1 ‘X w

W

rn U C m U

1 rn a, ffi

d

8 - k

8 W$

d a w II

E u E E c A N

N Y i + I

7

n d

I

5 A d

N N t v -

N tu 4

I

N

N I=

n d

A N W I

c, A d

N w n

m \ c W

a E 7

U 4

+ n d

I

E N W

1 4 l a

I

4 I=

r) n d

I

E N W A

rl n d

I

E N v

U aJ V Ll 0 a -1 I

U

rl 3 a,

8

3

0 N

N

U

.rl 3 4

A

A

N

n

W N

d

N W

a, 0 * 3

N

2 II +

N

4-47

n U a, 3 C .rl U e 0 0

v) U C m U d

W

2

E ;c"

a, p: U

E

U C m e, CJ k 0

Frr

U .d 7 U GI

h d I e e,

P m H

d

c c

C K

U

C .r

i m X

.. C 0 .,-I U m U 'rl 0 X w

-

3 C a H

k 0 U L) e, VI

0 8

3 m

hl

N

EJ It

CN

m

-1

4-48

4.4 Quarter-Sectored Tank

Table of Contents

General ................................................... 4-50

Exc i t a t ion : Harmonic Trans l a t ion and/or P i t c h i n g

Boundary Condit ions. Ve loc i ty P o t e n t i a l . and Natura l Frequency ............................. 4-51

Liquid Force and Moment Resu l t an t s ................... 4-53

Spring-Mass Model

Analys is ........................................ 4-54

Diagram ......................................... 4-56

Force and Moment Resu l t an t s ..................... 4-57

Elements ........................................ 4-58

Graphs .......................................... 4-59

Pendulum Model

Analysis ........................................ 4-62

Diagram ......................................... 4-64

Force and Moment Resu l t an t s ..................... 4-65

Elements ........................................ 4-66

Exc i t a t ion : Harmonic Rol l

Boundary Condit ions. Ve loc i ty P o t e n t i a l . and Natura l Frequency ............................. 4-67

4-68 Liquid Force and Moment Resu l t an t s ................... Tors iona l Pendulum Model

Analys is ........................................ 4-70

Diagram ......................................... 4-71

Moment Resu l t an t ................................ 4-72

Elements ........................................ 4-73

GraDhs .......................................... 4-74

4 -49

i-- L-

. :ou ta iur r : ’ fh r taiik is ti r i R l i t c i r c u l a r c y l i n d e r of r a d i u s a d iv ided by lonpi tudi r ia l I ’ a r t i t i ons i n t e r s e c t i n g a t r i g h t a n g l e s , c i - 1 / 2 , and i s f i l l e d with l i q u i d t o H depth h.

Coordinate System: The o r i g i n i s loca t ed a t t h e c e n t e r of g r a v i t y o f t h e undisturbed f l u i d and t h e x-axis must l i e i n a s e c t o r w a l l .

References : ( 4 , 60)

Comments: The r e s u l t s given i n t h i s s e c t i o n a r e a p p l i c a b l e t o o n l y one s e c t o r , i . e . , t h e boundary c o n d i t i o n s and r e s u l t i n g v e l o c i t y p o t e n t i a l , -

n a t u r a l frequencv, and fo rce and moment r e s u l t a n t s a re r e sponses due t o l i q u i d o s c i l l a t i o n s i n on ly one s e c t o r (except f o r the material concern- e q u i v a l e n t mechanical models which a p p l i e s t o the complete tank of f o u r s e c t o r s ) .

? L E

t 9. L.

Er

9

- lT k 1 U 9 z U C m d m -4 U

E U 0

r& + U ' r l V 0 d aJ >

m

2 0

-rl U .d U C 0 CJ h & m U C 7 0 !n

co

4

a P m B

d I

d

C 0 -d U m d

2 m & B

0

C

k m X

*d

2

.. C 0 'd U m U *d 0 X w

-

3 C m w U aJ & 0 U u aJ v3

k aJ U & m 7 CY

I

I aJ

X I 1 X

0

m

C 0 *.-I U 0 a k ,d 0

X aJ G u C

C

d

2 Y m 4 ; 4 -I

0

II 0

I1 +

2 - c -

n h

v v m P

8 rn 0 o

U

*rl 3

Q)

.. %-I so C 0 II 'd U .d

I? U C 0 k 0 -

c q k - 0 " -

n C 7 0 m m W

d

0

I 1

R N

M

+ cv*yu m m

O W

18 C .d a

U 3

.I4 a

Yo .d I

I1

'p .. d m -4 U C a U 0 a h U -rl o 0 d

P cv

1

+ 8 ro 0 0 k

.. h o

1 0' a k

ru k tu 3 80

E

d

s d m k 3 U m 2

cr)

n d

I 4 aJ d P i2 Q) aJ ro

W

0

II h s W W

e - c v 3 Iy .. 0 ro U 0 0 &

aJ k

s Y

$ (D U

s m w

4-51

n a aJ 7 C d U

0

h 0

7 m a & Fr

a & 7 U a z a

W

c

d

dm a

d

a d U

U 0

D4

h U d # 0 a >

E

d

a

2 0 d U d a C 0 u h & a 'D C 7 0 Pl

2 I

d

a d P

F

bl C -I.

c U U ri D4

U d C

E m X

C 0 d U It U d U X w

..

-

8 VI 0 #

- .8

N

VI 0 #

e

n

U 3 -4 a

0 a - & 3 d !d

Q W

E N

0

II

R 8

c, n

C E hP

c C d v) -

n P W

n a W

n

4 -J a P m w a a VI

...I

W

0

II n

g w

- N 9

W

e

+ C E!

hP

-2 0 #

8 VI 0 #

U 3 d a a 0

B

16 C d VI

Y 3 rc

3 C c a a h 0 U 0 aJ v1

& aJ U &

W 9

aJ a

c

II m VI d X

h a

7

5 U 7 0 m bo C d

n

5 U d p1

0

II N

f N

U

.rl 3 ..

h #

E 3 aJ & ru $4 m d 3 bo C m d m & 7 U

z" 0

l a a 0

9 .rl

VI I C 0 d U

.. II

.. 4 m

.rl U

U 0 a h U d 0 0 d Q) >

E

N

d

II It3 a U

3 .. IC" a

C 0 0 -

&

II a C

% .

d

4 -52

rn U C m U

7 rn aJ pc U

4

$ r: a C m aJ 0 & 0 F4

U 'rl 7 w 4 'rl

2 d aJ 4

n F

Y

E U I

0 C -r .c c L *r a L C

T C n E C L rl

U C rl L

r- L

C

\

*I-

.-

-I-

m 2

-

X C m H V aJ & 0 U u 0) 33 I & aJ U &l m 7 W

B g Y

s 2

I n n

8 w W

0 c-l +

C 0 'rl U m d " & t3 E

11 - r4r+lh - d

- 13

.h\ E

W W

0 c-l +

7 +" % d

%? C

I

2 re W

+ - n

E w W

0 c-l +

n l

4 -53

Table 4-20. Model Analysis

Quarter-Sectored Tank Spring-Mass Model I E x c i t a t i o n : Harmonic T r a n s l a t i o n and /o r P i t c h i n g

Figure 4-19shows a diagram o f t h e spring-mass model used i n r e p r e s e n t i n g t h e dynamic response of a l i q u i d i n a q u a r t e r - s e c t o r e d t ank when sub jec t ed t o harmonic t r a n s l a t i o n i n t h e x - d i r e c t i o n and /o r p i t c h i n g about t h e y-axis .

Coordinate System :

The o r i g i n i s loca t ed a t t h e c e n t e r o f g r a v i t y of t h e undis turbed l i q u i d .

Model Desc r ip t ion :

The components of t h e system a r e a s fo l lows :

1. A f i x e d m a s s M having a moment o f i n e r t i a I i s r i g i d l y connected t o t h e tank and i s located on t h e z - a x i s a t a d i s t a n c e H below t h e coord ina te o r i g i n .

A s e t o f mov3ble masses m t h e t ank i s a t r e s t a t d i s t a n c e s h above t h e o r i g i n . These modal masses a r e cons t r a ined by spr ing-dashpot systems, having s p r i n g s t i f f n e s s c o e f f i c i e n t s k and v i scous damping c o e f f i c i e n t s c mn m ' t o remain i n t h e xy-plane and t o move o n l y i n a d i r e c t i o n p a r a f l e l t o t h e x -ax i s . T r a n s l a t i o n a l displacements of t h e s e masses wi th r e s p e c t t o t h e c o n t a i n e r a r e denoted by x . coord ina te o r i g i n . I t s motion i s confined t o r o t a t i o n about t h e y-axis and is cushioned by a dashpot having a v i scous damping c o e f f i c i e n t Cd' t h e t ank i s de f ined by $.

2. is d i s t r i b u t e d along t h e z -ax i s when mn mn

mn 3 . A massless d i s c having a moment of i n e r t i a Id i s loca t ed a t t h e

The angu la r displacement of t h e d i s c r e l a t i v e t o

Equations of Motion:

The equa t ions , obtained through Lagrange's equa t ions , a r e a s fo l lows :

1. Force Equation: w w .. ..

F = - M(x +HO) - 1 1 mmn(& + x + h 'e') X m=l n=l mp mn

2 . Moment Equation:

4-54

Table 4-20. Model Analys is (cont inued)

I ~~

Quarter-Sectored Tank Spring-Mass Model

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g

Equat ions of Motion ( con t inued) :

3 . Disc Equat ion:

Id (i + ;) + CdS, = 0

4 - Slosh-Mass Equat ion:

m (G + + h + mmnimnwmn&mn + kmnxmn mn mn mn - m g e = O mn

From t h e s e equa t ions , t h e model f o r c e i n t h e x - d i r e c t i o n and t h e moment about t h e y-ax is can be found ( s e e Table 4-21) .

4 -55

4 x

iwt e x - xo -

I Quarter-Sectored Tank I Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

Figure 4-19. Equivalent Mechanical Model

4 -56

E C

- r +

rl

m U C m U -r 1 cn al X

U C

B 3 U C m aJ 0 Fc 0 b.4

aJ U

d

ii rl N I e aJ -r

m w n

U 3 .rl

0) 0

W

d 3

a0 C

'I4 c 0 U 'rl PI

Fc 0 \ '0 C m C 0

'I4 U m -r m C m & w V

C 0

m X

.d

E

.. C 0 d U m U -4 0 X w

+ n

+ I

N - U W

hl N U 3 N + . H

N U 0

I

d

W IN +

U

d 3 0)

X

I I X

C 0 rl U 0 aJ Fc .rl U

X aJ

C

rn

5 C

C 0 rl U m -r VI

Fc w

.I4

cm

+ N

-3% U 3 .rl aJ W

C

II Q

rn

m d X m h 0)

5 u 1 0 P m M C d

co U -4 PI

+ +

U

d 3 0)

W 0

N

N 3

3

U 3 .rl

aJ X 0

N

2 I

II

E: h

N

I1

Fr, X

d d

4-57

*

Table 4-22. Model Elements

1 Quar te red-Sec tored Tank I Spring-Mass Model

I E x c i t a t i o n : Harmonic T r a n s l a t i o n o r P i t c h i n g

Natura l Frequency

Spr ing Constant

C o e f f i c i e n t

Ra t io of S losh Mass t o F lu id Mass

Rat io o f Fixed Mass t o F lu id Mass

Rat io of S losh Mass Coordinate t o F lu id Depth

~~

Rat io of Fixed Mass Coordinate t o F lu id Depth

Moment of I n e r t i a of S o l i d i f i e d F lu id

Moment of I n e r t i a of Disc (cd = 0)

Moment of I n e r t i a of Fixed Mass

112 = l3 E tanh K mn a mn mn

2 k = m w mn mn mn

( f i g . 4-22)

L

4-58

0 - L

9 E

4-59

nrmn m,

0.4

0.3

0.2

0.1

0

NONSLOSHING MASS RATIO - VERSUS

FLUID HEIGHT RATIO

i I I

-lL 0 0 2 4 6 4) 10

Ratio of Fluid Depth t o Tank Radius

Figure 4-21 . Model Element Graph

4-60

5 a al

a .rl 3 d ra 0 U

al U

’ .I4 a k 0 0 u VI VI

n

2

% 0 d v)

W 0

0 .rl U

d

- hm h

0.4

0.2

0

-0 .2

-0.4

MASS LOCATION HEIGHT RATIO vs

- FLUID HEIGHT RATIO

-@t

0 2 4 e 0 I O

Ratio of F l u i d Czt;::h to Tank Radius

Figure 4-22. Model Element Graph

4-61

Table 4 - 2 3 . Model Analysis

Quarter-Sectored Tank I Pendulum Model

E x c i t a t i o n : Harmonic Trans l a t i on and /o r P i t chinn

Figure 4-23 shows a diagram of t h e pendulum model used i n r e p r e s e n t i n g t h e dynamic response o f a l i q u i d ' i n a q u a r t e r - s e c t o r e d t ank when sub jec t ed t o harmonic t r a n s l a t i o n i n t h e x - d i r e c t i o n and/or p i t c h i n g about t h e y -ax i s .

Coordinate System:

The o r i g i n is loca ted a t t h e c e n t e r of g r a v i t y of t he undis turbed l i q u i d .

Model Desc r ip t ion :

The

1.

2 .

3 .

components of t h e system a r e a s fo l lows :

A f i x e d mass M having a moment of i n e r t i a I i s r i g i d l y connected t o t h e t ank and i s located on t h e z -ax i s a t a d i s t a n c e H below t h e coord ina te o r i g i n .

A s e t of movable masses m i s d i s t r i b u t e d along t h e z - a x i s when t h e t ank is a t r e s t . l e v e r arms of length L a t t a c h e d t o t h e z - a x i s a t d i s t a n c e s H above t h e o r i g i n . They a r e cons t r a ined by dashpots having v i scous damping c o e f f i c i e n t s c t o remain approximately i n t h e xy-plane and t o move approximately p a r a l l e l t o t h e x -ax i s . Angular displacements of t h e pendulum wi th r e s p e c t t o t h e t ank ( z - a x i s ) a r e denoted by A

A mass le s s d i s c having a moment of i n e r t i a I i s loca ted a t t h e coord ina te o r i g i n . I t s motion i s confined t o r o t a t i o n about t h e y-axis and i s cushioned by a dashpot having a v i s c o u s damping c o e f f i c i e n t c The angu la r displacement o f t h e d i s c r e l a t i v e t o t h e t ank i s de f ined by JI.

These mg8a1 masses a r e pendulums having mass l e s s

mn mn

mn

. mn

d

d '

Equations of Motion :

The

1.

2 .

equa t ions , ob ta ined through Lagrange's equa t ions , a r e as fo l lows :

Force Equation : m w

- L )iJ 1 mmn [G + L A + (Hmn ..

F = - M G + 13;) - 1 X mn mn mn m=l n=l

Moment Equation : w w

w w I- -#

4 -62

Table 4 - 2 3 . Model Analysis (cont inued)

Quarter -S ec to red Tank Pendulum Model I 1

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g

Equations o f Motion ( con t inued) :

3 . Disc Equation:

Id (;j + ;i> + CdSI = 0

4 . Slosh-Mass Equation:

w L i - m g e = o m mn [ + Lmnlmn + (Hmn - L mn )e *. I + mmnimn mn mn mn mn

..

From t h e s e equa t ions , t h e model f o r c e i n t h e x - d i r e c t i o n and t h e moment about t h e y-axis can be found ( s e e Table 4-24) .

4-63 u

2 2

H

'f

n H

i w t x = x e 0

X 7

Querter-Sectored Tank Pendulum Model I Excitation : Harmonic Trans la t ion and /or Pitching

Figure 4-23 . Equivalent Mechanical Model

4 -64

v) u C m U

1 v) 01 p:

U C

d

c -0 C m aJ V k 0

f.I.l

aJ '0

l-l

s 4 N I e aJ

m r-4

d n

N V N

N H 3

3V 0

bl C d

-5 U d EL k 0 \ 'c) C m C 0 d U m d

2 m k b V d C 0

a X

E

.. .rl U m u 'rl V X w

N V H

+ N V

V

U

d 3

9) 0

X I I X

C 0 d U 0 aJ k d V

X 0)

-

5 C

C 0 d u m I4

rl

2 2 I3

rl

E c a '2 + d

I

Nta

- 8 W f

8- [

+ l-l

U

U

'rl 3

0)

X 0

E' N 3

I1

cr X

rl

C E 1-3

I C

s X

U 3 d aJ

m 0

I I CD

c. v) r( X m h aJ

5 U 3 0 m M C r(

n

-5 U d EL

4-65

U 3 rl

91

CD 3 rl

+

0

n -

+

I

8 W $ 8-

+

Table 4-25. Model Elements.

Natural Frequency

Pendulum Length . Damping Coefficient of Slosh Mass

Quarter -S ec tored Tank I Pendulum Model + Ratio of Slosh Mass t o Fluid Mass

Ratio of Fixed Mass t o Fluid Mass

Ratio of Pendulum Mass Coordinate t o Fluid Depth

Ratio of Fixed Mass Coordinate t o Fluid Depth

Moment of I n e r t i a of So l id i f i ed Fluid

Moment of I n e r t i a of Disc (cd = 0 )

Moment of I n e r t i a of Fixed Mass I

J = 8 , tanh K~~ mn a mn

- c = m w mn mn gmn mn

"mn h - Lm'= 2 [l - 2 tanh(%]

S I

m h 2

4-66

h V

c, - 3 U aJ &

Err

a & 3 U

d

z" a

dm .I

d m d U

U 0 al h U

!l

.d . . U 0

a G 0 U h & m a C 3 0 a

\o N I u 9)

P d

d

.. 2

g

0 d U 4 a 0

h & a a

0 c9 5

. d

0

I1

-7 !a

0

I1

7 N

n a W

U 3 d

9)

6 0

9

I dm

d

II

n a W

.. 4 a d U

U 0 a h U 4 0 0

ti

d

s . N

W * -

.. 0 8 - 1 aJ f + d d

I1 e

.. h c)

3 9) & w & a 3 cro d

5 d lE & 3 U

z" . (3

a cm

0 I1 h

c, d

i! w

W N

- 4 r,

4-67

d Y

6,

A d

N

hl al

I

d

E2

- 5 I

5 d

" A N

Y

(d \ P

4 -

t N

. m c_ d

I

d d 0 cr: u .rl C 0 e a J

.. c 0 *d U a U .rl u X w

-

A C CF c.i a Q; $- C 4- ti

v: I

&.

L &. a

a

a

- E

Y AI-=. I

+ I

N n d

t+ N W

E 03 6,

A d

N Y

- d

I

+ I n T

C w W

do

+ n

W C

W N

9

u) N

, 4 m , + n '

6, r

d U 3 -rl

al C 8

II 8

n ffl .rl X (d

N

a 5 U 3 0 P a d + 0 p:

A hl

W W

do

+ c----l

U 3

w u 3 d a

8 0

. . al

8

(d

0 N

N

3

n

a 3

N

8 I I

crr h

I

I I

crr X

1%

II

ch

cx I1

8-r E + + +

d N

4-68

n a aJ 3 c

-rl U c 0 V

W

lJY U c a U

1 rn aJ E

U

3

$ 2 E

a C m aJ U t4 0 a

W ' r l 3 CT

-rl c;l

I- N I

U

aJ P m w

+

N n + b

+ N W

N

hl E c

C Y

$ m U

n

w

c3 n

0)

I

E W c

C

C ru N

a3 W

c Y

n + I

N C C

N W

I=

I-

8 w'i; E

I

_INb

hl

3 II

CN

m

11 5 W d

W I

n

+

4 -69

Table 4-28. Model Analysis

Quarter-Sectored Tank Tors iona l Pendulum Model I E x c i t a t i o n : Harmonic Ro l l

~

Figure 4-24shows a diagram of t h e t o r s i o n a l pendulum model used i n r ep resen t ing t h e dynamic responseof a l i q u i d i n a q u a r t e r - s e c t o r e d t ank when subjected t o harmonic r o l l about t h e z - a x i s .

Coo r d ina t e S y s t em :

The o r i g i n is loca ted a t t h e c e n t e r o f g r a v i t y o f t h e undis turbed l iqu id .

Model Desc r ip t ion :

1. A f ixed mass having a mass moment of i n e r t i a J i s r i g i d l y connected t o the tank and i s located on t h e z - a x i s a t t h e base o f t h e tank .

A d i s c having a m a s s moment o f i n e r t i a Jmn i s connected t o a s h a f t having a t o r s i o n a l s t i f f n e s s I&, which i s i n t u r n r i g i d l y a t t a c h e d t o t h e tank. Viscous damping i s introduced along t h e p e r i p h e r y of t he d i s c , t h e damping c o e f f i c i e n t of which is Cmn. Angular displacement of t h e d i s c r e l a t i v e t o t h e t ank i s denoted by Bmn*

2.

Equations of Motion:

The equa t ions , obtained through Lagrangefs equations, a r e a s fo l lows :

1. Moment Equation: .. .. m m ..

M z = - Jkn+[ c Jmn(4J + Pmn) m=l,3,5, . . . n=o

2 . Slosh Mass Equation: m m m

m m

L K B = O mn mn + c m=1,3,5, ... n=o

From t h e s e equa t ions , t h e model moment about t h e z - a x i s can be found ( s e e Table 4-29).

4-70

i w t

X

I C I mn

~~

Quarter-Sectored Tank Tors iona l Pendulum Model I E x c i t a t i o n : Harmonic R o l l

F igu re 4-24. Equivalent Mechanical Model

4-71

m U C m U

7 m al lx

d

U

E t:

m hl

I d a, P d

d

d d

0 !x U .rl C

E m X

.. C 0 .d U m U 4 U X w

4-72

Table 4-30. Model Elements

Quartered-Sectored Tank Torsional Pendulum Model

Exci ta t ion: Harmonic Roll

I

!la t ura 1 Frequency

Zorsional S t i f f n e s s 3f Shaft

Damping Coeff ic ient Df Slosh Disc

Moment of I n e r t i a of Slosh Disc

= 0 ) (cmn

Moment of I n e r t i a of Slosh Disc (cmn 9 0 )

Moment of I n e r t i a of So l id i f i ed Fluid

Effec t ive Moment of I n e r t i a of Fluid

Moment of I n e r t i a o Fixed Mass

J = g E tanh Kmn mn 2 mn

2 Jmn wmn K = mn

- c = 0 mn Jmn gmn mn

(2fn-en) L1(En) tanh K n

n

8mLa 2 + - -- [-

K Jmn 2

J

- 1 2 Js - 7 mLa

1 1 aD

j = J S [ i - % n m=1,3,5 1 ... rn2(m+l) 2

m QD

J = 3 - c m=1,3,5. ..

4-73

?

0 i t

0

3 C m w $4 0 &I 0 aJ m - 01 U Ll m 3

0 c7

0

I

2 0 CJ

0 0

7 -I

:: It C n

cp i- - II E x Y C C R

c- m w Ll L 0 C

L c 4 u 01- -

U u rn

'\ \

\ \

0 0

0

m .rl& u o & U bl

U O m u 0:

L In

0

d

0

m c

0

.t

Y C m r+ $4 0 U u a, cn

--

$4 aJ U $4 m 3

CY

i/

N

n

0

0

4-77

4.5 Eighth-Sectored Tank

Table of Contents

General ................................................... 4-77

Excitation: Harmonic Roll

Boundary Conditions. Velocity Potent ia l .

and Natural Frequency ............................. 4-78

Liquid Moment Resultant .............................. 4-79

Torsional Pendulum Model

Analysis ........................................ 4-80

Diagram ......................................... 4-81

Moment Resultant ................................ 4-82

Elements ......... ................................ 4-83

Graphs .......................................... 4-84

4-76

r h

Container : The tank is a r i g h t c i r c u l a r c y l i n d e r of r a d i u s a d iv ided by long i tud ina l p a r t i t i o n s i n t e r s e c t i n g a t equal a n g l e s , = n / 4 , and i s f i l l e d with l i q u i d t o a depth h.

Coordinate System: The o r i g i n i s loca ted a t t h e c e n t e r of g r a v i t y of t h e undis turbed f l u i d and t h e x-ax is must l i e i n a s e c t o r wa l l .

References: ( 6 0 )

Comments: The r e s u l t s given i n t h i s s e c t i o n a r e a p p l i c a b l e t o on ly one s e c t o r , i .e . , t h e boundary cond i t ions and r e s u l t i n g v e l o c i t y p o t e n t i a l , n a t u r a l frequency, and f o r c e and moment r e s u l t s a r e responses due t o l i q u i d o s c i l l a t i o n s i n o n l y one s e c t o r . (except f o r t h e material concern- i ng e q u i v a l e n t mechanical models which a p p l i e s t o t h e complete tank of e i g h t s e c t o r s ) .

4 -77

h V C 0) 7 CT 9) k c4

m k 1 U m z a C m

d

m 4 a -rl U C aJ U 0 I&

h U ‘rl V 0 3 aJ >

m

2 0 ‘rl U .rl

C 0 V h k m a C 3 0 a

” C-l I

3

aJ P m &

4

d d 0

V

C 0

.d

E m X

.. C 0

.rl U m U .d V x

W

-

C m H a aJ k 0 U V a, m I

5 s

OL .rl w

0

II

R N

I

U

n m I c a,

e a U

a, aJ (0

W

rl

0

I I n

W W

- e c, W 0 (0 U 0 , 0 k

aJ & a

E

C E

W

a, k a, c 3

U

a, .3 ..

h c)

7

k rcc & m 7 M C a d m &I 1 U m z

$ z d

m

0 8 k 3

.rl

8 W

.. 2 0 *rl U .rl a e 0 V

h & m a C 7 0 a

!4

N h

kLm 0

I1

.. +-I m .rl U

E U 0 a h U *rl 0 0 d a, P

N

U 3 a

L .A a,

m N

0

8 8 rn lrn ”

8 - k dl k

Nl t + It

8

4-78

U 3 .d

a,

ff C

II 8

e m -rl x KJ

N

a,

5 U 7 0 P m 4 d

0 lx

- I

"! m e

rl

8 w II E

-3Q N

(v 3 m Ed

CN

I1

4-79

Table 4-33. Model Analysis

Eighth -S ec tored Tank I Tors iona l Pendulum Model

Exc i t a t ion : Harmonic Ro l l

Figure 4-7 shows a diagram of t h e t o r s i o n a l pendulum model used i n r ep resen t ing t h e dynamic response of a l iqu id i n a n e ighth-sec tored t ank when subjec ted t o harmonic r o l l about t h e z -ax is .

Coordinate System :

The o r i g i n i s loca ted a t t h e c e n t e r of g r a v i t y of t h e undis turbed l i q u i d .

Mode 1 Descr ip t ion :

1. A f ixed mass having a mass moment of i n e r t i a J is r i g i d l y connected t o t h e tank and is located on t h e z -ax is a t t h e base of t h e tank.

A d i s c having a mass moment of i n e r t i a Jm i s connected t o a s h a f t having a t o r s i o n a l s t i f f n e s s %n which is i n t u r n r i g i d l y a t t a c h e d t o t h e tank. Viscous damping i s introduced a long t h e pe r iphe ry of t h e d i s c , t h e damping c o e f f i c i e n t of which i s %,,. displacement of t h e d i s c r e l a t i v e t o t h e t ank i s denoted by

2.

Angular

Equations of Motion:

The

1.

2 .

equa t ions , ob ta ined through Lagrange's equat ion , a r e a s fo l lows:

Moment Equation: W W .. ..

M = - Jg + 1 2 mn m=l,3,5, . . . n=o

Slosh Mass Equation:

m=1,3,5,.. I 8 W W Q) .. ..

. n=o 1 Jmnb + Bm) +I m=1,3,5, ... n=o 1 cmn'mn

= o + I Kmn om n m=1,3,5,... n=o

From t h e s e equat ions , t h e model moment about t h e z -ax is can be found ( s e e Table 4-34).

4-80

ilt e

X

E i g h t h 4 ec tored Tank I Tors iona l Pendulum Model

Exc i t a t ion : Harmonic R o l l

F igure 4-27. Equivalent Mechanical Model

4-81

4 -82

Table 4-35. Model Elements

2

Eighth-S ec to red Tank Tors iona l Pendulum Model

E x c i t a t i o n : Harmonic R o l l

Natural Frequency

Tors iona 1 S t i f f n e s of Sha f t

Damping Coef f i c i en

Moment of I n e r t i a of Slosh Disc I (Cmn = 0 )

Moment of I n e r t i a I of Slosh Disc ( c + 0 ) mn

Moment of I n e r t i a of So l i d i f i ed Fluic

Effective Moment o j

I n e r t i a of Fluid

Moment of I n e r t i a of Fixed Mass

2 Jmn wmn K = mn

- w

Jmn gmn mn c = mn

-(F -2memn) L2(cmn) tanh K ~ ] (fig. 4-28 4-29) mn TI 2 m(4m2-1) K

( E mn -2memn) L 2 ( ~ m n ) tanh K~~

2 m(4m - 1 ) K~~

- 1 2 Js - 5 mLa

OD

2 1

1 S 2

TI m=1,3,5, ... m ( m + l >

4-83

5 c (d boo .rl.rlu

0

2 m k

(0 c3 \

U C

c

m PJ I J 7

Crr e, k 7 M 4 Crr

X

s 1-(

I--

m

0

CJ

0

.c U c M

w - *d

\

d

0

-.I--

0

0

6)

r-

D

n

*

’?

‘1

-4

3

4.6 Annular Tank

Table of Contents

General ................................................... E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g

Boundary Condit ions. Ve loc i ty P o t e n t i a l ,

and Na tu ra l Frequency ............................. Liquid Force and Moment R e s u l t a n t s ................... S p r ing -Ma ss Mode 1

Analysis ........................................ Diagram ......................................... Force and Moment R e s u l t a n t s ..................... Elements ........................................ Graphs ..........................................

Pendulum Model

Analysis ........................................ Diagram ......................................... Force and Moment Resu l t an t s ..................... Elements ........................................ Graphs ..........................................

4-87

4-88

4-90

4-91

4-93

4-94

4-95

4-96

4-105

4- 107

4-108

4-109

4-110

4-86

I

X

Con ta ine r : The t ank c o n s i s t s o f two c o n c e n t r i c r i g h t c i r c u l a r c y l i n d e r s having an i n n e r r a d i u s r = b and an o u t e r r a d i u s r = a . tween t h e c o n c e n t r i c w a l l s i s f i l l e d with l i q u i d t o a depth h .

The space be-

Coordinate System: The o r i g i n i s loca t ed a t t h e c e n t e r o f g r a v i t y of t h e undis turbed f l u i d .

References: (52 and 6 3 )

Comments: The terms I and c , occur r ing i n t h e model e lements , must be expe r imen ta l ly determined, g e n e r a l l y from t o r s i o n s p r i n g experiments o f a s e a l e d c o n t a i n e r o f f l u i d . c o n t a i n e r shape and t h e type of l i q u i d . a r e g iven for k = b / a = 0.5. a p p l i c a b l e for v a l u e s 0 . 3 5 k

The i r va lues a r e dependent upon The model element graphs

These graphs are , w i t h i n 210 p e r c e n t , 0.7.

4-87

U

d 3

Q)

X I1 X

E: 0 rl U 0 0) k .d

O

L

7

5 X 9)

C

C 0 .d U tu I4 rn

k E-l

.d

5

Y

.. rn

4 U rl Q C 0 c)

h k (d Q

0 19

g

5

d

+ c

- 5 5 s

c u

0

II

4 !I

n P W

0

II

ip N

M

+

n c)

W

.. d tu .d U

U 0 a h U .d c) 0

E

I4 s N

0

21 8 - f

C + kI - -8 rn 0 0

U 3 .d

Q) 0

3 3

.d

I1 e

.. h 0 E Q) k

W

k (d

3 M C (d

d (d k 7 U

rl

z" m

h

0) Q) rn

W

0

II n

LLP C

W - 4 * n

kP Y

C

W - 4

I

n

Lcp Y

* n

C

W - d

C

- d *

LLP

c, W

I I n

AAr W

C

d a W 0 rn U 0 0 M Q) (d

U k a Lcp

kP

0) 4 Q)

C Y

-s C

C

bdtu

II

4-88

~

n a

C '4 U C 0 U

h U

7 er Q) k

r.LI

m k 3 U m z a C m

:

W

E

d

a d 0 rl U C Q) U 0 p1

h U rl U 0

e, > d

a

2 0

'r l U -I4 a C 0 u h Fc m a

0 F9

5

\o m I

-5 a, 4 P

d

M C

c u U

a V

C e & m 2

.r(

.rl

.rl

0

.. C 0 r( u m U .r(

0 X w

-

Y C m w & m

- 1 3 C C a

8 ul 0 U

k

U

.I4 3

Q

n \o

U Q) d

2 c-c Q) Q) m

W

0

II n

L3 C

W

-Fd n

w Y

c,

C

W - r l

I

n C

Y - F4 W

n

WQ W

- 4 b II n

w

C

G W rl a w 0

n

u C

+ C

Y IN W

f 0 U

I I

n .n W

+ c c * lw

n

0 C I

I

C Y IN

w

c C

'rl ul

8 ul 0 0 l - N

3" -4

Q

8 W S 0 I I hl \

R N

I .. h U

7 CT 0) k u4

k m 7 bo

5

d

E d m Fc 9 U

z" m

+ El -m

0 43

r( 3 -

8 d ul m 0

'I4 0 U

..

U 3

.I4 5 U

.. 0 C 0 .I4 U rl

C 0 0 h Fc m a

0 F9

5

d

I

II

P, tu 'I,

m U 0 Y 0 c k

8 k U m

Lcp

aJ

C

s E

o q m L3 C

II k

3 N C ;

21 2 a0 + 0 Q)

a 0 43 h N

U .rl 0 .I4 0

3"

5 e II d n

U W

lQ W

hl

4-89

C Y

"f 0 V

C Y

N.c m 0 V

- 4

I

+ C

Y

NI Y C

+ C

Y

c C m u 1

c c * I Y

+

m $ 1 U c

N I " aJ CD

3

0 N

N I

N - +

8 W E I

aJ

a 0 N 3

2 n I C

Y

U V aJ $4 *rl a I X

c U E +

" J

U 3

-74

aJ

X 0

N

21 II

X Frr

I

U

.d 3 a,

CD 0

2 I

II

Frr X

$4

U 3 %-I a

CDO

u 3 4

aJ X 3 m

0 N

E l

I

I

II

Ch

d N N

4 -90

Table 4-38. Model Analysis

Annular Tank Spring-Mass Model I E x c i t a t i o n : Harmonic Trans l a t i o n and /o r P i t c h i n g

F igu re 4-3shows a diagram of t h e spring-mass model used i n r e p r e s e n t i n g t h e dynamic response of a l i q u i d i n an annu la r t ank when s u b j e c t e d t o harmonic t r a n s l a t i o n i n t h e x - d i r e c t i o n and /o r p i t c h i n g about t h e y-axis .

Coordinate System:

The o r i g i n i s loca ted a t t h e c e n t e r of g r a v i t y o f t h e undis turbed l i q u i d .

Model D e s c r i p t i o n :

The components of t h e system a r e a s fol lows:

1. A f i x e d mass M having a moment o f i n e r t i a I i s r i g i d l y connected t o t h e t ank and i s loca t ed on t h e z -ax i s a t t h e d i s t a n c e H below t h e coord ina te o r i g i n .

A s e t o f movable masses mn is d i s t r i b u t e d along t h e z - a x i s when t h e t ank i s a t r e s t a t d i s t a n c e s h above t h e o r i g i n . These modal masses a r e c o n s t r a i n e d by spr ing-dashpot systems, having s p r i n g s t i f f n e s s c o e f f i c i e n t s k and v i scous damping c o e f f i c i e n t s c t o remain i n t h e xy-plane and t o move o n l y i n a d i r e c t i o n p a r a l l e l t o t h e x -ax i s . T r a n s l a t i o n a l displacements of t h e s e masses wi th r e s p e c t t o t h e c o n t a i n e r a r e denoted by x . coord ina te o r i g i n . I ts motion i s confined t o r o t a t i o n about t h e y-axis and i s cushioned by a dashpot having a v i s c o u s damping c o e f f i c i e n t c The angu la r displacement of t h e d i s c r e l a t i v e t o t h e t ank i s de f ined by IJJ.

2.

n

n n '

n 3 . A massless d i s c having a moment of i n e r t i a I i s loca ted a t t h e d

d '

Equations of Mot ion :

The e q u a t i o n s , ob ta ined through

1. Force Equation: a0

Lagrangels e q u a t i o n s , a r e a s fo l lows :

2 . Moment Equation:

OD W

M = - ( I + M H ) O - I d ( ~ + $ ) + g 2 -* 1 m x - 1 m h ( G + h i ) n n n n n n n=l n=l Y

4 -91

Table 4-38. Model Analysis ( con t inued)

Annular Tank I Spr ing-Ma s s Mode 1

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g 1

Equations o f Motion ( con t inued) :

3. . Disc Equation:

I ('e' + F) + c,sI = 0 0 d 4 . Slosh-Mass Equation:

From t h e s e e q u a t i o n s , t h e model f o r c e i n t h e x - d i r e c t i o n and t h e moment about t h e y-axis can be found ( s e e Table 4-39).

4-92

C C - n I - n 2 I 2

Annular Tank Spring-Mass Model I Exci tat ion: Harmonic Translation and/or Pitching

Figure 4 - 3 0 . Equivalent Mechanical Model

4-93

br C

' r i

5 u *I-

&

& 0 71 C m C 0 -rl U a d v)

C m

\

&

E

V d C 0

m z .. C 0

' r l U (II U 'rl V X w

N Q H

N +

N Q n

N 3

N a 0 4

N G I N

C C c

'2 +

8 W [.

U 3

.rl a, 0

C I M

3- d

4 4

I

N C t

IN

X

I1

d 0 C U V a, & 'rl

Y

5 X a,

C .rl

.rl 0 C U (II

rn C a & F

4

+ u

X S u

8 - E + d

w

U

'rl 3

9)

X0 N >

I1 X

cr,

4

U

P q 3 4 I

+

u U

.l-l 3

9)

(D 0

N

N 3

2 I

I1

X h

CU

U 3 4 aJ (D

d

0

3

+ m n

C C C

I 2 d +

d

I

C J C c - N

-33 +

+

4-94

Annular Tank Spr ing -Mass Mode 1

Exc i t a t ion : Harmonic T r a n s l a t i o n o r P i t c h i n g c r Natura l Frequency

Spr ing Constant r Damping C o e f f i c i e n t of S losh Mass

Damping C o e f f i c i e n t of Disc

Rat io of S losh Mass t o F lu id Mass

Rat io of Fixed Mass t o F lu id Mass

Rat io of S losh Mass Coordinate t o F lu id Depth

Ra t io of Fixed Mass Coordinate t o F lu id Depth

Moment of I n e r t i a of S o l i d i f i e d F lu id

I Moment of I n e r t i a of Disc (cd 0)

I Moment of I n e r t i a of Disc (cd If 0 1 I I

Moment of I n e r t i a of Fixed Mass I

I

,

w 2 E n t anh K~ n a

2 k n = m n n w ( f i g . 4 - 3 1 )

- c = m 0 n n gn n ( f i g . 4 - 3 2 )

m n - An[2/rrCn - kCl(un)Jtanh K~ ( f i g . 4 - 3 3 ) ( f i g . 4 - 3 4 ) - _

2 L (1-k ) K n

m

O D m n 1 - 1 - "L n=o "L M - =

( f i g . 4 - 3 5 )

( f i g . 4 - 3 6 )

C

2 - - - - - - -

( f i p . 4 - 3 9 ) S I

mLh 2 mLh 2 mLh

4 -95

n 0

t 0

". 0 0

4 -96

8 Y

4 -97

I L

LL

r IC

t 0

n

t t r

4- I

y! 0

9 0

7

0

li I -

0 0

0 i= a a

a v) v)

IE cn 3 cn W > a

S m ( 3 0

L C

C ' L

0 t 0

6

c a m k u U

E 8 d w aJ a d

2 \D W

I e aJ k 7 M

.rl

.k

0

U

I- I

i= a

cn 3 cn W > a I

Y

4-102

0 E CI

W I t- LL 0 0 5 a i

g > s L W 'u = W z o

I- z w E 0 2

n (3

0 w N

a Y

I I - Y 0 0

". 0

U

E, d w d a, -0

2

& 7 M

4-103

I 4-104

Table 4-41. Model Analys is

Annular Tank Pendulum Model

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g

I 1

Figure 4-40shows a diagram of t h e pendulum model used i n r e p r e s e n t i n g t h e dynamic response of a l i q u i d i n an annu la r tank when sub jec t ed t o harmonic t r a n s l a t i o n i n t h e x - d i r e c t i o n and/or p i t ch ing about t h e y-axis .

Coordinate System :

The o r i g i n i s loca ted a t t h e c e n t e r o f g r a v i t y of t h e undis turbed l i q u i d

Model Desc r ip t ion :

The components of t h e system a r e a s fo l lows:

1.

2 .

3 .

A f i x e d mass M having a moment of i n e r t i a I i s r i g i d l y connected t o t h e t ank and i s loca ted on t h e z -ax is a t a d i s t a n c e H below t h e coord ina te o r i g i n .

A se t of movable masses % i s d i s t r i b u t e d a long t h e z -ax i s when t h e t ank i s a t r e s t . l e v e r arms o f length 41 a t t a c h e d t o t h e z -ax i s a t d i s t a n c e s Hn above t h e o r i g i n . They a r e cons t r a ined by dashpots having v i scous damping c o e f f i c i e n t s cn t o remain approximately i n t h e xy-plane and t o move approximately p a r a l l e l t o t h e x -ax i s . Angular d i sp lacements of t h e pendulum wi th r e s p e c t t o t h e tank ( z -ax i s ) a r e denoted by An.

A massless d i s c having a moment of i n e r t i a Id i s loac ted a t t h e coord ina te o r i g i n . y -ax is and i s cushioned by a dashpot having a v i scous damping c o e f f i c i e n t Cd. t h e t ank i s de f ined by 9 .

These modal masses a r e pendulums having massless

I ts motion i s confined t o r o t a t i o n about t h e

The angu la r displacement of t h e d i s c r e l a t i v e t o

Equat ions of Mot ion :

The equa t ions , ob ta ined through Lagrange's equa t ions , a r e a s fo l lows:

1. Force Equat ion: QD

F = - M(G + H8) - 1 m [ G + L i: + (H - L n ) ~ ] X n n n n n=l

2 . Moment Equat ion:

2 *' M = - ( I + M H )e Y

r ..

m 0

- L ) - n - Id(: + ;) + g 1 m L A - mn(Hn n n n n=l n=l

Table 4-41. Model Analysis ( con t inued)

Annular Tank Pendulum Model

E x c i t a t i o n : Harmonic T r a n s l a t i o n and/or P i t c h i n g I

Equations of Motion ( con t inued) :

3 . Disc Equa t ion :

1 (ii + 5 ) -t C d i = 0 d

4. Slosh-Mass Equation:

From t h e s e e q u a t i o n s , t h e model f o r c e i n t h e x - d i r e c t i o n and t h e moment about t h e y-axis can be found ( s e e Table 4 - 4 2 ) .

4 -106

Z

a I

n L

2 2

H

I

d C

n H

+ x

iwt x = x e 0 -

Annular Tank Pendulum Model I E x c i t a t i o n : Har ron ic Trans l a t i on and/or P i t c h i n g

F igu re 4-40. Equivalent Mechanical Model

4-107

M C *rl

s U .rl PI & 0 \ a C 0 C 0 .d U m d

2 m & I3

V 94 C

E m X

.. C 0 *d U m U .rl U x w

N h

C

X I C W

8

U

0) .3

0

It a m

m rl x m h aJ 5 U 1 0 P m M C rl

5 U d P.l

3

d

+

C r(

+ d

I

N C c

C I4

I C

C - X

N Q H

h ( +

U

d 3

N Q w h(

3

N Q V

0,

a 0

N 3

3 I

II

2 d

+

I

It

Ch

. cy

4-108

l 'able 4-43. Model Elements

Annular Tank Pendulum Model

E x c i t a t i o n : 1larnon:Lc T r a n s l a t i o n and/or P i t c h i n g

I Na tu ra l Frequency

Pendulum Length

I Damping C o e f f i c i e n t of S losh Mass

Damping C o e f f i c i e n t

Rat io of Slosh Mass t o F lu id Mass

~~~

Rat io of Fixed Mass r t o F lu id Mass

I Ratio of Pendulum Mass Coordinate t o Fluid Depth

Ra t io of Fixed Mass Coordinate t o F lu id Depth

Moment of I n e r t i a of S o l i d i f i e d F lu id

Moment of I n e r t i a of Disc (c = 0 1

d

Moment of I n e r t i a of Disc (cd # 0 1

Moment of I n e r t i a of Fixed Mass

( f i g . 4-41)

- 0 n gn n c - m n

( f i g . 4-42)

.

IC

4-110

4.7 Annular-Sector Tank

Table of Contents

General................................................... 4-113

Exc i t a t ion : Harmonic Trans l a t ion

Boundary Condit ions, Ve loc i ty P o t e n t i a l ,

and Natura l Frequency. ............................ 4-114

4-116 Liquid Force and Moment Resul tants . .=. . . . . . . . . . . . . . . .

E x c i t a t i o n : Harmonic P i t ch ing

Boundary Condit ions, Ve loc i ty P o t e n t i a l ,

and Natura l Frequency............ ................. 4-118

4-120 Liquid Force and Moment Resul tan ts . . . . ............... E x c i t a t i o n : Harmonic Rol l

Boundary Condit ions, Ve loc i ty P o t e n t i a l ,

and Natura l Frequency......... .................... 4-122

4-124 Liquid Force and Moment Resultants. . . . . . . . . . . . . . . . . . .

4-112

t

X

Conta iner : The t ank i s a s e c t o r of an annu la r t ank having an inne r r a d i u s r=b and an o u t e r r a d i u s r=a and i s f i l l e d with a l i q u i d t o a depth h.

Coordinate System: The o r i g i n i s loca ted a t t h e c e n t e r of g r a v i t y o f t h e undis turbed f l u i d which would be conta ined i n an annu la r t a n k - g e n e r a t e ( by revolv ing t h e annu la r - sec to r t ank about t h e z -ax i s . The x -ax i s must l i e i n t h e s e c t o r wa l l .

Reference : (4)

Comments: 1 3n - 2 ’ 2 ’ The r e s u l t s given ir, t h i s s e c t i o n a r e not v a l i d f o r 6 = -

h L)

1 e a, k k4

(d k 1 U (d z U

E

rl

% n

rl m d U

E U 0 PI h U d 0 0

a, > d

n In C 0 d U d U

U

h k 0 U

0 Pa

5

.j

* a, d

s

3 E-c

0

II 0

II

f

- - n n

Q P W W

.. rl m d U

U 0 a h U d 0 0 rl a >

E

hl

.. $ 4 e a k

W

k m rl 1 M C m rl m k 1 U (d z

m

0 I1 n

Lrp W e hl \

-*e

Y

n C E

W

d hl \

- E ! c, I

n

@ rzp Y W e hl \

- E ! w n

rzp @

W e hl \

- E !

II c,

n

@ rzp W e

N \ B

4

rcI 0

cn U 0 0 k

a I4 (d

c e rzp

a k

4-114

r\

a a, 3 C .d U C 0 V

h c) C a, 7 G- a, &I

Fr

m k 3 U m z a C m

W

d

h

4 m *d U

E U 0

P.l

h U .d U 0

a, > 4

.I

v) C 0 -4 U .rl -0 G 0 u h & m a

0 n2

5

3

d a,

P m w

-f

4

aJ h' I1 h

c rn

2 U V aJ Ll

3 x

U 3 .d

aJ h0 3

a d

I1 0 II ,I

f i n a

W W

8 c .d v)

U

.rl 3 aJ

3 h0 'd

II

P, I? k

0

II

R N

n 0 v

.. d m

.rl U c al U 0 a h U .rl L) 0 aJ > d

hl

+ e C *d v)

( k ) U

.3 aJ

3 h" *d

II e

.. h V

7 CT aJ k Y rcr

c &I C (d m d U 7 M c C E m Ad*

E 2

0

I1 h

u N \

- W E

i3 N \

- E c, I

h

C E 2 W

a \

- W E n

c E

4F W

a N \

- E c, I I h

C E

A 0 W

R \ E a

rcr 0 (0 U 0 0 k

aJ k rd

LLP

01 k a s 3

b W

R \ E

V Y

C 0

.rl U m Ln c m & b

u C

4

.Fl

E m z .. e 0 .d u m U .rl u X w

-

3 C

d b 0 U U a rn I k fc

C C Q

3 “ d

. I

c n != c\

+ n

4 0 W N

IC3

I N

E la N

N I=

+ n

0

C E w

v 0 z

U n m

I

I+

& - I ? Nn l a rn

N C +

‘rl

C E

Y

d % 0 c)

C E

b v

a N \ E

V Y

C E

Y

I

U

d 3 P)

U

d 3 P)

X 3

0

N

2 I+

II

X0

8 N 3

N IC¶

N I l a

N

N E I=

+ I II +

4-116

I

' E i x I "

E lup W

0 z -!- P

E n W

5 N \

G--\ E cj Y m

0 16 I o c

! -4-

c)

1;- '.F.

" V I" -1 J

E Y

& - 5 0 u

d

C E

LP

z W

0

+ U 3 .4

OJ

h0 c.1

3 c1

E

I+ I !

4

n h + b F:

E Y W

8

E N \

u A

c C m U

+

N

h u C aJ 3 U a, k b

(3 k 3 U (3 z 'El C (3

d

.. r-l

td 'd U C aJ U 0 &I

h U ..-I 0 0

0) 4

> - 2 0 -d U .d V C 0 W h & td 'El C 1 0 Pa

\o d I 3

a,

P td w

r-l

U

4 3 a,

X 0

I1 X

1

rn .--I .. 3 : t o

.rl U .rl -a C 0 0

h u a a

0 m 5

d

n n V P W W

u 3

-4 aJ

x N 3

0

n (3

W

n I)

W

.. I4

td d U C 0) u 0 a h U .rl 0 0

aJ 4

>

N

- h

c, 0 0

z V W

E I*

8 C -d rn N & - 0)

X 3 ..-I

0

I

II e

u 0 rn U 0

C UE

0 u aJ Lc

C (d E

b [ l @ L o

c U E

C E

L o

aJ Ll It

C aJ c CJ3E 3

4 -118

6 -a a, 1 C 4

1;' 5 u

h u c a 1 0- a, k k

m Ll 3 U m z -a C a

v

4

n 4

m .rl U C a, U 0 PI h U .d U 0

a > 4

n m C 0 .d U 'rl 'CI C 0 V h k m V C 3 0 m

\o * I * a,

.o 4

2

0

II - n

U

*rl 3 d

hl \

- E * n

c C .d m

m +

g Lp

a,

a 0

E Y v

b hl \

- E c, I

n

is Y W

c m 0 0

is c W

n n a e W W b

N \

LE -

3 C m

r+ $4 0 U V a,

L'1 I k m 1 C C

4

a

n

b hl \ E u

h

8 W [

I .. h 0

3 0. a, k ru k 0

3 M

2

4

2 4 (d k 3 U m z

m

\ E

Q lu . . 0

m U Y 0 c 0 k

a, U

2 5

.. 2 0 -4 U .rl a C 0 u h k ([I

'c1 C 3 0 c9

d

.. 4 m

*rl U

E U 0 a h U -4 c) 0 4 s hl

N h

U 3 -4 a,

a 3

.rl

I

0

11 e

II a, n u

W

n al

W

k C a, c

hl SE 3

4-119

l

a C

r: V U 'd PI V *d C

.d

E ld 3:

.. c 0 d U ld U .d V x w

-

Y

w Ll 0 U V aJ cn I k ld 1 C

5

d

2

u

8

X

?, 0

II X

rn d

m

X

X a

?

5

3

3

& 7 0

M C -4

& d a a G (d

u

0)

a

5 C

II a m

rn d X (d

h aJ 5 & 3 0 P (d

00 C d

5 U d al

+ n

v 0 z

U

n

8 W f C

U 3 d

aJ 7 0 0 a x u N

-5 2 I

& 3 d

aJ - 0 o x -

2 I

II

k h

4

& 3 -4

al - 0 0 a x -

N

c.l 3

2 I - I 8 1 I 8

rn

U 3 d aJ n 0 0 a x -

N

+

I

4 -120

h

a aJ 3 C

s.4

U C 0 V v

VI U C m U I4

2

E 5

aJ cx U

c a C m aJ V Li 0 a 2 9 CT -4 +a

s * aJ P m w

I4

. . VI

m h l

€l c t U

.C

J- .C

&

U

C .i

0 E a c .A.

.. c 0

.A LI a u .-I V X w

-

Y C m

E+

Li 0 U u 0) :9 I Li ((I

1 C c

+

a

h n

+ + 4 4

. 0

8 W II C

U

.I4 3

aJ - 0 0

Q X

w cv hl 3 m Ed +

I

II

c h

I

Y 81

I CJ hl Y

+

W 0 z

+ - C E

b v b hl \ E 2 I

W

+

a n

4-121

h V

3 W aJ k k

(d k 1 U m z TI C m

$

rl

h

rl m *d U C a, U 0 a h U .d V 0 d

2 h

ul c 0 -d U .d -u

V h k m -0

0 In

5

co 3 I

3

aJ rl P (d t3

n d

A N

I= W

I+ I+ 0 d V .d e 0 E k (d z .. e 0 -d U m U -d U X w

-

24 C (d F-l k 0 U 0 a,

Ul

k m 3 e e 4

I+

IZ

0

II

R N

0 -

u

II ," I," + M

b +

. - a -

3 a o e P 3 " a 0 a

I n -

n n a P W W

J

aJ

8

! 0

I1 ".I j 0

ul 0 II ..

h

IT E l i 0 k

d I

.. d (d 'd U

E U 0 a h U 'd 0 0 rl : N

U N A rl

A N

' w

4- n

- 5 d

I

E N

M

r

8 W g c* i + d L.

8

4 -122

.. h V

7 v aJ k

W

k m 7 M

2

d

5 rl a k 3 U a z

m

,n

* c , d

A N

U N \ n rl

Q W

A N

- w +I

I I

kl n

5 4

A N

U N \ n rl

0 W

A N

- w V W 0 cn U 0 0 k

aJ k m

5 d

A N

a, k aJ c 3

6,

A

5 e, A

d

N Y

c U

rl

N 0

am II

e, A d

CJN 3

U

r( 3 aJ

C 8

II e

O *r(

X m N

aJ 5 U 3 0

m n + d 0 rx

N \ n d

A N W

n

I U 4 I

N

N h d

A N W

N d i =

U

m

N

N

T

A

rl W

d n

N W

Y N 2 T w r l

I U c o

n l

d

U 4 W

U

U

18

+ (u

.

5 rl

A N

M

I

4 -123

n a aJ 3 C

-I4 U C 0 u

W

m U C m U 4 3 m aJ & U C 8 s U C m aJ u & 0 k

a ' r l 3 U

*I4 J

a\

* a,

e

-3

4

2

c, i4 4

N kr

n 4

I

6,

i4 rl

N N C

n W

hl

? rl W

n I C ) 4

d e 4

I

hl h rl

A N

I= n

W hl

U

d

A N W

T

U aJ 7 C -I4 U C 0 c) J I

al

8 0

II 8

m d

xm

5 N

al

& 3 0 P crl

I4 d 0 !x

4

N i 4 N L.r t=

.

c, A rl

d N Y

-2 0 0

I b 1 1 1 c c

6, d

" A N

Y

I n

d r l W

N

A n rl

A hl W

I d

U

.I4 3 a,

* 0 N

hl 3

hl

- N

U * I

N n rl

h

U \ n rl

A ?

< A

;

N W

4 W

b

cf

N W

5 I-.

c\ M I

b N \ n I4

i4 hl W

3 n b N \ n d

A ?

N W

N 3 W

E

I E 0 e I

n

r

%

i

N \ n d

W + d v

F r I

E o?

I

P 6, rl

A

a

N

b N

b W

A 2 -7

+ 5 A rl

N Y

,G C R1 U U -

rl

I d

rn n

6, d I

ti N

kr W

0 z +

4-124

rl N

1 8 4

I

N h

'41 e m 4-

U 3 .rl

Q) 0 8

N

N 3

2 I t

ZN

m

N n tl

N \ n rl

N

d

XI i

I

. 6,

A d

N Y h rl

'WJ I= rn +

6,

A d

N M

I

cs

A

\ h .-I

N W

A

I

4-12?

4.8 Rectangular Tank

Table o f Contents

General ................................................... Exc i t a t ion : Harmonic Trans l a t ion and/or P i t c h i n g

Boundary Condit ions. Veloc i ty P o t e n t i a l .

and Natura l Frequency ............................. Liquid Force and Moment Resu l t an t s ................... Spr ing -Mass Mode 1

Analysis ........................................ Diagram ......................................... Force and Moment Resu l t an t s ..................... Elements ........................................ Graphs ..........................................

Exc i t a t ion : Harmonic Rol l

Boundary Condit ions. Ve loc i ty P o t e n t i a l .

and Na tu ra l Frequency ............................. Liquid Moment Resu l t an t ..............................

4-127

4-128

4-130

4-131

4-132

4-133

4-134

4-135

4-139

4-140

Tors iona l S pring-Mass Model

Analys is ........................................ 4-141

Diagram ......................................... 4-142

Moment Resu l t an t ................................ 4-143

Elements ........................................ 4-144

Graphs .......................................... 4-145

4-126

X

--_ Container : The t ank i s r e c t a n g u l a r having base dimensions a and b i n t h e x and y d i r ec t ions , r e spec t ive ly , and i s f i l l e d wi th a l i q u i d t o a depth h.

Coordinate System: The o r i g i n i s loca t ed a t t h e c e n t e r of g r a v i t y o f t h e undis turbed f l u i d .

References : ( 7 6 )

4-127

h c)

7 0' aJ & P-l

d m k 7 U m z U C m

$

d m .rl U C aJ U 0 14 h u .d L) 0 d s 2

E

m

0 .rl U .rl a

u h k m U

0 5 a

0 m I

3

al d

% w

'n 4

I W

m

c 0 r( L1 m In C m & H

c) .I+

C

d

2 &

m z .. C 0 .rl U m U 'd U X W

-

24 C m l-

& m 7 00 C (d u c) 0) a

d

I n k

U

3e rl In

0 x II x .L

c 0

rl

x 7 8 c: &J

.. 2 0 d U .I4 a E: 0 c)

h k m a Ei 0 a

d

0 I1 cv \

n P W

0

I1 N

f N .. d m .d U

E U 0 a h U .rl 0 0 d s FJ

n n

9' m e

C d W c v "I +e

e w i p C

+ x - U

3,

I

II e

.. h 0

7 v aJ k lu

k m 7 M C m d m k 7 U m z

E

d

m

4-128

n a aJ 7 C -4 U C 0 0

h V

7 0' aJ k

rJ4

m k 7 U m z a C m

W

E

l-l

a d

m 'd U

E U 0 p1

h U .rl 0 0 d s 2 a

0 .d U -rl a

u h k m a C 7 0 la

0 VI

I d aJ a m w I4

M C .rl z V U -4 pc

V

C .d

E m X

.. C 0 'rl U m U ..-I u X w

-

2 C

Li m 7 M C m U u aJ oi

d

.. rn C 0 -4 U *d a C 0 V

h k m -0 C 3 0 m

rl

0 0

X 3

0

I I N \

n P W

U 3 In 0 V 0

a3

5 I

I I hl \

$ 1 X

0

I I cv \

rF !a

M

+ CD

n m

W

n V

W

,

2= C .rl rn

hl c

U 3 111 0 0 a3 3 0

I

I I e

- Od-3C +

.. h V

7 d aJ & w & m l-l 7 M C m

m

U

E

rl

5 z" m

. . n z N

.VI -2 m U

n m \ I=

W h

5 N

W

M

It N C

3

4-129

C W

- c

(d

r J +

N - 2 -

+ N C

M I w N \

& I= n

d

d

N \

k I= n

%-

d

+

U

.rl N m d 8 0

N \

Ll k n

4

d C D I + - - c 2 (d /“ U

n rl

I

N C 6 “n

+ C

rl

m

k

I=

W rl

Tl

n d

I

c.lc c

W

“n d

+ C N

k

I=

W d

0

n

k I= n

d

d

+ C N

c U

co

W U

E

n

k ri

R

+ C N

d

W

U

-2 m U

a3

.! d

W -L

U 3 C -rl m

X

II X

C 0 -d U c) aJ k -rl P

X aJ

0

c)

5 C

C 0 .d U (d d m C (d k w

.rl

W U + s E U

C N W

U 3 C %-I m

CD 0

11 6)

c)

m -rl

2

c, h aJ

U 7 0 P (d

M C .rl

4 U .rl PI

4

M m c o t

d k

I= 8-i$

8 N

+ 8 W f C

+ d

U

U

+

U 3 C .rl v)

CD 0

N

N 3

3

m m

0 CD

m 0

X N

3 0

X N

2 3 s

8- i$ II

2 II

@l X

I I

X h

II

@l X

d N d N

130

Table 4 - 5 2 . Model Analys is

Rec tangular Tank I Spring-Mass Model

Exc i t a t ion : Harmonic T r a n s l a t i o n and/or P i t c h i n g

Figure 4 - 4 3 shows a diagram of t h e spring-mass model used i n r e p r e s e n t - i ng t h e dynamic response of a l i q u i d i n a r e c t a n g u l a r t ank when sub jec t ed t o harmonic t r a n s l a t i o n i n t h e x - d i r e c t i o n and/or p i t c h i n g about t h e y-ax is .

Coordinate System:

1 iqu id . The o r i g i n i s loca t ed a t t h e c e n t e r of g r a v i t y of t h e undis turbed

Model Desc r ip t ion :

The components of t h e system a r e a s fo l lows:

1. A f i x e d mass M having a moment of i n e r t i a I i s r i g i d l y connected t o t h e t ank and i s loca ted on t h e z - a x i s a t a d i s t a n c e H below t h e coord ina te o r i g i n .

2 . A se t of movable masses m i s d i s t r i b u t e d a long t h e z -ax i s when t h e c o n t a i n e r i s a t res t a t d i s t a n c e s h above t h e o r i g i n . These modal masses a r e cons t r a ined by spr ingsnhaving s p r i n g s t i f f n e s s c o e f f i c i e n t s k t o remain i n t h e xy-plane and t o move o n l y i n a d i r e c t i o n p a r a y l e l t o t h e x -ax i s .

n

Equat ions of Motion:

The equa t ions , ob ta ined from e i t h e r a n equ i l ib r ium o r energy fo rmula t ion ,

1. S losh Mass Equation f o r T r a n s l a t i o n :

are as follows:

2 .. m x + k x = m x w sinwt n n n o

2 . Slosh Mass Equation f o r P i t ch ing :

mnG + knx = (mng + hnkn.)eosinwt

From t h e s e equa t ions , t h e model f o r c e i n t h e x - d i r e c t i o n and t h e moment about t h e y-ax is can be found ( s e e Table 4-53) .

kn T

0

I 1

hn

x = x o s i n t -

t H

Rectangular Tank I Spring -Mass Mode 1

E x c i t a t i o n : Harmonic Trans l a t ion and/or P i t c h i n g

F igu re 4-43. Equivalent Mechanical Model

4-132

m U C m U d

2 QI

p: U

2 2 a C m aJ 0 k 0 b

aJ a d

3 m m I

3

aJ

D m w

4

cuc c

d

4

I

N C c

m v)

f M C .I4 k a VI

M C

-I4

5 u 4 p1

k 0

a C m C 0 .rl U m d m C m k w V .I4 C

\

E m z .. c 0 *I4 U m U + 0 X w

U 3 C

.I4 m

X

II X

<

L

E .I4 U 0 aJ k d a I

X aJ c, C

C 0 .I4 U m d

d

2 re k w

.-.I

d

N C 1 c N C c

4-2 c +

I l l +

.I4 aJ m

Q 0

N -", U 3 3

n 0 m 3

N

4-133

Table 4-54. Model Elements

Rectangular Tank Spring-Mass Model

E x c i t a t i o n : Harmonic T r a n s l a t i o n and /o r P i t c h i n g 7 Natural Frequency

Spr ing Constant

Ra t io o r Spr ing Constant t o F lu id We igh t

Ra t io o f S losh Mass t o F lu id Mass

R a t i o o f Fixed Mass t o F lu id Mass

Ra t io of Slosh Mass Coordinate t o F lu id Depth

Ra t io o f Fixed Mass Coordinate t o F lu id Depth

Moment o f I n e r t i a o f S o l i d i f i e d F lu id I E f f e c t i v e Moment o f I n e r t i a o f F lu id

I Moment o f I n e r t i a of Fixed Mass

n a 1 ( f i g . 4 - 4 4 ) 2

n n n k = m w

hk 8 tanhL ((2nl-3 ) a r "=

~

( f i g . 4 - 4 6 )

m m n

L n=o L - 1 - 1 M

m - - ( f i g . 4 - 4 6 )

( f i g . 4 - 4 5 )

( f i g . 4 - 4 5 )

4-134

kO=SPRING CONSTANT ASSOCIATED WITH FUNDAMENTAL

HARMONIC

ODD HARMONIC k 2 = S P A i N G CONSTANT ASSOCIATED WITH SECOND

W,=WEIGHT OF F U E L

TANK ASPECT R A T I O TI Non-Dimensional Spring Constants

vs Tank Aspect Ratio.

F i g u r e 4-44. Model Element Graph

4-135

I .c

1 0 .€ I- a. w

0 I-

go. 2

-0.2

- 0.4

-0.6

H = V E R T I C A L LOCATION OF FIXED M A S S \ j h,= VERTICAL LOCATION OFFUNDAMENTAL M O V I N G MASS

0.5 1.0 1.5 2.0 2.5 3.0 TANK A S P E C T R A T I O r, Ratios of the Vertical Locations or Anns

of the Fixed Mass and F i r s t Two Slosh Masses t o Fluid Depth vs Tank Aspect Ratio.

Figure 4-45. Model Element Graph

4-136

1.4 LL; I- Ln, > -I

1.2

a 0 1.c z a I 00.8 w =E w 10.6 #- LL 0

0.4 v> 0 #- a0.2 e

-

M = FIXED M A S S = FUNDAMENTAL MOVING MASS mO

m, = FIRST ODD HARMONIC MOVING MASS mi = MASS OF FUEL

b 1 I

1 I <M I -

mL

i

T h- 1

t-?N I

1 I

f I \ I ' h

I

0.5 I .o f .5 2.0 2.5 TANK A S P E C T R A T I O rl

Ratio of Fixed b a r and Firrt .RR Slorh Masses t o Flu id Mass vs Tank Aspect Ratio.

Figure 4-46. Model Element Graph

4-137

l- a W

s#- m

W a >

g s

L L L w o II

H

B 0 rci

N

L-

O 0 - c\i+

Q tr

CL cn a

O x - a 7 I-

4-138

. I ?

h V C aJ 3 W aJ k

rJ4

m k 7 U m z a C (d

d

rn I4 m *rl U

E u 0 PI

h u ' r l V 0

aJ > I4

rn m C 0 -4 U .rl a C 0 U

h $4 m a C 7 0 m

In In I

-j.

9)

P (d b

I4

U 3 C *rl m e 0 I1 e- rn m WI X m I N

a, r: U

U 7 0

m n

4 4 0 Y;

.. (0 C 0

*I4 U -rl a C 0 u h k m a C 7 0 F4

l-4

c q W

N N

n h

W v a P

U

0 0

3, 0

3 3 I I N \

h

m W

0

II N \

4 !a

n u

W

.. d m

'I4 U

E u 0 a h U *I4 u 0 a, > rl

CJ

m $1 t

0 C

a w II

w U 3 m 0 u 8 0

? e

I? N E

W N

a +

N h l-4

h

SIN + N v

.. h u

7 W a, k W

k m 7

m

m k 7 U m z

E

I4

2 I4

m

S C (d U

N n

+" E N W

N m +

N n

? N

v N P 7

el% M

I I

3

4-139

. pn

i 3

0

U .rl C

E m z .. e 0 ?I U m U 'rl u x w

-

A e m w k m 3 M e m U V Q, a

d

n rl

1

C

r l w

+ + 3 U d

+

B N

U

"n

V U 31,

4-140

Table 4-57. Model Analysis

Rectangular Tank I Tors iona l Spring-Mass Model

E x c i t a t i o n : Harmonic Roll

Figure 4-48 shows a diagram o f t h e t o r s i o n a l spring-mass model used i n r e p r e s e n t i n g t h e dynamic r e s p o n s e o f a l iquid i n a r e c t a n g u l a r t ank when sub- j e c t e d t o harmonic r o l l about t h e z -ax i s .

Coordinate System :

The o r i g i n is loca ted a t t h e c e n t e r o f g r a v i t y of t h e undis turbed l i q u i d .

Model Desc r ip t ion :

The components of t h e system a r e a s fo l lows :

1. A f i x e d mass M having a moment of i n e r t i a I i s r i g i d l y connected t o t h e t ank and i s loca ted on t h e z -ax i s a t a d i s t a n c e H below t h e c o o r d i n a t e o r i g i n .

having s t i f f n e s s c o e f f i c i F E t s k xy-plane and a t d i s t a n c e s h

2 . A s e t o f movable masses m i s cons t r a ined by t o r s i o n a l s p r i n g s t o remain i n p l anes p a r a l l e l t o t h e

agsve it . mn

Equation of Motion:

The equa t ion , ob ta ined from e i t h e r an equ i l ib r ium o r energy fo rmula t ion , i s a s fo l lows :

.. Imn4 +kmn4 k mn 4 o sinwt

From t h i s equa t ion , t h e moment about t h e z - a x i s can be found ( s e e Table 4-58).

4 -141

Y

i ‘11 t

m

- x

Rectangular Tank Torsional Spring-Mass Model

Excitation: Harmonic Roll I

Figure 4-48. Equivalent Mechanical Model

Y 4-142

rl r-l 0 ffi

0 d

i m X

.. C 0 d U m U d u X w

U 3 C 'd cn 8

0

I1 8

LQ d

3

5 N

a

U 7 0

m n

rl 4 0 ffi

+

u U 3 C d rn

0 8

3 Nr-l

k

H

N

LQ

II

cN

4-143 ,

Table 4-59. Model Elements

E f f e c t i v e Moment of I n e r t i a of Fluid

I I

tanh [( 2n+l )nr3 /2J ( f i g . 4-

S r3+1 n r3( r3+1) n=o ( 2n+1 l5 49 94-50 c 768

5 2 - = I - - f I

4 + 2

Rectangular Tank Tors iona l Spring-Mass Model 1 E x c i t a t i o n : Harmonic Ro l l

I

Tors iona l Spr ing Constant

Moment of I n e r t i a of S o l i d i f i e d F lu id

2 = I w kmn mn mn

Moment of I n e r t i a of Slosh Mass

0 1 c I F 'z - _ - - 1 - Moment of I n e r t i a of Fixed Mass

s m=o n=o s I 1 S

4-144

I f = EFFECTIVE FUEL MOMENT OF INERTIA

I S Im,"= MOMENTOF INERTIA OF MOVING M A S S

f \ I -

ASSOCIATED WITH Wm,"

IC MOMENTOF INERTIA OF

4

SOLIDI FlED FUEL

I 1 1

1 0.2 0.4 0.6 0 TANK ASPECT R A T I O rs

Roll Moment of Inertia Ratio6 for Shallow Tank VI Tank A l p c c t Ratio-

b 3 1.C

Figure 4 - 4 9 . Model Element Graph

0.25

g 0.20 - I- a a a F 0.15 pz

Z r w Im,n

0 r 0.05

0 (

\ 1 m n= MOMENT OF INERTIA ' OF MOVING MASS

ASSOCIATED WITH O m , " rn 1

= MOMENTOF INERTIA O F SOLIDIFIED FUEL

IS 1 0,o

ALL MOMENTS OF INERTIA ARE TAKEN ABOUT Z-AXIS

5 0.6 0.7 0.8 0.9 I .o T A N K A S P E C T R A T I O r3

Roll Mment of Inertia Ratios for Shallow Tank vs Tank Aspect Ratio.

Figure 4-50. Model Element Graph

4-146

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

5.1.7

5.1.8

V . Propellant Slosh Suppression

5.1 Anti-Slosh Devices

Table of Contents

Introduction ............................................. Design Requirements of an Anti-Slosh Device .............. Ring Baffles ............................................. 5.1.3.1 Experimental .................................... 5.1.3.2 Analytical ...................................... 5.1.3.3 Ring with Radial Clearance ...................... 5.1.3.4 Conic Section ................................... 5.1.3.5 Inverted Conic Section .......................... Cruciform Baffles ........................................ Floats ................................................... 5.1.5.1 Mat ............................................. 5.1.5.2 Can ............................................. Part i t ions ............................................... 5.1.6.1 Cross ........................................... 5.1.6.2 Concentric ...................................... Pressure Distribution .................................... 5.1.7.1 Procedure 1 (28) ................................ 5.1.7.2 Procedure I1 (18) ............................... 5.1.7.3 Procedure 111 (83) .............................. Conclusions and Reconrmendations ..........................

5-2

5-3

5-5

5-8

5-31

5-88

5-89

5-94

5-97

5-98

5-98

5-99

5-105

5-105

5-106

5-107

5-107

5-108

5-112

5-125

5 -1

5.1.1 In t roduc t ion . S losh ing becomes de t r imen ta l when t h e wave

implitudes of tanked p r o p e l l a n t s , a g i t a t e d by o s c i l l a t i o n s , approach

breaking he igh t . This s lo sh ing of t h e l i q u i d e x e r t s cons ide rab le f o r c e s

on t h e mis s i l e s t r u c t u r e , a f f e c t s t h e c o n t r o l s and renders any l i q u i d

l e v e l measuring device inaccura t e . This means t h a t a s lo sh ing damping

device has t o be provided. The t e r m damping u s u a l l y r e f e r s t o t h e

checking of a motion due t o r e s i s t a n c e , a s by f r i c t i o n o r any o t h e r

s i m i l a r cause. It i s of e s p e c i a l s i g n i f i c a n c e i n connect ion wi th t h e

d iminish ing ampli tude of an o s c i l l a t i o n , a s t h a t o f a l i q u i d swinging

i n s i d e a moving con ta ine r . Unless energy i s suppl ied du r ing each c y c l e ,

t h e ampli tude of t h e f l u i d motion f a l l s o f f a t each success ive o s c i l l a t i o n

by an amount commonly expressed i n terms of t h e decrement, o r damping

f a c t o r , which i s t h e r a t i o of any one ampli tude t o t h a t nex t succeeding

it i n t h e same sense and d i r e c t i o n .

Many of t h e f o r c e and moment r e s u l t a n t s given i n Chapter I V r e q u i r e

a damping f a c t o r b e f o r e they can be eva lua ted .

equat ions and consequent ly t h e i r u se fu lness i s t h e r e f o r e v e r y much dependent

on t h e va lue chosen f o r t h e damping parameter.

t ank has no damping devices t h e r e s i s t a n c e t o f l u i d motion a t t h e c o n t a i n e r

w a l l s i s g e n e r a l l y accepted t o be n i l . That is, t h e f l u i d damping i s

n e g l i g i b l e . However, when damping systems a r e in t roduced , t h e r e s u l t i n g

damping f a c t o r depends on many v a r i a b l e s and i s thereby extremely d i f f i c u l t

t o ob ta in . For some damping devices , such a s f ixed r i n g b a f f l e s , a sound

a n a l y t i c a l approach can be e f f e c t i v e l y used wh i l e i n most c a s e s an exper i -

mental approach i s t h e o n l y way of o b t a i n i n g a meaningful damping f a c t o r .

The accuracy of t h e s e

When a l a r g e p r o p e l l a n t

5 -2

5.1.2 Design Requirements of a n Anti-Slo-sh Device. S t u d i e s

( 4 0 ) , (42) show t h a t t h e depth below t h e undis turbed f r e e s u r f a c e a t

which t h e l i q u i d no longer p a r t i c i p a t e s i n s u r f a c e o s c i l l a t i o n s i s

approximately equal t o one- four th t h e tank diameter . The re fo re a damping

dev ice need o n l y extend t o such a depth. The l i q u i d l e v e l , however,

changes a s t h e c o n t a i n e r empties thereby r e q u i r i n g e i t h e r a damping dev ice

capab le of moving down a t a r a t e equal t o t h e d r a i n i n g r a t e o r a damping

dev ice which i s f i x e d t o t h e w a l l b u t extends t o t h e bottom of t h e con-

t a i n e r . The f i r s t s t i p u l a t i o n sugges t s some type of f l o a t i n g dev ice ,

whereas t h e second sugges t s e i t h e r l o n g i t u d i n a l p a r t i t i o n s o r an evenly

spaced b a f f l e system cove r ing t h e inner pe r iphe ry of t h e tank and d i s t r i -

bu ted throughout t h e depth of t h e l i q u i d .

,

The amount of damping needed t o s t a b i l i z e a m i s s i l e i s d e t e r -

mined from analog o r d i g i t a l computer s t u d i e s of t h e o v e r - a l l dynamic

c h a r a c t e r i s t i c s of t h e v e h i c l e . In some c a s e s , s t a b i l i t y s t u d i e s might

i n d i c a t e no need f o r a n t i - s l o s h b a f f l e s i n a p a r t i c u l a r tank. Genera l ly ,

however, t h e des igne r i s faced w i t h t h e problem o f op t imiz ing a damping

system by i n t e g r a t i n g i n t o h i s d e s i g n t h e requirements t h a t fol low:

1; Produce a h igh damping e f f e c t .

2. Pay a minimum weight pena l ty .

3 . U t i l i z e minimum space.

4 . Absorb t h e l i q u i d f o r c e s and moments o r t r a n s f e r them uniformly

t o t h e tank s t r u c t u r e , t he reby avoid ing p o i n t s of h igh stress

concen t r a t ion .

5 -3

5 . Function throughout environmental changes, such a s temperature .

6 . Not i n t e r f e r e with o t h e r o p e r a t i o n s , such a s t h e emptying of t h e

c o n t a i n e r o r t h e measurement of t h e l i q u i d l e v e l .

7. Be e a s y t o assemble.

8. Not cause damage t o t h e t ank o r o t h e r b u i l t - i n equipment d u r i n g

t r a n s p o r t a t i o n of t h e m i s s i l e .

9. N o t i n t e r f e r e with c l e a n i n g o p e r a t i o n s .

5 -4

Ring B a f f l e s

where 5 = ampli tude of l i q u i d measured a t t h e t ank w a l l

h = depth of l i q u i d

d = depth of r i n g below undis turbed f r e e s u r f a c e

a = r a d i u s o f r i g h t c i r c u l a r c y l i n d e r

w = r i n g width

References: ( 3 2 , 35, and 41).

Ring b a f f l e s a r e most e f f e c t i v e a g a i n s t l a t e r a l s l o s h which h a s l a r g e

v e r t i c a l components of f l u i d v e l o c i t y nea r t h e t a n k w a l l .

I n v e s t i g a t i o n s by S i l v e i r a , Stephens and Leonard ( 3 5 ) i n d i c a t e t h a t :

1. For a given b a f f l e depth:

( a > The damping f a c t o r i n c r e a s e s as t h e b a f f l e width i n c r e a s e s

( f i g . 5-10).

( b ) The frequency i n c r e a s e s a s t h e b a f f l e width d e c r e a s e s

( f i g . 5-15).

3-3

Ring B a f f l e s ( con t inued)

2. Based on t h e t o t a l s u r f a c e of a b a f f l e , t h e h i g h e s t mean damping

f a c t o r appears t o be a f fo rded by r i n g b a f f l e s a s compared t o t h e

b a f f l e t ypes dep ic t ed i n f i g . (5-77).

I n v e s t i g a t i o n s by Garza and Abramson (32) i n d i c a t e t h a t :

1. For a g iven b a f f l e depth:

( a ) With t h e ho le s i z e c o n s t a n t :

(1) The frequency i n c r e a s e s f o r i n c r e a s i n g percent pe r -

f o r a t i o n ( f i g . 5-2).

The damping f a c t o r i n c r e a s e s f o r dec reas ing pe rcen t

p e r f o r a t i o n ( f i g . 5-8) .

( 2 )

( b ) With t h e percent p e r f o r a t i o n cons t an t :

( I ) The frequency i n c r e a s e s f o r i n c r e a s i n g h o l e s i z e

( f i g . 5-31.

The damping f a c t o r i n c r e a s e s f o r dec reas ing h o l e s i z e

( f i g . 5-7).

( 2 )

2 . Damping produced by pe r fo ra t ed b a f f l e s i s c o n s i s t e n t l y lower

than t h a t produced by a s o l i d b a f f l e ( f i g . 5-7 and 5-8).

5 -6

5.1;3* Ring B a f f l e s . Because of t h e complexi ty o f t h e boundary con-

d i t i o n s , a t h e o r e t i c a l approach f o r p r e d i c t i n g t h e damping o f a dev ice i s

extremely l i m i t e d . I n p a r t i c u l a r , a f i x e d r i n g b a f f l e i s t h e o n l y damping

device f o r which an a n a l y t i c a l approach e x i s t s . For t h i s r eason , i t i s

necessa ry t o r e s o r t t o an experimental approach c o n s i s t i n g of ground

o s c i l l a t i o n

device t o be eva lua ted . I f t h e s i z e o f t h e model i s small a s compared t o

t h e p ro to type , t h e use of s i m i l i t u d e t h e o r y i s a d v i s a b l e i n o r d e r t o o b t a i n

reasonable s i m i l a r i t y of f l u i d motion. S ince it i s g e n e r a l l y n o t p o s s i b l e

t o model equal v a l u e s o f a l l d imensionIess parameters a f f e c t i n g t h e f l u i d

mution, an a p p r o p r i a t e nondimensional modeling parameter must be chosen.

Viscous fo rces and s u r f a c e t e n s i o n a r e small and can t h e r e f o r e be neg lec t ed

whereas, forces r e s u l t i n g from both t h e v e l o c i t y of t h e f l u i d and t h e

i n e r t i a l e f f e c t s of a c c e l e r a t i o n cannot . Acce le ra t ion is of e s p e c i a l

importance because o f t h e t h r e e fo l lowing e f f e c t s on s l o s h phenomena:

t e s t i n g o f a f u l l s c a l e or model tank containing t h e damping

1. During ground t e s t s , t h e e igen f r equenc ie s remain c o n s t a n t ,

whereas, du r ing f l i g h t c o n d i t i o n s t h e y v a r y a s the square

r o o t of t h e l o n g i t u d i n a l a c c e l e r a t i o n .

2 . The wave ampl i tudes a r e approximate ly i n v e r s e l y p r o p o r t i o n a l

t o t h e l o n g i t u d i n a l a c c e l e r a t i o n .

3 . The damping f a c t o r i s p r o p o r t i o n a l t o t h e square r o o t of t h e

l i q u i d ampli tude.

4 . The f o r c e and moment r e s u l t a n t s a r e p r o p o r t i o n a l t o g .

Therefore , Froude 's number, be ing t h e r a t i o o f f l u i d v e l o c i t y f o r c e s

t o i n e r t i a f o r c e s , i s s e l e c t e d f o r t h e modeling parameter .

5 -7

5.1.3.1 Ring B a f f l e s : Experimental . Each of A r t i c l e s 5.1.3.1.1

through 5.1.3.1.3 p r e s e n t s an a n a l y s i s concerned with a p a r t i c u l a r r e f e r e n c e

from which experimental d a t a i n t h e form of graphs i s presented . The a n a l y s e s

a r e composed of two p a r t s ; t h e f i r s t be ing concerned wi th experimental

procedure and t h e second wi th i n t e r p r e t a t i o n of r e s u l t s . This in format ion

i s meant t o a i d t h e des igne r i n both eva lua t ing d a t a of a p a r t i c u l a r source

and comparing da ta of d i f f e r e n t sources . Also, t h i s in format ion should be

o f use i n s i m i l i t u d e a p p l i c a t i o n s s i n c e most of t h e da t a i s obta ined from

model s t u d i e s .

5.1.3.1.1 I n v e s t i g a t i o n s by Garza and Abramson (32 ) a r e

o u t l i n e d below.

Fixed Ring B a f f l e s

1. B a f f l e t h i ckness : O.018l1 t o 0.03011.

2 . Rat io o f b a f f l e width t o t ank r a d i u s , - = 0.157.

3 . P e r f o r a t i o n :

R

( a ) The h o l e s i z e was 0.079" whi le t h e percent p e r f o r a t i o n

was v a r i e d .

The percent p e r f o r a t i o n was 30% whi l e t h e h o l e s i z e

was va r i ed .

( b )

4 . Attachment t o c o n t a i n e r : The b a f f l e s were secured t o t h e

t ank by fou r 1/811 x 1/31! s t e e l s t r i p s a t t a c h e d a t 90" a p a r t

around t h e o u t e r edge of t h e r i n g . They were supported

through ang le i r o n b r a c k e t s b o l t e d t o t h e upper f l a n g e of

t h e tank . The o u t e r edge of t h e r i n g was tu rned down,

5 -8

g iv ing t h e r i n g an L t ype c r o s s s e c t i o n which s t i f f e n e d t h e

r i n g cons ide rab ly , but had l i t t l e e f f e c t on damping ( s e e

F igure 5-11.

Conta iner , E x c i t a t i o n and In-strumentation

The c o n t a i n e r was a r i g i d - w a l l c i r c u l a r c y l i n d r i c a l t ank sup-

ported by fou r dynamometers. A l l t e s t s were conducted f o r t h r e e ampli tudes

of t r a n s l a t i o n a l e x c i t a t i o n . Because of t h e r a t h e r s i g n i f i c a n t e f f e c t s of

e x c i t a t i o n ampli tude, measurements were made f o r va r ious va lues ranging from

0.00184 5 ~2 0.00823, and then a l l da t a was presented i n terms of RMS

va lues . Table 5-1 g ives t h e resonant f r equenc ie s f o r each of t h e va r ious

t e s t s conducted.

xO

Damping Fac to r

Experimental va lues of t h e damping f a c t o r Y were obta ined from S

resonant peaks of experimental f o r c e response curves . Theore t i ca l va lues

of Y

s u r f a c e ampli tudes 5,' measured a t t h e tank wa l l s .

damping v a l u e s f o r each of t h e va r ious t e s t s conducted.

were c a l c u l a t e d from Miles ' equa t ion ( A r t i c l e 5.1.3.2.1) us ing l i q u i d S

Table 5 - 2 g i v e s t h e

5.1.3.2

a r e o u t l i n e d below.

I n v e s t i g a t i o n s by S i l v e i r a , Stephens, and Leonard (35)

B a f f l e s (F igure 5-76)

1. B a f f l e t h i ckness

( a > 12 inch tank: conic s e c t i o n , 1/16!! P l e x i g l a s ; a l l o t h e r s ,

1/81' P l e x i g l a s .

5 -9

( b ) 30 inch t ank : f ixed r i n g , 1/4" P lex ig l a s .

2. Rat io of b a f f l e wid th t o tank r a d i u s

( a ) 12 inch t ank : s e e F igu re 5-77.

( b ) 30 inch tank: W/R = 0.076.

3. P e r f o r a t i o n

( a ) Hole s i z e , 1/8" diameter .

( b ) Percent p e r f o r a t i o n , 50%.

Container E x c i t a t i o n and Ins t rumenta t ion

Two c o n t a i n e r s were used: a 12" diameter tank o f 1/8" P l e x i g l a s

and a 30" aluminum tank of 0.016" walls and 1 /2 " base. A paddle was used

t o exci te t h e l i q u i d i n t h e fundamental mode and then removed when t h e

ampl i tude was s u f f i c i e n t . Liquid response i n t h e 12" t ank was sensed by

s t r a i n gages mounted on t h e t o r s i o n b a r s which a r e loca t ed between t h e

base p l a t fo rm and t h e suppor t r i n g , whereas t h e response i n t h e 30" t ank

was measured by a load c e l l which r ep laced one of t h e t h r e e p l a t fo rm suppor ts ,

The ou tpu t s i g n a l s from t h e s t r a i n gauges and t h e load ce l l were ampl i f i ed

and then f ed i n t o a dampometer t o measure t h e damping and frequency of

t h e l i q u i d motion.

Damping Fac tor

The r a t e o f decay of t h e moment r e s u l t i n g from t h e damped l i q u i d

o s c i l l a t i o n s was measured and t h e damping f a c t o r 6, r e p r e s e n t i n g t h e decay

o f o s c i l l a t i o n , was de f ined a s

5-10

0 M

1 6 = - n loge ii- n

where n i s t h e number of c y c l e s over which t h e decay was measured, M

t h e magnitude of t h e i n i t i a l moment and M

a f t e r n cyc le s .

i s 0

i s t h e magnitude of t h e moment n

General Comments

1. No graph i s g iven f o r cruciform b a f f l e s s i n c e , f o r a l l bu t

sha l low dep ths , damping i s independent of t h e f l u i d depth.

Test r e s u l t s f o r t h e 90° and 45O p o s i t i o n s ( s e e F igure 5-77)

0.169, a r e a s fo l lows: f o r - =

and f o r - = 0.337, 690 = 0.156 and 645 = 0.142.

A l l d a t a p o i n t s presented r ep resen t t h e average of f i v e o r

= 0.072 and 645 = 0.070 W R

W R

2.

more measured v a l u e s f o r t h e g iven cond i t ion .

3 . For high va lues o f b a f f l e depth , t h e curves i n F igu res 5-9,

5-10, 5-11, 5-66, 5-67, and 5-69 approach t h e damping va lues

f o r which no b a f f l e i s present .

4. I n F igure 5-77, t h e mean damping f a c t o r f o r a p a r t i c u l a r

b a f f l e was obta ined i n t h e fo l lowing manner: from t h e graph

r e l a t i n g / f a c t o r t o b a f f l e depth, t h e a r e a under t h e curve the damping

S d

S d

R between 0.084 - above and 0.084 R below t h e m a x i m u m damp- d -

S i n g was d iv ided by 0.168 R . The curves i n Figures5-12 and 5-14 a r e given by Miles’

equat ion a s p re sen ted i n r e f e r e n c e 33.

5 .

It i s

5 -11

1 - 3

6 = 5.66ae -4.6; f 2 - f - W ) j ' (>, c

2 I f W i s neg lec t ed , t hen t h e damping f a c t o r becomes:

which i s i d e n t i c a l t o Miles! equat ion except t h a t t h e

c o n s t a n t m u l t i p l i e r i s 5.66 n i n s t e a d of 2.83.

6. For h igh va lues of b a f f l e depth, t h e curves i n F igu res 5-15,

5-16, 5-64, 5-65, and 5-68 approach, a s y m p t o t i c a l l y , t h e f i r s t

r e sonan t frequency f o r a c i r c u l a r c y l i n d r i c a l tank con-

t a i n i n g no b a f f l e s .

5 -12

I I 1

t

I

I

W-CI

I li

t- I?-

d -

b

f D + A-

I

Figure 5.1 Details of bafkle support arrangemencs drla tank configuration. ( 3 2 )

5-13

TABLE 5.1.

Liquid Resonant Frequency, (32) W / R = 0.157

70 Open Area 0 8% A 6% 2 3% 3 0% 2 3‘16 3 0% 30%

Hole Diameter 0 0. 079 0 .079 0.079 0. 079 0.040 0. 040 0.02 (in. )

Ring Depth d s / R w 2 d / g (Xd d * 0.00 184)

0 . 0 2 5 . 0 5 0 . 075 . 100 . 125 . 175 . 2 5 0 . 375 . 4 5 0

4 .68 4 .40 4 .25 4 .19 3. 19 3.47 2. 92 3. 17 3.31 3.01 2.90 3.27 3.06 2 .96 3. 31 2.97 3. 19 3.40 3. 18 3.24 3.35 3.40 3. 36 3.40 3.48 3.49 3.54 3.47 3.54 3.62

3.57 4 . 1 4 .11 4. 14 4.33 3. 30 3. 88 3. 20 3.43 3.26 3.34 3. 52 3. 36 3. 34 3 .22 3.32 3.47 3.26 3.34 3. 32 3.35 3. 51 3. 32 3.41 3. 34 3.36 3.49 3. 31 3.43 3. 35 3. 32 3.54 3.38 3.47 3.41 3.45 3. 56 3. 52 3.54 3.42 3. 58 3.57 3. 52 3. 56 3. 54 3. 58 3. 58 3.59 3.62 3. 54

k , / d = 0.00417)

0 .025 . 0 5 0 . 075 . l o o . 125 . 175 .250 .375

4 . 4 3 3.84 3.76 4. 27 3.64 3 .79 3 .71 3.29 3 .40 2.99 3. 14 3 .28 2 .94 3. 15 3 .28 3. 09 3 .20 3.22 3. 09 3.24 3.26 3. 18 3 .34 3. 38 3.33 3.46 3 .40

~ ~ ~

3.73 3 .65 3. 81 4. 16 3 87 3.62 3.62 3.60 3.54 3 .90 3.54 3. 50 3.44 3.66 3.55 3. 32 3.46 3.26 3.45 3. 31 3. 35 3.45 3.28 3.38 3. 30 3. 35 3.45 3.26 3.40 3. 31 3. 38 3. 51 3.26 3.45 3. 34 3.43 3.49 3. 39 3.45 3.40 3 . 4 3 3.42 3. 52 3.45 3.44.

0 . 025 . 050

, .075 . 100 . 125 . 175 .250 . 3 7 5

3.96 3. 84 3 .73 3.77 3.77 3.75 3. 58 3. 58 3. 51 3. 18 3. 24 3.28 2.97 3.22 3. 28 3.00 3. 06 3. 32 3. 07 3. 13 3 .28 3. 16 3.28 3 .28 3.30 3. 32 3.31

3.54 3 .52 . 3 .58 3.28 3.49 3.49 3.50 3 .54 3.41 3.54 3.49 3.47 3.47 3.40 3.49 3.40 3.40 3.40 3 . 4 1 3.40 3. 31 3. 38 3.24 3.34 3. 36 3.24 3. 31 3.28 3. 30 3 .28 3. 31 3. 31 3. 28 3. 30 3. 32 3. 31 3.28 3.22 3. 32 3. 32

3.24 3. 30 3.36 3. 32

5-14

TABLE 5.2

Ring Damping. (32) W / R J 0.157

4b Open&& 0 8% 16% 23% 30% 2 370 3 0% 3 0%

Hole Diameter 0 0.079 0.079 0.079 0.079 0.040 0.040 0. 020 (in.

Ring Depth Damping Ratio, Xo/d= 0.00184 ds /R

0 .025 .050 .075 . 100 . 125 . 175 .250 .375 .450

.060 . 087

.210 . 132 . 137 . 147

.090 . 1145

.070 ,0885

.073 .067 ,060 .054 .035 .040 .027 .025 ,025 .022

.084

.084

.071 070 .069 ,056 .056 .035 .026

. 108 .087 .091 . 110 . 103 . 106 .087 . 114 .112 . 116 . 073 .055 .086 .0&6 . 103 ,065 ,050 .072 .082 .084 059 .045 .046 ,050 , 057 .049 .045 .059 . 045 ..053 .045 ,040 .054 033 ,049 .047 .031 .032 .032 . 042 ,021 .022 ,023 .022 .029 . 017 .023 . 015 . 023

Damping Ratio; Xo/d = 0.00417

0 ,025 .050 .075 .loo . 125 . 175 .250 .375

.lo1 . 127 .lo1 .098 .082 .094 , 102 , 086

.121 .126 .122 , 108 .093 .llO . 114 , 109

. 173 , 134 . 119 . 112 .089 . 109 . 106 . 103 . 160 .112 . 108 ,084 ,077 . 104 .077 ,089 ,110 .091 090 ,075 .064 . . 085 .068 .085 .077 . 102 .077 .064 .047 . 077 ,064 . 078 . 072. . 070 .072 .061 . 0 5 0 .066 . 054 . 070 .051 .061 .051 .049 .047 .051 .049 . O S 5 039 ,044 .038 .035 .040 .039 .032 ,037

Damping Ratio, Xo/d - 0.00833 . o

.025

.050

.075 . 100 . 125 . 175

.250

.375

. 117 .122 . 121 . 146 . 126 . 124 . 177 . 134 . 124

. 158 . 123 . 114 . 142 .115 . 102 . 116 .lo6 .093

.096 .096 .081

.082 .066 .067

.066 .048 .O46

.111 . .095 . 110 ,091 . 114 . 117 ..087 . 122 , 106 .112 . 109 .098 . 126 .098 , 118 099 .084 . 104 .086 . 120 .093 .082 .093 .072 .093 .088 . 078 .093 ,082 . .OS8 .078 .072 . 079 . 074 . 072 .061 .057 .067 ,058 .058

,026 .046 .038 . 042

5-15

5.6

I5.2

4.8

4.4

4.0

3.6

3.2

n 2.8

0.079 0.079 - 0.079 0.07 9

-

- %

OPEN 0 0 16 23 30

-

RMS (Xo/d 0.00184 to 0.00833) W/R = 0.157

2R

I I I I

0.08 0.16 0.24 0.32 BAFFLE DEPTH d,/R

0.40

Figure 5.2 E f f e c t o f p e r c e n t p e r f o r a t i o n on l i q u i d r.esonant f r equenc ie s a s a f u n c t i o n of b a f f l e depth. ( 3 2 )

5 -16

5.6

5.2

4.&

4.4

4.0

3.6

3.2

1 . SYMBOL

RING PERFORATION

t- xo

I L - 4 I d '

RMS(Xo/d * 0.00184 to 0.00833) W/R = 0.157

0.08 0.1 6 0.24 0.3 2 0.40 2 .80

BAFFLE DEPTH, dJR

rigure 5 .3 Effect of perforation hole s i z e on liquid resonant c '? . . r , r r . . _. / * - \ Lrequencies a s a runcrion or Darrie aeptn. ( J L I

5-17

0.4f

0.4C

0.32

0.24

a \

'0 .. - 0.16

X I-

W 0

n

2 0.08 LL L 4 a

0

-0.08

-0. I 6

4 1 9 0.04 0.98 0.12 0.16 0.20

A 6.0 4.0 2.0 c F Figure 5.4 Effects of double rings as a function of baffle depth. ( 3 2 )

LIQUID RESONANT FREQUENCY PARAMETER J d / g

5-18

0.32

0.28

0.24

L

0 I- - a a 0.16 (3 z a 4

s a 0 0.12

-

0.08

0.04

,,+---. S w R I EXPERIMENTAL A v MILES

- Xo/d = 0.004 17

W/R = 0.157

Figure 5.5

0.0 8 0.16 0.24 BAFFLE DEPTH, d,/R

Comparison of t h e o r y and mperiment f o r f l a t s o l i d r i n g b a f f l e a s a func t ion of

5-19

0.32 0.40

damping provided by a b a f f l e depth. ( 3 2 )

0.32

0.28

0.24

&" 0.20

0. 6

0.1 2,

0.08

0.0 4

0 0

SYMBOL X old ' -- 8 - - 0.00184 -*43--*- 0.004 I7 -m

- 0 &- - 0.00833 V R MS (Xo/d 9

0.00184 to 0.00833 1

c-)

t xo

f i h = 2 R

W/R = 0.157

0.0 8 0.1 6 0.24 0.32 0.40 BAFFLE DEPTH, dJR

Figure 5.6 Effect of excitation amplitude on damping effectiveness of a solid flat ring baffle as a function of baffle depth. ( 3 2 )

5 -20

0.28

0.24

0120

F 0.16 a [x:

z 0.12

0 0.020

- 0 - 0.040 0.079

--- ---

0.08

0.04

0.08 0.1 6 0.24 0.3 2 BAFFLE DEPTH, d,/R

0.40

Figure 5.7 E f f e c t of p e r f o r a t i o n hole s i z e on damping e f f e c t i v e n e s s a s a func t ion of b a f f l e depth. ( 3 2 )

5-21

0.3 2

0.28

0.24

&" 0.20

z L

0 - a 0.16 (3 z Q z - a 0.12

0.0 8

0.04

0 0

SYMBOL

RING PER FOR AT ION

t".

2R

RMS ( X d d 8 0.00184 to 0.00833) W/R = 0.157

0.0 8 0.16 0.24 0.32 0.4 0 BAFFLE DEPTH, d,/R

Figure 5 . 8 E f f e c t o r pe rcen t p e r f o r a t i o n on damping e f f e c t i v e n e s s a s a f u n c t i o n of b a f f l e depth. ( 3 2 )

5 -22

1.6

I .4

I .2

I .o

Camping fcctor, 8

0 . I .2 .3 4 .5

Baffle location, -$ .6 .7

A typical d i s t r i b u t i o n of d a t a f o r a f i x e d - r i n g b a f f l e as

a func t ion of t k l f l e depth. R = 6 inches; h = 2. (35) R

F i g u r e 5-9

5 -23

Camping

factor, 6

I

0 .076 0 .I23 0 .I57 ! A .241.

I

0 . I .3 .4 .5

Baffle location, -$ .7 B

- Variation of dmping f a c t o r wi th b a f f l e location f o r fixed- ring b a f f l e . R = 6 inches ; - h = 2. (35) R

Figure 5-10

5 -24

I .O

.9

.0

.7

.6 4

Damping factor, 8 .5

.4

.3 '

.2

i . I

0 .I .2 3 .4 .5 .6 .?

6affle location,

Variation of damping factor with b a f f l e location for ring- h R with-radial-clearance baf f l e . R = 6 inches; - = 2. (35.)

Figure 5-11

5-25

Damping factor , 6

0 . I .2 .3 .4 .5 .6

Baffle location, 8 s Variation of damping factor with b a f f l e locat ion i n the

12- and 30-inch-diameter tanks. (35)

Figure 5-12

5 -26

r

I

0 cn a3 9 4

(D 4

.,-I k

k O n

5-27

. IO

.09

.08

.a7

Domping

factor, S .05

D4

.03

.02

.o I

0

-I I

h Fluid depth, +, 0 c 2.0 2.5

I 1 0 2.0j without divider baffle I

.05 . I 0 .I 5

Amplitude of oscillation, R 5

V a r i a t i o n of damping factor wi th ampli tude of oscillation f o r f ixed - r ing baffle. = 0.076; &= 0.333. (35) R R

Figure 5-14

5-28

2.1

2.0

I .9

Frequency, cps 1.8

I .7

I .6

I I I 1 I

I .5 0 .2

% 0 .076 0 . I23 0 .I57 A .241 0 .076 calculated, ref. 16 W ,123 calculated, ref. I6

.I57 calculated, ref. I 6

1

t 4 .6 .0 I .o

Baffle location,

V&:-lation of frequency with b a f f l e loca t ion f o r f ixed-r ing b a f f l e . (35)

Figure 5-15

5-29

(0 a V

h V C 0) s

m

ir 0) I .7 tt”

1.6

Free surface

ILL

--I---

1.5 0 .I .2 .3 .4 .5 .6 .7

Baffle location, As

V a r i a t i o n of frequency w i t h baffle location for ring-with- r a d i a l - c l e a r a n c e baffle. (35)

Figure 5-16

5 -30

5.1.3.2 Ring Baffles: Analytical. Damping requirements are

determined from stability studies of the vehicle in question.

must then determine the baffle width and spacing needed to yield a damping

factor in the required range.

The designer

5.1.3.2.1 Miles’ Analysis (28). According to Miles, the damp-

ing ratio of an annular ring baffle is

a =

d =

a =

5 = 1

ring baffle area

ratio of ring baffle area to cross-sectional area of tank

depth of ring baffle below undisturbed free liquid surface

radius of circular cylindrical tank

amplitude of liquid oscillations measured at the tank wall

from undisturbed free liquid surface.

Within the restrictions on a and C1, this damping ratio relation was exper-

imentally verified; however, Miles suggested that additional experimental

confirmation would be desirable, both in order to establish the limits on

a and 5 /a and to determine a more accurate value of the constant multiplier.

Results are shown in Figures 5-17 to 5-29.

A line drawn between values of C1/a and d/a determines a pivot point on the

K-axis.

corresponding value of W/a-

1 A nomograph is shown on page 5-32.

A line drawn from this pivot point through a value ofY gives the

5-31

W - - r a t i o o f b a f f l e width t o tank radius

, I

0 m w - 0 Q,

0

0 0 0 0 0 . . .

0 0

0 0 0 aD r. CD 0 0 0

0 0 0

N

0

o m L O f 0 0

0 0

m

0

0 m m 0

f 0

0 0

t

0

0 in m N 0 0

0 0

ul

0

d - - r a t i o of b a f f l e depth t o tank radius

Y - damuinn r a t i o L "

N c. 0 0

' a ' - f N - 0 0 0 0

m N - 0 0 0 0 0 - 0 0 0 m a t

-~ . . . . . . . I , . 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0

m \ O m t m ~ 0 0 0 0 0

0 0 0 0 0 0 0 . . . . . 0

0

~~ ~~

51 - - r a t i o of l i q u i d amplitude t o tank radius

5 -32

DBMBlDYG FACTOW VERSUS BAFFLE DEPTH FOR LIQUID AMPLITUDE 5 =O.Ola WITH THE BAFFLE WIDTH AS A PARAMETER (MILES FORMULA)

W

Figure 5-17

5-33

DAMPING FACTOR VERSUS BAFFLE DEPTH FOR LIQUID AMPLITUDE cw=O.OSa WITH THE BAFFLE WIDTH AS A PARAMETER(M1LES FORMULA)

Figure 5-18

5 -34

x DAMPING FACTOR VERSUS BAFFLE DEPTH FOR LIQUID AMPLITUDE [w=O.lOa WIM THE BAFFLE'

WIDTH AS A PARAMETER (MILES FORMULA) t .:@

.16

.I 4

.I2

.IO

F i g u r e 5-19

5-35

Y

DAMPlhlG WCTOR VERSUS BAFFLE DEPTH FOR LIQUID AMPLITUDE 5 = .20a W!TH THE BAFF-E WlOTH AS A PARAMETER ( M U S FORMULA)

W

2%

24

.20

. I 6

.I2

.08

F i g u r e 5 - 2 0

5-36

x .4 0

.3 6

.32

.28

-2 4

.20

.16

.08

.04

DAMPING FACTOR VERSUS BAFFLE DEPTH FOR LIQUID AMPLITUDE 5 =.50a WITH THE BAFFLE

WIDTH AS A PARAMETER (MILES FORMULA) W

0 . 2

1 1 I

i I

I

I ! i I

I-

, I i

I

I i d

.4 .6 .0 I .o 1.2 I .4 ' 1.6 d

Figure 5 - 2 1

5-37

D A W W VERSUS BAFFLE MPTH FOR W I m W.0.025 WITH LlQUlO AMWTUOE AS A PARAMETER (MILES FORMULA)

Figure 5-22

5-30

D Y P I ) J O F m M R S U 8 m # P T H F O R m O T H W=O.Oba WlTH LIQUID W T U E As A PARAMETER

(MILES FORMULA)

Figure 5-23

5-39

rr .2(3

.I€

.I 2

.O I

-04

(3

D A M =TOR VERSUS BAFFLE DEPTH FOR WD'f" W.0.100 WITH LIQUID AMPLITUDE AS A PARAMETER (MILES FORMULA)

I I I -I W

.2 .4 .6 I .o 1.2 1.4 1.6 -it 0

Fieure 5-24

5 -40

DAMPING FACTOR VERSUS BAFFLE DEPTH KM WIDTH

W 80.20 a WITH LIQUID AMPLITUDE AS A PARAMETER

( MILES FORMULA)

I I

- i

I

w - 8 0.20 a

I

i

.8

i

-i- l l I I +

I I I I

Figure 5-25

5-4i

DAMPING FACTOR VERSUS SURFACE AMPLITUDE FOR BAFFLE

WIDTH W=.05a WITH BAFFLE LOCATION AS A PARAMETER

( MILES FORMULA 1

8.05 a

t YI 0

Figure 5-26

5 -42

D A M N O =TOR VERSUS SURFACE AMPLITUE FOII BAFFLE WIDTH W..ISa WITH BAFFLE LOCATION AS A PARAMETER

(MILES FORMULA)

Figure 5-27

5 -43

DAMPlNG FACTOR VERSUS BAFFLE WIDTH FOR

= . loa WlTH LOCATION OFBAFFLE A S A 5, PARAMETER (MILES FORMULA)

x .a

.If

.li

.oe

.04

0 - 0 R 4 12 .I 6 .20 -

0

F i g u r e 5-28

5 -44

DAMPING FACTOR VERSUS BAFFLE WIDTH FOR

= 30a WITH LOCATION OF BAFFLE A S A 5, ’

PARAMETER (MILES FORMULA)

F i g u r e 5 - 2 9

5 -45

of X P

can be

5.1.3.2.2 O f N e i l l l s Extension (84). Within t h e s c a t t e r

r imen ta l d a t a , O f N e i l l showed t h a t e i t h e r of t h e fo l lowing equa t ions

F 3 , for any r i n g submergence used f o r r easonab le values of - and P = -

Pga d - > o and f o r r i n g wid ths corresponding to u 2 0.25 a -

5 a

Y = 2.83 e -4*60d/a .3/2 (>)’ (Miles)

(5-2) -4.60d/a .3/2 Y = 2.16 e

Equation (5-2) g i v e s t h e damping f a c t o r i n terms of t h e l a t e r a l l i q u i d f o r c e F

iwhich is e a s i e r to measure t h a n t h e wave amplitude C 1 -

5 -46

5.1.3.2.3 Bauerrs Extension (31) . During s l o s h i n g , t h e

b a f f l e s and t h e o s c i l l a t i n g f l u i d a r e no t i n continuous c o n t a c t wi th each

o t h e r .

no t uniformly wet t h e e n t i r e s u r f a c e of t h e b a f f l e s .

There a r e p a r t s of t h e o s c i l l a t i o n c y c l e du r ing which t h e f l u i d does

For t h i s r eason , Miles

( 2 8 ) exp res s ion , Equation ( 5 - l ) , g i v e s a h ighe r damping e f f e c t than t h a t

expe r imen ta l ly observed. To account f o r t h e d e v i a t i o n , an e f f e c t i v e b a f f l e

a r e a concept was herewi th s u c c e s s f u l l y employed.

i s a func t ion of t h e width w of t h e b a f f l e , i t s l o c a t i o n d below t h e l i q u i d

This e f f e c t i v e b a f f l e a r e a

f r e e s u r f a c e , and t h e maximum amplitude of s l o s h i n g el. formula ob ta ined a g r e e s wi th experimental r e s u l t s .

The t h e o r e t i c a l

In Equation ( .5-1 ), t h e b a f f l e a r e a r a t i o b lock ing t h e

c r o s s s e c t i o n a l a r e a i s de f ined a s

i f t h e b a f f l e i s completely submerged dur ing a s l o s h c y c l e .

i s completely o u t of t h e l i q u i d du r ing a c e r t a i n t ime of t h e s l o s h cycle,

I f t h e b a f f l e

the e f f e c t i v e b a f f l e area i s

5 -47

5.1 ..3.2.3 Bauer f s Extension (31) (cont inued)

- d ( 1 - ;) W

I n 2 a TI < , / a

- -

r -l

c l / a + J - (+)2 - w/a

d/a I C 1 - w/a J

d ‘1 a - a If rhe b a f f l e is completely submerged, i . e . , - > - , t hen the v a l u e

of ‘a i s equal t o t h e under l ined term (Equation 5-3).

b a f f l e be ing o u t of t h e l i q u i d du r ing t h e s l o s h c y c l e i n such a f a s h i o n

t h a t t h e i n n e r r i m of t h e r i n g b a f f l e i s no t o u t of t h e f l u i d a t any t ime,

i . e . ,

For t h e c a s e of t h e

‘1 w d ‘1 a a - a - a - ( I - - ) < - < -

t h e under l ined d o t t e d terms a r e added t o o b t a i n t h e e f f e c t i v e b a f f l e a r i.

For t h e c a s e i n which p a r t o f t h e b a f f l e g e t s o u t of t h e l i q u i d , i . e . ,

- ‘1 W d <-(I - - ) a a a

t h e t o t a l formula a p p l i e s .

b a f f l e becomes

Thus, Miles Equation f o r a s i n g l e f l a t r i n g

5-48

5.1.3.2.3 Bauer 1 s Cxt ens ion (31 ) (cont inued )

(5-4)

For a system of r i n g b a f f l e s , t h e damping f a c t o r can be ob ta ined by super-

imposing t h e c o n t r i b u t i o n of each b a f f l e . The n t h b a f f l e a t a l o c a t i o n

d + (n-1)D below t h e f r e e f l u i d s u r f a c e e x h i b i t s an e f f e c t i v e b a f f l e a r e a of

a r c sin lr

5 -49

5.1.3.2.3 Bauerls Extension (31) (continued) I

- d + (n-1) D a

D - + (n-1) ; - 1 (1 - arc sin [ ~ ] n - ->cl/a

If

then

because the complete baffle is submerged.

If

then the underlined formula is added, while for the case

5-50

5.1.3.2.3 Bauerls Extension (31 ) ( con t inued)

t h e complete formula a p p l i e s .

For a b a f f l e l oca t ed above t h e undis turbed l i q u i d s u r f a c e ,

t h e same formula can be a p p l i e d approximately wi th a s l i g h t mod i f i ca t ion .

I f t h e b a f f l e i s completely o u t of t h e l i q u i d , i .e.,

J

'1 d" a - a ' < - -

* where d

l i q u i d s u r f a c e , t h e b a f f l e a r e a sub jec t ed t o t h e f l u i d i s a" = 0.

v a l u e D i s t h e d i s t a n c e between b a f f l e s . For

= (D - d ) i s t h e d i s t a n c e of t h e b a f f l e above t h e undis turbed

The J-

* L > U w ' and a - - < - < - d* '1 d*/a

a a - 1 1 - - a a

i .e . , o n l y a p a r t o f t h e b a f f l e i s sub jec t ed t o t h e l i q u i d du r ing a s l o s h

c y c l e , t hen t h e e f f e c t i v e b a f f l e area c o n t r i b u t i n g t o t h e damping i s ,* - a = a - a. For t h e mth b a f f l e , t h i s i s

5-51

5.1.3.2.3 Bauerls Extension (31) (cont inued)

- - a r c s i n 1 + - 'TI a a a 'TI

D d

(m! - a) (1 - :) 2 + - a

a D d In

5 l / a ( m - - - \ n \ a a /

W (1 - -1 a

( 5 - 7 )

5 -52

5.1.3.2.3 Baue r f s Extension (31) ( con t inued)

I f t h e v a l u e

D d ‘1 a a - a ’ m - - - > -

-I, #.

t hen am = 0 , wh i l e f o r t h e c a s e where a p a r t i a l p a r t of t h e b a f f l e i s

o n l y s u b j e c t e d t o t h e l i q u i d during one s l o s h c y c l e , t h e e f f e c t i v e a r e a

c o n t r i b u t i n g t o damping i s presented by t h e underl ined p a r t o f t h e

formula. This means t h a t t h i s p a r t i s used f o r

r r

5 1 D d ‘1 a a - a a - a - (1 - ”) < - - - < - ,

W - ->, D d ‘1 m - - - < - (1 a a - a a

t h e t o t a l formula i s a p p l i e d f o r t h e e f f e c t i v e a r e a . Thus t h e t o t a l damping

of n b a f f l e s o f width w submerged i n t o t h e undis turbed l i q u i d and m b a f f l e s

of t h e same width o u t s i d e of t h e undis turbed f l u i d , a l l of which a re a p a r t

from each o t h e r by t h e v a l u e D , i s given by

F l J

(5-8)

The r e s u l t of t h i s i n v e s t i g a t i o n can be seen i n F igu res 5-31 t o 5-63.

5-53

TANK CONFIGURATION AND B A F F L E A R R A N G E M E N T

Figure 5-30

5 -54

F i g u r e 5-31

5-55

4

F i g u r e 5 - 3 2

5-56

.m

36

r i g u r e 5-33

5 -57

BAFFLE WlOTH W I L I 1

1 I !

I i

I I

!

I

! I I

#%20 I

I I

i I.

I ! i I

* f i I

, I

-=. 50 I W 5 I 1

1 l a

I

a8 3 2 i / 8 I

I I

!

I

I

24-

I I I

I I I I I

I I

I I I I I

I I I I

I I

I I i I I f I .20 I 1 +.IO

I

I I

I I

j

Figure 5-34

5-58

i !

I I I I I

/ I

I I ! 1

I I

I j

I

t , I i I i

I I ;

i

EFFECTIVE BAFFLE AREA VERSUS BAFFLE DEPTH

d TX? XNZTANT BAcCLE WIDTH W.O.10 AND

0 .2 .A .8 1.0 1.2 1.4 1.6 d,a

Figure 5 - 3 5

5-59

DAMPING FACTOR VERSUS BAFFLE DEPTH FOR LIQUID AMPLITUDE 5\Yto.01a WITH THE BAFFLE

WIDTH AS A PARAMETER(MILES FORMULA)

REVISED

Figure 5-36

5 -60

DAMPING mCTOR VERSUS BAFFLE DEPTH FOR

WIDTH AS A PARAMETER (MILES FORMULA) LIQUID AMPLITUDE ko .osa WITH THE BAFFLE:

SEWED

x

.I4

. I 2

. I 0

.Ot

.oE

.O L

132

C

e, 0 ' .2 .4 .6 .8 1.0 I .2 1.4

Figure 5-37

5 -61

DAMPING FACTOR VERSUS BAFFLE DEPTH FOR

WIDTH AS A PARAMETER (MILES -LA) LIQUID AMPUTUDE 5 =o.Ioa WITH THE BAFFLE

W

REVISED

Figure 5-38

5-62

DAMPING FACTOR VERSUS BAFFLE DEPTH FOR LWD AWLITUDE L=o.20a WITH THE BAFFLE W3TH AS A PARAMETER (MILES FORMULA)

REVISED

.2@ I 1

Figure 5-39

5 -63

I

0 .2 .4 .6 .0 1.0 1.2 1.4 d/a

Figure 5-40

5 -64

D A W w.0.025~1 WTH LIQUID AMPUTUDE AS A PARAMETER

(MILES FORMULA1

VERSUS BAFFLE DEPTH FOR WID!”

REVISED

014

I ! I \ I I

\

I f I 1 i I I

I I I I

I

012 ’

Figure 5-41

5 -65

i I

! _ _ .

DAMPING =TOR' VERSUS BAFFLE DWTH FOR WOtn W=0.030 WITH LIQUID AMPLITUDE AS A PARAMETER

(MILES FORMULA) REVlS€D

x)c '>5

I)!

.O'

.a

.0;

1D

C

Figure 5 4 2

5 -66

DAMflNG FACTOR VERSUS BAFFLE DEPTH PWI WIDTH W..lOd W l F LIQUID AMWUDE AS A PARAMETER

( MILES FORMULA 1 REVISED

Y 'C ;

Figure 5-43

5 -67

DAMPINGFACTORVERILlSBAFFLlED€~FORWDI)( W.0.200 WlTH LlWO AMputuOE AS A PARAMETER

(MILES FORMUCA) REVISED

x

.2c

.I6

.I2

.08

.04

C

Figure 5-44

5 -68

DAMPING FACTOR VERSUS SURFACE AMPLITUDE FOR

BAFFLE WIDTH W = . 0 5 a WITH BAFFLE LOCATION AS A PARAMETER (MILES FORMULA)

REV! S E D

Figure 5-45

5 -69

x .I I

. IO

.09

.oa

.07

.06

.os

.04

.03

.02

.O i

FACE AMPLITUDE

FOR BAFFLE WIDTH W=.ISa WITH BAFFLE L O G

ATION AS A PARAMETER (MILES FORMULA)

c . o .2 .3 .4 .5 w

d -. .os

DAMPING FACTOR VERSUS SURFACE AMPLITUDE

FOR BAFFLE WIDTH W=.ISa WITH BAFFLE L O G

ATION AS A PARAMETER (MILES FORMULA)

REVISED

’-

I I 1 I I . o .2 .3 .4 .5 r

5 -70

DAMPING FACTOR VERSUS OAFRE WIDTM FOR

.20

.I6

=.loa WITH LOCATION OF BAFFLE AS A PARAMETER 5, ( MILES FORMULA 1

REVISED

- t w * .to 0

Figure 5-47

5-71

DAMPING FACTOR VERSUS BAFFLE WIDTH FOR

t .300 WITH LOCATION OF BAFFLE AS A PARAMETER (MILES FORMULA)

REVISED

5,

c 0 .04 .08 .I2 .I 6 .:

- d - ..058.10 a

d - - 8.50 a

’ %

Figure 5-48

5-72

rr .IO

.09

.08

.07

.O 6

.05

R4

03

.o 2

DI

0

DAWN0 RacTDFI -3 BAFFLE DEPTH rpR VAROUS BAFFLE WIDTHS AND A LIQUID AM-

OF C,=O.Ola AND A BAFFLE DISTANCE FROM EACH OTHER DmO.20

-I-

-

- =.025

d - .04 .08 .IO .16 .20 0

Figure 5-49

5 -73

'7;

.20

.I8

.i 6

.I4

. I 2

.IO

.O 8

.O 6

.O 4

-02

' 0

DAMPtNG FACTOR VERSUS BAFFLE DEPTH FOR

VARIOUS BAFFLE WIDTHS AND A LIQUID AMPLITUDE

OF 5 =.05a AND A BAFFLE DISTANCE FROM OTHER

I

i I

I I I 1

3 I 1

-=.05

W =.025 Q

I i .04 .08 .I2 .I6 .20 A

0

F i g u r e 5-50

5-74

Y

.22

w

.20

.1 B

i

1 I I

I

-

I u' I 1

-04 *=.OS

I I

i I ! i I ! J6 i i

i

.o 2 Ti

' W am.025

i I 4 1 FLE \ LBAFFLE

DAMPING =TOR VERSUS BAFFLE DEPTH FOR VARIOUS

BAFFLE WIDTHS AND A LIQUID AMPLITUDE OF 5 80.20

AND A BAFFLE DISTANCE FROM EACH OTHER b0.a W

G .32

.28

.24

.20

.I 6

.I2

.08

.O 4

0

.*O e .O 4 .08 .12 .16

Figure 5-52

5 -76

i

- I I I ! t 1 I

I i I

.I2 ' I 1 !

.OB j l ' I I i

I W ,=.05

I I

I "c-- .025 I 06

L~~AFFLE 1 i

I

.32 D A W W G FibCTOR VERSUS BAFFLE DEPTH FOR VARIOUS SAFFiiE WIDTHS AND A LIQUID AMPUTUOEOF 5 *0.500

! I A Y 3 4 SACFLE DISTANCE FROM EACH OTHER D.O.20 i w I I

I .28 t

1 i I I

I 1

I*BAFFLE

F i g u r e 5-53

5 -77

I I I

- cw*.50 I

0 I

Figure 5-54

020 i i

5 -78

i I

I

I I

I DAMPING FACTOR VERSUS BAFFLE

1

\ DEPTH FOR VARIOUS LlOUlD AMPLITUDE AND A BAFFLE WIDTH OF w=.025a AND

I

x .06

.os

.04

.03

.o 2

.o I

0

DAMPING CACtOQ VERSUS BAFFLE DEPTH FDR WLR!OUS LCUIU AMDLITUX AND A BAFFLE WIDTH OF wa.050 AND A BAFFLE DISTANCE D80.20

.BAFFLE

r i -1.01 5 I I I L BAFFLE

I I I r d .04 .O 8 .I2 .I 6 .20 F

Figure 5-55

5 -79

x .I6

.I 4

.12

. io

.08

.06

.04

.c 2

0

DAMPING FACTOR VERSUS BAFFLE DEPTH FOR VARloUS LIQUID AMPLITUDE AND A BAFFLE WIDTH OF w=.lOo

. AND A BAFFLE DISTANCE OmO.20 a --..SO

I

I

I

! I 1

I i I

I BAFFLE ;

.04 .08

-

r BAFFLE d - -

. I 2 .I6 .20 0

f i g u r e 5-56

5 -80

Y; .44

.40

.36

.32

.28

.24

.m

.I6

.I 2

.O 8

.O 4

0'

DAMPING ~ C T O R VERSUS mmE DEPTH FOR w w s LlQUlC AMPLITUDE AND A BAFFLE WIDTH OF ws0.2a AND A BAFFLE DISTANCE Dm0.2a I

d a - .04 -08 .12 .16 .20

Figure 5-57

5 -81

I

r,

c (u 4

5-82

0: W k W z a a d a v)

P pl

5 -83

?

cu -.

Q) 9

8

4 0 ? 9

Z .28

,24

.20

.I6

.I2

.08

.04

0 .20 w

a - .04 .08 .12 .16

Figure 5-60

5 -84

DAMPING FACTOR VERSUS BAFFLE WIDTH FOR k.30 W’TU L3CATlON OF BAFFLE AS A PARAMETER

Figure 5-61

5-85

A W w W A

0

5-86

5 -87

8 .

5.1.3.3 Ring wi th Radial Clearance

where h = depth of l i q u i d

d = depth of b a f f l e

a = r a d i u s of r i g h t c i r c u l a r c y l i n d e r

w = r i n g wid th

c = r a d i a l c l e a r a n c e

References: (35)

I n v e s t i g a t i o n s by S i l v e i r a , Stephes and Leonard (35) show t h a t f o r a given b a f f l e dep th :

1. With t h e r a d i a l c l e a r a n c e c o n s t a n t : ( a )

( b )

( a )

( b )

The damping f a c t o r i n c r e a s e s as t h e b a f f l e wid th i n c r e a s e s (F igu re

The frequency i n c r e a s e s as t h e b a f f l e width dec reases (F igu re 5-16).

The damping f a c t o r dec reases as t h e r a d i a l c l e a r a n c e i n c r e a s e s (F igu re 5- 11 ) The frequency i n c r e a s e s as t h e r a d i a l c l e a r a n c e dec reases (F igu re 5- 16).

5-1 1)

2. With t h e b a f f l e wid th c o n s t a n t :

5-88

5.1.3..4 Conic Sec t ion

- --f d

I

h

I

L a - J where h = depth of l i q u i d

d = depth of conic s e c t i o n below undis turbed f r e e - s u r f a c e

a = r a d i u s of r i g h t c i r c u l a r c y l i n d e r

w = con ic s e c t i o n width

References: (35, 42, 43, and 83)

I n v e s t i g a t i o n s by S i l v e i r a , Stephens and Leonard (35) show t h a t :

1. For a given b a f f l e depth: ( a ) The damping f a c t o r o f a p e r f o r a t e d and nonperfora ted con ic s e c t i o n

i n c r e a s e s as t h e b a f f l e wid th i n c r e a s e s (F igu re 5-68). ( b ) The frequency f o r a p e r f o r a t e d and nonperfora ted con ic s e c t i o n

i n c r e a s e s a s t h e b a f f l e wid th dec reases (Figure 5-64 and 5-67).

2. Although t h e damping provided by t h e con ic s e c t i o n s i s s l i g h t l y h igher than t h a t f o r t h e r i n g b a f f l e s , t h e s u r f a c e a r e a of a con ic s e c t i o n having t h e same b a f f l e wid th as t h a t of t h e r i n g b a f f l e i s cons ide rab ly higher.

I n v e s t i g a t i o n s by Liu (83) g i v e a conformal mapping s o l u t i o n f o r t h e p r e s s u r e d i s t r i b u t i o n on t h e con ic s e c t i o n ( a r t i c l e 5.1.7.3).

5 -89

2.2

2.1

2 .o

1.9

I .8

I .7

Frequancy, CDS,

1.6

1.5

1.4

1.3

1.2

I. I

1

i

I I W I

R 0 .076 0 .I19

Y i

I I :2 0 .2 4

Baffle location, -& .6 .0

Var ia t ion of f requency w i t h baffle l o c a t i o n for conic- s e c t i o n S a f f l e . (35)

Figure 5-64

5 -90

I .86

1.84

I .82

1.80

I .78

Frequency, cps

I .76

I .74

I .72

I .73

1.68

0 .295 -7- 1 1

1

I

- .4 t 2 0 .2 .A 6

Baffle location,

Variation of frequency with baffle location for perforated-conic-section baffle. (35)

Figure 5-65

5 -91

Dcmping factor, 8

VJ - R

0 .076 0 .I19 0 .I57 A .241

.4 .6 .8

Baffle location,

Var ia t ion of damping f a c t o r w i t h b a f f l e location f o r conic- h R

s e c t i o n ba f f l e . R = 6 inches; - = 2. (35)

Figure 5-66

5 -92

.2

Gamping fGCtN, 8

. I

0

f

e >

I * I

-4 -. 2 0 .2 4 .6 .8

Baffle location, -+s

Variation of damping factor with baffle location for perforated-conic-section baffle. R = 6 inches; - h = 2. (35)

R

Figure 5-67

5-93

5.1.3.5 Inve r t ed Conic Sec t ion

-- - /

\ 1 ---

of l i q u i d

a = r a d i u s of c i r c u l a r c y l i n d r i c a l tank

ds = depth of b a f f l e

w = i nve r t ed con ic s e c t i o n wid th

References: (35, 42, and 83)

I n v e s t i g a t i o n s by Si lveira , Stephens and Leonard (35) show t h e e f f e c t / b a f f l e width on both t h e frequency and t h e damping f a c t o r as a func- t i o n of b a f f l e depth (F igu res 5.68 and 5.69).

of

I n v e s t i g a t i o n s by Liu (83) g i v e a conformal zapping s o l u t i o n f o r t h e p r e s s u r e d i s t r i b u t i o n on t h e b a f f l e .

5-94

2.1

2.0

I .9

m a c)

.)

6

tt”

C Q) 7 v 1.8 Q)

I .7

I .6

-

Variation of frequency with baffle location f o r inverted- conic-section baffle. (35)

Figure 5-68

5-95

.5

.4

Dcrnpinq factcr, 8 .3

.2

-. 2 0 .2 4 .6 .0 0

Baffle location,

Variation of damping factor with baffle location for inverted-conic-section baffle. R ' = 6 inches; = 2. (35)

Figure 5-69

5-96

5.1.4 Cruciform B a f f l e

“-1 I- I

where h = dep th of l i q u i d

a = r a d i u s of r i g h t c i r c u l a r c y l i n d e r

w = cruc i form width

References : (35)

Cruciform b a f f l e s a r e most e f f e c t i v e a g a i n s t r o t a r y s l o s h which has l a r g e h o r i z o n t a l components of f l u i d v e l o c i t y near t h e t ank w a l l . Cruci- form b a f f l e s are a l s o s l i g h t l y e f f e c t i v e a g a i n s t l a t e r a l s l o s h s i n c e l a r g e horizontal f l u i d v e l o c i t i e s e x i s t where the node l i n e o f the f i r s t slosh mode i n t e r s e c t s t h e t ank walls.

I n v e s t i g a t i o n s by S i l v e i r a , Stephens and Leonard (35) i n d i c a t e , a s would be expected, t h a t damping i s independent o f f l u i d depth except f o r sha l low f l u i d depths.

5-97

5.1.5.1 k t

Liquid Sur face

References: ( 4 0 , 42, 4 3 )

I n v e s t i g a t i o n s by E u l i t z (40) have been made us ing commercial coco-f iber mats c u t i n t o a shape corresponding t o t h e c r o s s - s e c t i o n a l a r e a of t h e tank. Several l a y e r s were used t o a t t a i n t h e r e q u i r e d t h i c k n e s s and hollow, a i r t i g h t aluminum spheres were i n s e r t e d between t h e l a y e r s t o pro- v i d e t h e necessary buoyancy. l i q u i d amplitude; however, because of t h e fol lowing, it is imprac t i ca l f o r missile app l i ca t ion . The inne r w a l l s of a p r o p e l l a n t tank a r e u s u a l l y o b s t r u c t e d by s t i f f e n e r r i n g s , p i p e l i n e s and o t h e r equipment. Therefore , i f a f l o a t i n g dev ice i s t o be used, it must be capable of adapt ing t o t h e changing c r o s s - s e c t i o n a l a r e a of t h e con ta ine r .

The dev ice was h igh ly e f f e c t i v e i n damping t h e

5-98

5.1.5.2

Liquid Surface

Cans ( s i m p l i f i e d ) 4-

I n v e s t i g a t i o n s by E u l i t z ( 4 0 ) have been made u s i n g cans made of p e r f o r a t e d s h e e t meta l and enc los ing a hollow a i r - t i g h t meta l b a l l of s l i g h t l y smaller diameter , which provides t h e necessary buoyancy. The optimum dimensions of a can necessary f o r adequate buoyancy and the reby t h e t o t a l number of cans i s determined i n t h e fo l lowing manner. The f r a c t i o n of submerged volume of t h e enclosed ba l f X i s given by

where 6 = t h e t h i c k n e s s of t h e can w a l l

y = t h e s p e c i f i c g r a v i t y of t h e can m a t e r i a l

n = t h e number of cans along a tank diameter

D = t h e t ank d iameter

P ' = t h e p e r c e n t p e r f o r a t i o n

For a p a r t i c u l a r s e t of v a l u e s 6 , y and P, a graph of X VS. D can be p l o t t e d c o n s i s t i n g of a family of curves corresponding t o v a r i o u s v a l u e s of n ( f o r example, s e e F igure 5-73). t h e d e s i r e d mean va lues of X = 0.5 and t h e tank d iameter D under cons ide ra - t i o n w i l l g i v e t h e optimum v a l u e of n. The t o t a l number o f cans i s then determined by

I

The curve p a s s i n g n e a r e s t t o t h e i n t e r s e c t i o n of

1 4 N = - (3n2 + 1 )

5-99

5.1.5.2 Can ( con t inued)

and t h e can d iameter is given by

The cans a r e made of p e r f o r a t e d aluminum s h e e t enc los ing a

hol low a i r - t i g h t aluminum b a l l , of s l i g h t l y s m a l l e r d i ame te r , which provides

t h e n e c e s s a r y buoyancy (F igu res 5-70 and 5-71). The s i z e and number of cans

used i n t h e t e s t s a r e i n d i c a t e d by n = 7 o r N = 37 ( s e e F igu re 5-72).

The c o n t a i n e r s a r e r i g i d - w a l l c i r c u l a r c y l i n d r i c a l t anks of

d i ame te r 17.5 and 25 inches, r e s p e c t i v e l y .

The optimum dimensions of t h e can n e c e s s a r y f o r adequate

buoyancy, and the reby t h e t o t a l number of cans , is determined a s fo l lows :

t h e d e s i r e d v a l u e of t h e f r a c t i o n of submerged volume of t h e aluminum

b a l l , is 0.5. F igu re 5-73 g i v e s an equa t ion f o r X as a f u n c t i o n of t h e

t h i c k n e s s of t h e can w a l l 6, t h e s p e c i f i c g r a v i t y of t h e can m a t e r i a l Y ,

t h e pe rcen t p e r f o r a t i o n P , t h e t a n k d iameter D and t h e number of cans a long

a t ank d iameter n . The cu rves shown i n F igu re 5-73 enab le t h e des igne r t o

de te rmine t h e v a l u e s f o r n and N cor responding t o 0 .5 a s a f u n c t i o n of

D f o r a s e t of v a l u e s of 6, y and P. Note t h a t t h e n o t a t i o n used i n

F i g u r e s 5-71, 5-72, and 5-73 is a p p l i c a b l e o n l y t o t h e s e f i g u r e s .

5 -100

Mat

Liquid Sur face

Tank

Aluminum Ba l l

\ Mat Type Device

P e r f o r a t e d C y l i n d r i c a l Body

S i n g l e rrCanrr Device

Figure 5-20 Mat type device and s i n g l e cen. ( 4 0 )

5-101

0 = TANK DIAMETER d l ~ D I H T E R OF THE CYLINDRICAL BODY dt.MAMETER OF THE CONE OPENING d,=DIAMETER OF THE ALUMINUM BALL. $6 e .SLANT HEIGHT OF THE CONE 4 .WALL THICKNESS OF ThE CAN

*SPECIFIC GRAVITY OF THE CAN MATERIAL

0 =SURFACE OF THE CAN V =VOLUME OF THE GAN MATERIAL 4 . 6 W 8 WEIGHT OF THE CAN MATERIAl=O*J*V Ocmr 8 +d12m (eqm

.tdl2mn teq.4) f l = N M8ER O f 8001 UPON 0

O-~OCVLt20COWL 8 @ ~ ~r(3tn)p teq* 6)

P 8 PERFmTION IN % Os,,,,arE: 8 +d: R (eq.7) OCA" ' oBODY + OSPIERE

.&*.rr + (s+n)p] teq.8) I wcrw *+ ci2 TT

Typical dimensions of cans. (40)

Figure 5-71

5-102

7 Tank Wall b-

Cans, '

I dd * 4d -

g-- n d z 7 d m D - * N = 37 z Total Number o f cans

Hexagonal Configuration o f the cans upon the surf ace.

/ 4 Tank

Liquid Surface / Tans

Figure 5-72 Distribution of cans within a tank. (40)

5 -103

h

Pi

II *

m E U \ U

m h

0

ti CLI

c C 0 0 0 0 0 0 0 0 0 d

a

5-104

5.1.6.1 Cross P a r t i t i o n s

References : ( 4 , 58)

I n v e s t i g a t i o n s by Bauer ( 4 ) i n d i c a t e t h a t c r o s s p a r t i t i o n s have a g r e a t e r e f f e c t on t h e e igen f r e q u e n c i e s t h a n do c o n c e n t r i c p a r t i t i o n s . t h e q u a r t e r - s e c t o r e d t ank , t h e o s c i l l a t i n g p r o p e l l a n t t a k e s on v a r i o u s modes of v i b r a t i o n . Also, i n t h e c a s e of a q u a r t e r - s e c t o r e d t a n k , t h e v i b r a t i n g l i q u i d mass i s reduced t o more t h a n one-half of t h a t of a c i r c u l a r c y l i n d r i - c a l tank.

For

I n v e s t i g a t i o n s by Garza ( 5 8 ) i n d i c a t e t h e e f f e c t of h o l e s i z e on t h e frequency a s a f u n c t i o n of p e r c e n t p e r f o r a t i o n ( F i g u r e 5-78 and 5-79) and t h e e f f e c t of bo th p e r c e n t p e r f o r a t i o n and f requency on t h e damping r a t i o as a function o f the exc i tat ion amplitude (Figure 5-80 and 5-81).

5.1.6.2 Conc ent r ic Part it ions

References: ( 4 , 52) -

5-106

5.1.7 P r e s s u r e D i s t r i b u t i o n . The des igner of a b a f f l e system is

i n t e r e s t e d i n f i n d i n g t h e p re s su re h i s t o r y of t h e f l u i d a c t i n g on t h e b a f f l e s

because a f t e r t h e spac ing and width of t h e b a f f l e s have been opt imized ,

i n t e g r a t i o n of t h e p re s su re w i l l g i v e t h e moments t o be expected du r ing

f l i g h t .

t h e b a f f l e m a t e r i a l and i t s th i ckness can be chosen t o wi ths tand t h e load

exer ted on t h e b a f f l e s by t h e o s c i l l a t i n g f l u i d , i n s u r i n g , a l s o , t h a t t h e

system pays a minimum weight p e n a l t y from t h e a d d i t i o n of t h e b a f f l e s .

Thus, w i th t h e f o r c e s and moments a c t i n g on t h e b a f f l e determined,

5.1.7.1 Procedure I (28) . The f o r c e pe r u n i t a r e a on t h e r i n g

i s g iven by

1 2 2 p ( e , t ) = cD - P W

where w i s t h e v e r t i c a l component of t h e f l u i d v e l o c i t y , f ( z ) = s i n h k(zth)/

s inh (kh) and C D i s t h e l o c a l d rag c o e f f i c i e n t .

from t h e empi r i ca l r e l a t i o n

I t s va lue may be obta ined

2 < - < 20 - D - CD = 15

and

c D = 2 , ' 100 - 'mT D -

um' where

v e l o c i t y , T t h e pe r iod , D t h e p l a t e width,and

D is t h e llperiod-parameterll j Um denotes t h e t i m e w i s e maximum

S u b s t i t u t i n g U2 = kg tanh (kh) i n t o Eq. (5-9) and express ing t h e maximum

pres su re on t h e b a f f l e a s an equ iva len t head of t h e l i q u i d , we have

( 5 - 1 0 )

5 .1 .7 .2 Procedure I1 (18). Analy t i ca l r e s e a r c h has

shown t h a t t h e motion of t h e f r e e s u r f a c e of tanked l i q u i d p r o p e l l a n t s i s

normal t o t h e undis turbed l i q u i d f r e e su r face . Thus, t h e maximum p r e s s u r e

and moments exer ted by t h e l i q u i d on t h e b a f f l e s occur when t h e mean f r e e

s u r f a c e is a t b a f f l e l e v e l . That i s , when t h e b a f f l e dep th , wi th r e s p e c t t o

t h e f r e e s u r f a c e , is zero (d = 0).

The dynamic p r e s s u r e of t h e f l u i d a c t i n g a t any p o i n t on a b a f f l e

i n a c y l i n d r i c a l t ank can be expressed a s

2kgr;, p cos 8

where

p = dynamic p r e s s u r e , p s i

2

3

kg l o n g i t u d i n a l a c c e l e r a t i o n , f t / s e c

P =mass d e n s i t y of t h e l i q u i d , #m/f t

a = r a d i u s of t h e c y l i n d e r , f t

41 = a n g l e corresponding t o s l o s h i n g ampli tude

C1 = a 4 , maximum ampli tude of s l o s h i n g 9 f t 1

8 = angular c o o r d i n a t e

5-108

5.1.7.2 Procedure I1 (18) (cont inued) .

It can be seen from Equation (5-11) tha t t h e maximum p o s i t i v e p re s su re and

maximum nega t ive p re s su re w i l l occur a t 8 = 0, r=a and 8 = 180°, r=a ,

r e s p e c t i v e l y .

i s obta ined from t h e dynamic pressure .

The a n a l y t i c a l express ion f o r t h e moments a c t i n g on t h e b a f f l e

It has t h e fo l lowing form:

S = Laplace t ransformat ion ope ra t ion

a = Inner r a d i u s of annular b a f f l e , f t 0

For a c i r c u l a r c y l i n d r i c a l t ank of a r b i t r a r y s i z e i t i s convenient t o express

Equation (5-12)as a r a t i o of t h e b a f f l e moment t o t h e product of longi tudina l

a c c e l e r a t i o n kg and s losh ing ampli tude c l . That i s ,

(5-13)

where

I I - abso lu te va lue of t h e moment on t h e b a f f l e corresponding t o %, - I

t h e f i r s t o s c i l l a t i o n mode (n = 1)

5.1.7.2 Proce,dure I1 (18) (continued)

Graphical r e p r e s e n t a t i o n of Equation (5 -U)can be found i n F igu re

( 5 - 7 4 ) . It shows t h e b a f f l e moment as a func t ion of b a f f l e width. The

curves i n t h i s f i g u r e a r e v a l i d o n l y f o r f l u i d depth g r e a t e r t han one r a d i u s

h h a of t h e t ank measured from t h e bottom. That is, > 1. For - < 1, t h e

fo l lowing c o r r e c t i o n f a c t o r is recommended:

- €ld

Id E Id e a CF =

E Id tanh - cosh - + s i n h - a a a

f i e n , t h e c o r r e c t e d moment express ion becomes

5-110

U ru

I

P $4

30 *

20

10 9 8 7

$ 6

- m

\

F 5 d cn

W n

L) Iu

M

m 4 W

II 3

1 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

d / a

Moments Produced on Ring B a f f l e s (18)

Figure 5-74

5-111

5.1.7.3 Procedure XI1 (83) . Conformal mapping i s used

t o t ransform t h e geomet r i ca l ly complex r e p r e s e n t a t i o n of t h e b a f f l e and t h e

tank w a l l i n t o a s imple p lane f o r which a s o l u t i o n t o t h e Bernou l l i equa t ion

f o r incompressible , nonviscous, unsteady f low i s r e a d i l y ob ta inab le . S ince

t h i s equat ion g i v e s t h e v e l o c i t y and p res su re d i s t r i b u t i o n on t h e b a f f l e

i n t h e t ransformed p lane it is then a s i m p l e m a t t e r t o t a k e t h e i n v e r s e t r a n s -

formation t o f i n d t h e s o l u t i o n i n t h e o r i g i n a l plane.

The t r ans fo rma t ion i s obta ined by us ing t h e C h r i s t o f f e l -

Schwarz express ion def ined a s a -1 a -1 * . . (w-u,> d w + B (5-15) 2 0 -1

(w-u,) z = A [ (W-U1) 1

z = F(w) = x i- i y

w = u + i v

X Y Y = Car te s i an coord ina te s i n z-plane

u,v = C a r t e s i a n coord ina te s i n w-plane

A = Constant which determines t h e s c a l e f a c t o r and r o t a t i o n of t h e polygon

B = Constant which determines t h e o r i g i n o f t h e w-plane

nak = I n t e r i o r ang le s of t h e polygon formed by t h e tank wa l l ;ad t h e b a f f l e s i n t h e z-plane

uk = Vertices of t h e polygon on t h e u-axis

The p res su re d i s t r i b u t i o n a p p l i c a b l e to a l l t h r e e c a s e s

herewith g iven i s a s fo l lows:

5.1.7.3 Procedure I11 (83) ( con t inued)

where w is t h e c i r c u l a r f requency , P t h e d e n s i t y o f t h e f l u i d , U t h e

v e l o c i t y of t h e f l u i d a c t i n g on t h e b a f f l e and f , K, and R a r e parameters

depending on t h e geometry of t h e system.

B a f f l e Type I. The b a f f l e - t a n k w a l l system i n t h e z -p lane is map-

ped onto t h e w-plane by t h e t r ans fo rma t ion

The r e s u l t is shown i n t h e f i g u r e f o r B a f f l e Type I below.

z-p l a n e w-plane Y

X ‘C, .. - , 0 - E U

1 2 3 4 5 rank w a i l

B o l l l e Type I

5.1.7.3 Procedure I11 (83) (cont inued)

The parameters and c o n s t a n t s f o r t h e p re s su re d i s t r i b u t i o n

given i n Equation (5-16)are a s fo l lows:

1 / n fi

2(c -u 2 2 K(u,o? =

g(u,o) = - B COS(^,/^)

B = b + ib, A = b/12 1

o f o r -c < u < u < u < c

TI f o r u2 5 u

- - 2 4 4 - - u4

e3(u,0) =

B(u,o) = 2(c2-u 2 ) (u-u,)

J I = ( W + c F 2 (w-u,) - l / n (u,-w>(u. -w)"" (c-w) -1/2 dw 2

u2

bl = -b( l+Io /12) s i n a ; b2 = b( l+Io /12) cos a+ a

u3, u4 can be determined from t h e 2 ' The c o n s t a n t s u

i n t e g r a l expres s ion f o r I above and from t h e fo l lowing d e f i n i t e i n t e g r a l s : 2

- l / n -1/2 dw

(5-18) ..

I = I' (wtc)-1/2 (w-u 2 (W-u3)(w-u4)1/n (C-WY 'I2 dw

4 U 4

where 11, I , 13, and I

t h e length of t h e s i d e s of t h e polygon ABCDE corresponding t o polygon

12345 i n t h e t r ans fo rma t ion f o r B a f f l e Type I. Thus,

a r e d e f i n i t e i n t e g r a l s which a r e p r o p o r t i o n a l t o 2 4

The unknown c o n s t a n t s u 2, u3, u4 can be determined by f i n i t e d i f f e r e n c e

techniques by us ing t h e simultaneous equat ions

(5-19)

* * * , u3 and u For example: l e t u2

t a k e u2 , u3

exac t s o l u t i o n u

s e r i e s i n powers of t h e d i f f e r e n c e s ak

f i r s t o r d e r terms, t h u s o b t a i n i n g t h e f i r s t approximation

be t h e s o l u t i o n of t h e above equa t ion and 4 (0) (0) and u t ) a s t h e i n i t i a l va lues d i f f e r i n g l i t t l e from t h e

* * * u3 and u We expand equat ion (5-19) i n a T a y l o r ' s 2 ' 4'

- u(O) and t e rmina te a t t h e (1) - * - U k k

5.1.7.3 Procedure I11 ( 8 3 ) ( con t inued)

where

4 The p a r t i a l d e r i v a t i v e s which have l imFts no t depending on u 2 , u3 and u

may be obta ined by d i r e c t d i f f e r e n t i a t i o n , i . e . , performing t h e p a r t i a l

d i f f e r e n t i a t i o n , t hen i n t e g r a t i n g .

l i m i t s a r e computed numer i ca l ly b y us ing

Those t h a t have u 2 , u3 and uLL a s

(5-21)

~ where Au is a small increment.

equa t ion (5-20) and us ing t h e second approximation,

Solv ing f o r a ( 1 ) s imul t aneous ly from j

i n equa t ion (5-20), we o b t a i n

I I The above p rocess i s c a r r i e d o u t u n t i l U ( ~ ) ~ S converge. 1 k

I 5-116

5.1. 7.3 Procedure I11 (83) ( con t inued)

Spec ia l Case: Ba f f l e Type 1.4. This is a s p e c i a l ca se

of B a f f l e Type I f o r which a = 0 , u2 = -c, and u4 = C.

becomes

The t r ans fo rma t ion

(n-2) - - (n+2 f - - W

z = A (c-h) 2r! (w-u3 ) (w-c 1 2n dw -t B 0

The r e s u l t s a r e shown i n t h e f i g u r e f o r Spec ia l Case Ia below.

(5-22)

AU LI __c -

C - u X - c u 3 0

1 3 5

Special Case Ia

For t h i s c a s e , t h e parameters and cons t an t s needed t o ob ta in

t h e p re s su re d i s t r i b u t i o n (Equat ion 5-16) a r e t h e fo l lowing:

R(u,o) = - -2

f ( u , o ) = - m 2(c -u ) (u-u3)sin a (5-23)

5 -117

5.1.7.3 Procedure I11 (83) ( con t inued)

A = b / I 2

The p res su re d i s t r i b u t i o n f o r Case 1.4 i s shown in f i g u r e (5-75’).

Special Case: Baff le Type I B . This i s a special case of Baff le

0 . The t r ans fo rma t ion = -c, u3 - 0 , u4 = c , and - = 1

2 n - Type I fo r w h i c h a = 0 , u

becomes

( 5 - 2 4 )

The r e s u l t s a r e shown i n t h e f i g u r e f o r s p e c i a l Case I B below.

Y 3 - U b I

tank wal l / I /

AU v

- c 0 c u - - 1 3 5

Special Case I b

The p r e s s u r e d i s t r i b u t i o n is w e l l known. It is p a r a b o l i c i n shape r . . t h t h e

maximum d i s t u r b a n c e p r e s s u r e occur r ing a t t h e base of t h e b a f f l e and t h e

minimum (zero) a t t h e t i p of t h e b a f f l e . .

5-118

5.1.7.3 Procedure I11 (83) ( con t inued)

B a f f l e Type 11. The b a f f l e - t a n k system (n = n = n , 1 2

u2 = 01 i n t h e z -p lane is mapped onto t h e w-plane by t h e t r ans fo rma t ion

The r e s u l t s of t h i s t r ans fo rma t ion is shown i n t h e f i g u r e below.

z-pl a n e w-plane 2

AU __c

- C u,z p c u - - 1 2 3

Baff le Type 11

The parameters and c o n s t a n t s g iven i n Equation (5-16) can be obta ined as

fo l lows :

- AKt ( s i n u1 A i c o s a , ) K(f + i g ) dz dw - _

5.1.7.3 Procedure I11 (83) ( con t inued)

- = dz AK' ( s i n a2 - i c o s a,> = K(f -t i g ) dw

( s i n a2 + i c o s a,) = R ( f - ig) dw=- 1 dz AK'

b I cosa l A = 1

I = r2 K'du -C

1

s i n a I cos a \I K'du 2 c

1 1 b l = b ( t a n a 2 - I), 1 =

C

cos a l I1 b2 = b

The cons t an t u2 can be found from

cos a; rU2 1 I 1 d - I 2 , I J Kfdu

0 C 2 2 cos a

(5-27)

(5-28)

5-120

but a = al = a 2'

5.1.7.3 Procedure I11 (83) (continued)

Special Case: Baffle Type IIA. Same as Baffle Type I1

The transformation becomes

(n-2) (n-2') W - - - (W) ] dw + ib z = A lo [(w 2 -c 2 ) 2n

The results are shown in the figure below

2

2 - nl!?

__t

X tan wal ,-

(5-29)

AU __t

- C 0 c u - n

1 2 3

Baffle Type IIa

Baffle Type 111. The transformation from the z-plane

to the w-plane is given by

5-121

5 .1 .7 .3 Procedure I11 (83) (continued)

and the r e s u l t s shown i n the f igure below.

Y I

2 1

U __c

L J nlc WCI I I

AU - u2 c u - c a ' U 2 -u3 0 3 a

A

1 2 3 4 5 6 BAFFLE TYPE 111

The parameters and constants given i n Equation (5-16)are a s fo l lows:

2 2

(0 - i) = K(f -t ig) - -

(0 f i) = R ( f - ig) dw - 1 dz A 2 2 - _ -

(u -u2)

( 1 - i o ) = R(f - i g ) dw 1 dz A 2 2 - = -

-u2

(5-31)

(5-3 2)

5 -122

5.1.7.3 Procedure I11 (83) (cont inued)

The cons t an t s u 2 , u3, and A a r e determined s imul taneous ly

from t h e equat ions

K ~ / K ~ = d/2b, K2 = K39 A = d/2K1, B = o

2 2 :3 (u,-u ) du

U 2 2 , 2 (u,-u )du L

v = I (5-33)

Spec ia l Case: Ba f f l e Type IIIA. The r e s u l t s a r e i d e n t -

i c a l wi th S p e c i a l Case B a f f l e Type I B b u t wi th u3 = u2 = 0.

.

INCHES U

I

PSI

Figure 5-75

5-I24

.

5.1.8 Conclusions and Recommendations

In choosing a damping system, t h e d e s i g n e r should s t a r t with

s o l i d r i n g b a f f l e s and use Miles ' exp res s ion , Equation (5-1) , f o r h i s

f i r s t approximation o f t h e damping f a c t o r . The reason is t h a t Miles'

equat ion i s s imple i n format and i n n a t u r e and a r a t h e r r a p i d "ba l l -pa rk

f i g u r e " f o r t h e spacing and width of t h e b a f f l e s can be ob ta ined . Bauerls

e x t e n s i a n ( a r t i c l e 5.1.3.2.3) would then g i v e more a c c u r a t e r e s u l t s and

optimum cond i t ions .

and 5-16) w i l l permit t h e o p t i m i z a t i o n of t h e t h i c k n e s s and mater ia l of each

b a f f l e and t h u s t h e c a l c u l a t i o n of t h e t o t a l weight added by t h e damping

system.

The p r e s s u r e a c t i n g on t h e b a f f l e (Equat ions 5-10, 5-11,

R e s u l t s

1. The maximum frequency occurs when t h e b a f f l e i s l o c a t e d a t t h e

0 (F igu res 5-2 and 5-3). undis turbed f r e e l i q u i d s u r f a c e , i . e . , - =

Note: The curves i n F igu res 5-2 and 5-3, f o r h igh v a l u e s of

-, approach a s y m p t o t i c a l l y , t h e f i r s t r e sonan t f requency f o r a R

c i r c u l a r c y l i n d r i c a l t ank con ta in ing no b a f f l e s .

Agreement between experimental v a l u e s o f t h e damping f a c t o r and

t h o s e ob ta ined from Mi le s ' equat ion i s good except i n t h e range of

0 < - < 0.125 (F igu re 5-5).

With t h e h o l e s i z e c o n s t a n t and f o r a given b a f f l e depth:

(a 1

dS R

ds

2.

dS R

3 .

The frequency i n c r e a s e s f o r i n c r e a s i n g percent p e r f o r a t i o n

(F igu re 5-2).

5-125

Resu l t s ( con t inued)

4 .

5.

6.

7.

8.

( b ) The damping f a c t o r i n c r e a s e s f o r dec reas ing h o l e s i z e

(Figure 5-8).

With t h e percent p e r f o r a t i o n cons t an t and f o r a g iven b a f f l e depth:

( a ) The frequency i n c r e a s e s f o r i n c r e a s i n g h o l e s i z e

(Figure 5-3 ).

The damping f a c t o r i n c r e a s e s f o r dec reas ing h o l e s i z e

(Figure 5-7).

( b )

The frequency of a s o l i d f i x e d r i n g b a f f l e is h ighe r t han t h a t of

a pe r fo ra t ed b a f f l e f o r R 5 0.05 and lower f o r R

(F igu res 5-2 and 5-31.

Damping produced by p e r f o r a t i n g b a f f l e s i s c o n s i s t e n t l y lower

than t h a t produced by a s o l i d b a f f l e (F igu re 5-7 and 5-8).

The damping f a c t o r i n c r e a s e s a s t h e e x c i t a t i o n ampl i tude i n c r e a s e s

(Figure 5-61.

For a g iven b a f f l e depth:

( a )

dS dS 0.05

The damping f a c t o r of a f i x e d r i n g , con ic s e c t i o n and per-

f o r a t e d con ic s e c t i o n i n c r e a s e s a s t h e b a f f l e width i n c r e a s e s

(F igu res 5-10, 5-67, and 5-68).

( b ) With t h e r a d i a l c l ea rance c o n s t a n t , t h e damping f a c t o r of a

r ing -wi th - r ad ia l - c l ea rance i n c r e a s e s a s i t s b a f f l e width

i n c r e a s e s (Figure 5-11).

With t h e b a f f l e width c o n s t a n t , t h e damping f a c t o r of a r i n g -

w i th - r ad ia l - c l ea rance dec reases a s t h e r a d i a l c l ea rance

i n c r e a s e s (Figure 5-11).

( c )

5-126

9. The damping f a c t o r i s independent of kinematic v i s c o s i t y and

i n c r e a s e s a s t h e e x c i t a t i o n amplitude i n c r e a s e s (F igu res 5-13 and

5-14).

10. Agreement between experimental va lues of the damping f a c t o r and

those obta ined i n Miles ' equa t ion i s good except f o r

0 - 5 (0.8 - 1 . 2 ) , (F igu res 5-12 and 5-14).

For a given b a f f l e depth:

dS R

11.

( a ) The frequency f o r a f i x e d r i n g , conic s e c t i o n , and pe r fo ra t ed

con ic s e c t i o n i n c r e a s e s a s t h e b a f f l e width dec reases

(F igu res 5-15, 5-64, and 5-66).

(b ) With t h e r a d i a l c l ea rance c o n s t a n t , t h e frequency i n c r e a s e s

a s t h e b a f f l e width dec reases (Figure 5-16).

With t h e b a f f l e width c o n s t a n t , t h e frequency i n c r e a s e s as

t h e r a d i a l c l ea rance dec reases (Figure 5-16).

( c )

1 2 . During p r o p e l l a n t loading, the cans e rec t ed smoothly and ar ranged

themselves i n t h e r equ i r ed c o n f i g u r a t i o n even though t h e y were

randomly placed i n t h e tank bottom be fo re s t a r t i n g t h e f i l l i n g

ope ra t ion . For t h i s r eason , t h e y opera ted as good a n t i - v o r t e x

dev ices .

13. The devices f l o a t e d p e r f e c t l y and yielded h igh damping e f f e c t s .

14. Draining t h e l i q u i d whi le t h e t ank was o s c i l l a t i n g d id no t change

t h e damping e f f e c t .

An inhe ren t d i sadvantage of cans i s t h a t t h e y a r e f r e e t o move when 15.

t h e con tq ine r is empty, i . e . , t h e y a r e loose bod ies dur ing t h e

t r a n s p o r t a t i o n of t h e m i s s i l e and can the reby cause damage t o t h e -

16. The dashed p a r t s of t h e curves i n F igures 5-9, 5-10, and 5-67

i n d i c a t e t h a t , because of t h e t u r b u l e n t n a t u r e of t h e l i q u i d i n t h e

r eg ions of h ighe r damping, a n u n c e r t a i n t y e x i s t e d i n d e f i n i n g t h e

exac t l o c a t i o n of maximum damping.

17. A div ided b a f f l e which extended down t o t h e r i n g b a f f l e was used

f o r most of t h e t es t s i n Reference (35) . This tended t o i n c r e a s e

t h e v a l u e of t h e damping a s seen i n F igure 5-14.

Conclusions

1. Fixed r i n g b a f f l e s can be pe r fo ra t ed with h o l e s of r e l a t i v e l y small

d iameter , t he reby reducing t h e b a f f l e a r e a by a s much a s 23% wi th

no a p p r e c i a b l e l o s s i n damping e f f e c t i v e n e s s . Such r educ t ion i n

b a f f l e a r e a may be e f f e c t i v e l y used f o r a d d i t i o n a l b a f f l e s t h u s

inc reas ing t h e minimum damping r a t i o va lue wi th no a p p r e c i a b l e

i n c r e a s e i n b a f f l e weight .

XO 2. For an e x c i t a t i o n ampli tude - = 0.00417, t h e b a f f l e above t h e d dS l i q u i d s u r f a c e adds t o damping o n l y when t h e d i s t a n c e R < 0.125

and t h e b a f f l e below t h e s u r f a c e c o n t r i b u t e s t o damping o n l y when

0.375. The b a f f l e spacing f o r some minimum Y can be dS 0 2 -

dS

R - S

determined by adding t h e depth of t h e submerged b a f f l e t o t h e depth

of - = 0.125 f o r which t h e upper b a f f l e i s s t i l l e f f e c t i v e .

3 . Fixed r i n g b a f f l e s can e f f i c i e n t l y in t roduce l i q u i d damping i n t o

R

p r o p e l l a n t tanks .

4. Fixed r i n g b a f f l e s a r e no t v e r y e f f i c i e n t f o r s h i f t i n g t h e l i q u i d

resonant frequency.

5-128

Conclusions ( con t inued)

5 . Based on t h e t o t a l s u r f a c e a r e a of a b a f f l e , t h e h i g h e s t mean

damping f a c t o r of t h e b a f f l e s t e s t e d appears t o be a f fo rded by t h e

f i x e d r i n g b a f f l e (F igure 5-78).

Summarizing, t h e fo l lowing remarks a r e p e r t i n e n t .

1. Bauer 's ex tens ion t o Mi les ' equa t ion can be used wi thout

f u r t h e r experimental v e r i f i c a t i o n except f o r a check of t h e f i n a l product .

2. Ring b a f f l e s provide l i t t l e f requency e f f e c c .

3. S o l i d r i n g b a f f l e s w i th small diameter p e r f o r a t i o n s (about 20%

open a r e a ) can e f f e c t i v e l y be used t o reduce b a f f l e weight a d d i t i o n wi thout

a n apprec i ab le l o s s i n damping e f f e c t i v e n e s s .

4. Conical r i n g s o f f e r g r e a t e r degree of damping than f l o a t i n g

cans , except where t h e cans c a r e f u l l y cover t h e l i q u i d s u r f a c e .

5 . The amount of damping produced by both f l o a t i n g cans and c o n i c a l

r i n g s i s s t r o n g l y dependent upon e x c i t a t i o n ampli tude.

6 . Cans a r e t h e o n l y s u i t a b l e type of f l o a t . However, r i n g b a f f l e s

a r e more r e l i a b l e and appear t o g i v e g r e a t e r damping.

7 . F l o a t s , l i k e b a f f l e s , a r e used mostly t o damp l i q u i d motion

however, f l o a t s a r e l i k e p a r t i t i o n s , i n t h a t t h e i r e f f e c t on frequency and

,damping i s cons t an t f o r a l l sha l low depzhs.

8. Subdiv is ion by r a d i a l w a l l s i s much more e f f e c t i v e i n reducing

t h e amount of s l o s h i n g than subd iv i s ion by c o n c e n t r i c w a l l s .

o f a qua r t e r - sec to red t ank t h e v i b r a t i n g l i q u i d mass i s reduced t o more than

1 1 2 t h a t o f a c i r c u l a r c y l i n d e r .

I n t h e c a s e

9. Ring b a f f l e s a r e f a r b e t t e r a s damping d e v i c e s than conic ,

i n v e r t e d con ic o r c ruc i form b a f f l e s .

5-129

10. Cross p a r t i t i o n s have a g r e a t e r e f f e c t on t h e e igen- f requencies

than do c o n c e n t r i c p a r t i t i o n s .

11. F l o a t s should cover t h e e n t i r e c r o s s - s e c t i o n a l a r e a and f i l l

t h e zone of o s c i l l a t i o n , i . e . , t o a depth of one-fourth t h e t ank d iameter .

12. F l o a t s should be capable of fo l lowing the changing l i q u i d level.

13. F l o a t s should be capable o f adap t ing t o t h e changing c r o s s -

s e c t i o n a l a r e a of t h e c o n t a i n e r , i . e , t h e f l o a t should n o t catch-on o r c l i n g

t o s t i f f e n e r r i n g s , p i p e l i n e s o r o t h e r equipment o b s t r u c t i n g t h e i n n e r w a l l s

o f t h e tank.

14. F l o a t s should no t change t h e moment of i n e r t i a of t h e l i q u i d

when sub jec t ed t o r o l l e x c i t a t i o n s about t h e l o n g i t u d i n a l a x i s of t he con-

t a i n e r . 15. P a r t i t i o n s should d i v i d e t h e t o t a l l i q u i d mass i n t o approximately

equal p a r t i a l masses thereby e f f e c t i v e l y reducing t h e t ank d iameter .

1 1.0761.123 1.1571 2411

(a) Fixed r i n g . (b)

I

I 5 1.02 I ~.042~.084/.02l~.021

[ f 1.076 I. I19 1.157 1.241 1

Ring w i t h radial c l ea rance . ( c ) Conic s e c t i o n .

I

:

(d ) Inve r t ed conic ( e ) Pe r fo ra t ed s e c t i o n . conic s e c t i o n .

Baffle c o n f i g u r a t i o n s .

( f ) Cruciform.

(35 1

Figure 5-76

5-131

L\\\\\\\\\\\\\\\ . . . . . . . . . . . . . . . . . . . . . . . . . .

rc) 1 - 1 I o

I- F

M

5-132

E f f e c t of h o l e s i z e and percent p e r f o r a t i o n on resonant f requency f o r a q u a r t e r s e c t o r tank. ( 5 8 )

Figure 5-78

5-133

-8 \ U Y

3 6 6 a w LL k

2 0 cn w

24

a 2 n 3 0 A -

0

Effect o f ho le s i z e and percent perforation on resonant frequency for an eighth sector tank. ( 5 8 )

Figure 5 -79

5-134

90° SECTOR TANK PERFORATION HOLE DIA. dh/d = 0.0056

SYMBOL X,/d & S 0.00187

0.3

0.2

0. I

Q

Effect of percent perforation and reronant frequency on the damping r a t i o a s a function o f exc i ta t ion amplitude for a quarter sec tor tank. (58)

Figure 5-80

5-135

t-

rr 0 LL

w

a

a e

r

\ ' I \ \ \ 4

\ \

cu 0 0

0

I 1 I I 1 I 0 0 0 0 Y) d rr) 01

0 0 rc (P

C w

0

A - l

-

l-l (d d U

U

8 h U d o 0

a > k

d m U C 0 V

I

e

l-l

2

l-l

-

C 0 d U (d U 1.I 0 X w

-

N

N 8

k 3

I1 -rl

U

a 8 -e

k 3 d

3 0

N

u u 3 3 d + a X

II X

C 0 4 U 0 a Ll

.rl a

0

m

A a c U

C .rl

C 0 d U m rl m C (d k H

a h 0

u u II .2 .2

X

0 .rl X m

.,

A

a m .rl X m I h

0 8

I1 8

m *rl Y

m

-. a a a m s c c I U U U N

1J U

m c D e X o N h x x x 3 3 3 I I I 1 II - 4 4 - 4

8 8 Q

U 3 C 1.I m

X 0

II X

C 0 d U V a M d a

m

A a

Az U

C

C 0 d U m rl m C (11 k H

d

U

3 C 1.I m

cn 0

II cD

m d X m I h a r: U

U 7 0

m M C d c 0 U .rl PI

m

n

U 3 C d m 8

0

II

2 m .d X m I N

a 5 U 7 0

m n

l-l I 4

0 rx

A-2

TABLE A-3

ZEROS cmn ( ~ 1 ) OF THE FIRST DERIVATIVE OF THE BESSEL

FUNCTION OF THE FIRST ORDER AND FIRST KIND [J;(3nn) 01,

0

1

2

3

4

5

6

7

8

9

10

en

1.84219

5.33 144

8.53631

11.70600

14.86359

18.01553

2 1.16440

24.3 1145

27.4575 1

30.60194

33.74397

n

1 1

12

13

14

15

16

17

18

19

20

21

36.89000

40.03341

43.17665

46.3 1957

49 e46238

52 60507

55 74758

58.89000

62.03 234

65.17465

68.3 1682

n

22

23

24

25

26

27

28

29

30

31

7 1.45677

74.60000

77.74383

80.885 14

84.027 18

87.16914

90.3 1228

93.45301

96.59499

99.73675

A-3

n 0

I1

k

- i - i F r s 0

A-4

TABLE A-5

ROOTS cmn OF THB FIRST DERIVATIVE OF THE BESSEL FUNCTION

O F ORDER 4m AND OF THE F I R S T KIND [ JYbkmn) = 0 1.

1

5.31756

9.28240

12.68191

15.96411

19.19603

22 40103

3 5

13.82109 22.26759

18.74485 27.71172

22.62927 31.97366

26.24604 35.87393

29.72898 39.58453

33 13 145 43 17654

A-5

0 I I

d a

d .

0

7 c - A-6

b I U a d

C Y

% " I o

V

3 N

00 C .!-I

-3 U .rl P.l

k 0 1 a 5 C 0 .rl U m d ul

k w V %-I

s

i (D

X

.. C 0 r( U m U .rl V X w

-

2 C (D w m 0 .rl & a C d d h U

& m 7 V & d U

d

d

U 3 d

aJ

X II X

C 0 r( U V a k d a I X aJ

C

m

5 C

C 0 d U (0

'rl

d

2 tu k w

W

8 - f C

+ & r 8

VI 0 V

U 3 d

aJ X0

N 31

!I LP

U 3

-rl aJ

a C

II a .)

rn d X m h a 5 U 7 0 P (D

bo C d

s U r(

PI

I

Slcu" +

- 8

rn 0 V

U

d 3 a a 3

0 el

I

II LP

A-7

4 d 0 1: u C 0

.d

E m 5:

.. C 0

-I4 U m U 'd u X w

-

24 C m b -0 aJ k 0 U u aJ r n I k aJ u &4 m 3 0

8

N

8

N

v)

0 u - Q

c, n

a,

I

E

n W

E

E u N W

n ' - 4

I

NCc W I=

3

T z N k i N

W N

m I

N

A

n N

w a n

"

C 4 N

2 5 N

A-9

REFERENCES

1. Chu, W-H., "Free Surface Condit ion f o r Sloshing Resu l t ing from P i t ch ing and Some Correc t ionsf1 , ARS Journa l , (Nov. 19601, 1093-1094.

2. S c h m i t t , A. F., flForced O s c i l l a t i o n s of a F lu id i n a C y l i n d r i c a l Tank O s c i l l a t i n g i n a Car r i ed Acce le ra t ion Field--A Correc t ion" , Convair Rep. ZU-7-074, (Feb. 1957).

3. Bauer, H. F., "Theory of F lu id O s c i l l a t i o n s i n P a r t i a l l y F i l l e d C y l i n d r i c a l Conta iners" , MSFC, Rept. No. MTP-AERO-62-1, (Jan. 1962).

4. -----., "Flu id O s c i l l a t i o n s i n t h e Conta iners of a Space Vehic le and t h e i r In f luence Upon S t a b i l i t y " , NASA-TR R-187.

5. Chu, W., I 'Sloshing of Liquids i n C y l i n d r i c a l Tanks of E l l i p t i c Cross- Section'! , Southwest Research I n s t i t u t e , Technica l Report No. 2, Cont rac t DA-23-072-ORD-1251, (Sept. 1958).

6. Okhotsimskii , D. E . , "Theory of t h e Motion o f a Body wi th C a v i t i e s P a r t l y F i l l e d w i t h a Liquid", NASA-TT, No. F-33, (May 1960)-- T rans l a t ed from Pr ik l adna ia Matma t ika : Makhanika, Vol. 20, NO. 1, (Jan.-Feb. 1956).

7. Bauer, H. F., "The Moment of I n e r t i a of a Liquid i n a C i r c u l a r C y l i n d r i c a l Tank", ABMA Report No. DA-TR-5-58, (Apr i l 23, 1958).

8. Zhukovskii, N. E . , The Motion of a Rigid Body w i t h C a v i t i e s F i l l e d wi th a Homogeneous Flowing Liquid. Co l l ec t ed Works ( i n Russian) (Gostekhizdat , M.-L., 1949), Vol. 11. Trans l a t ed by Consul tan ts Custom T r a n s l a t i o n s , Inc. , 227 West 17 th S t r ee t , New York 11, N.Y.

9. Lamb, H., Hydrodynamics. S i x t h ed., Dover P u b l i c a t i o n s , 1945.

10. Rayleigh, Lord, "On Waves", Ph i l . Mag., Series 5 , Vol. 1, (1876) S e i t e 257-279.

11. Bauer, H. F., "F lu id O s c i l l a t i o n s i n a C i r c u l a r C y l i n d r i c a l Tank", ABMA Report No. DA-TR-1-58, (Apr i l 18, 1958).

1 2 . E u l i t z , W . , "The Sloshing Phenorcenon and t h e Mechanism of a Liquid i n Motion i n an O s c i l l a t i n g M i s s i l e Containerf l , Rep. No. DS-R-31, DOD, ABMA, (Oct. 1957). --

13. Abramson, H. N., and Ransleben, G. E . , Jr., "Simulat ion of Fuel S losh ing C h a r a c t e r i s t i c s i n Missile Tanks by Use of Small Models", Tech. Rep. No. 3 , Cont rac t DA-23-072-ORD-1251, SWRI, (March 1959).

14. -----. "Some Comparisons of S losh ing Behavior i n C y l i n d r i c a l Tanks w i t h F l a t and Conical Bottoms", Tech. Rep. No. 4, Con t rac t NO. DA-23-072-ORD-1251, SWRI, (May 1959).

B-1

15. -----., "A Note on Wall Pressure D i s t r i b u t i o n s During Sloshing i n

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27

28.

29.

Rig id Tanks", Tech. Rep. No. 5 , Contrac t No. DAi23-072-Ob-1251, - SWRI, (June 1959).

McCarty, J. L. and Stephens, D. G., t f I n v e s t i g a t i o n of t h e Natural Frequencies of F l u i d s i n Sphe r i ca l and C y l i n d r i c a l Tanks", Langley Research Center , NASA-TN, D-252, (May 1960).

Abramson, H. N. , Chu, W. H. , Ransleben, G. E., Jr., and Squ i re , W., "A T h e o r e t i c a l and Experimental Study of Fuel Sloshing", Q u a r t e r l y Progress Report No. 8 , Cont rac t No. DA-23-072-OD-1251, SWRI, (May 1960).

Koel le , H. H . , Editor-In-Chief, Handbook of A s t r o n a u t i c a l Engineering. McGraw-Hill Book Co., Inc. , New York, N.Y., 1961.

Bauer, H. F., "Theore t i ca l I n v e s t i g a t i o n of P rope l l an t S losh ing i n a C i r c u l a r C y l i n d r i c a l Ring Tank", ABMA, Q u a r t e r l y Report No. 1, Redstone Arsenal , Alabama, (Dec. 20, 1959).

L o r e l l , J., ttForces Produced by Fuel O s c i l l a t i o n s t t , P rogres s Report No. 20-149, J e t Propulsion Laboratory, (October 16, 1951).

Abramson, N. H. , and Ransleben, G. E. , Jr., "Liquid S losh ing i n Rigid C y l i n d r i c a l Tanks Undergoing P i t ch ing Motions", SWRI, Technica l Report No. 11, Cont rac t No. DA-23-072-ORD-1251, (May 1, 1961).

Hutton, R. E . , IIFluid P a r t i c l e Motion During Rotary Sloshingt1, Space Technology Labora to r i e s , Inc., (March 1963).

-----. , "An I n v e s t i g a t i o n of Resonant, Nonlinear Nonplanar Free-Surface O s c i l l a t i o n of a Fluid7!, Ph.D. D i s s e r t a t i o n , U n i v e r s i t y o f C a l i f o r n i a , Los Angeles, C a l i f o r n i a , (October 1962).

Mi les , J. W., "Free Surface O s c i l l a t i o n s i n a Rota t ing Liquid", The - Phys ics of F l u i d s , Vole 2 (1959)s 297-305.

Mi les , J. W. and Troesch, B. A., "Surface O s c i l l a t i o n s of a Rota t ing Liquid", Jou rna l of Applied Mechanics, (December 1961).

Bauer, H. F., "F lu id O s c i l l a t i o n s of a C i r c u l a r C y l i n d r i c a l Tank Performing Lissajons-Oscillationslf , ABMA-TR, H u n t s v i l l e , Alabama, (Apr i l 18, 1958).

-----. , "Fluid O s c i l l a t i o n s i n a C y l i n d r i c a l Tank w i t h Damping", ABMA-TR, H u n t s v i l l e , Alabama, (Apr i l 23, 1958).

Mi l e s , J. W., "Ring Damping of Free Surface O s c i l l a t i o n s i n a C i r c u l a r Tank", J o u r n a l of Applied Mechanics, (June 1958).

Bauer, H. F., "Tables and Graphs of Zeros of Cross Product Bessel Funct ionsf t , MSFC Report No. MTP-AERO-63-50, ( June 24, 1963).

B -2

30. Langner, C. G. , "A Pre l iminary Analys is f o r Optimum Design of Ring and P a r t i t i o n An t i s lo sh Baff les1! , my Tech. Rept. No. 7 , Cont rac t No. NAS8-1555, P r o j e c t No. 6-1072-2, ( A p r i l 30, 1963).

31. Bauer, H. F. , "The Damping Factor Provided by F l a t Annular Ring B a f f l e s f o r Free F lu id Surface O s c i l l a t i o n s 1 1 , MSFC, Rept. No. MTP-AERO-62-81, (Nov. 13, 1962).

32. Garza, L. R. and Abramson, N. H., llMeasurements of Liquid Damping Provided by Ring B a f f l e s i n C y l i n d r i c a l Tanks", SWRI, Tech. Rept. No. 5, Cont rac t No. NAS8-1555, P r o j e c t No. 6-1072-2, (Apr i l 1, 1963).

33. OINeil l , J. P. , IISemiannual Report on Experimental I n v e s t i g a t i o n o f Sloshing~~,TR-59-0000-00713, Space Tech. Labs., Inc. ,(Jan. 1- June 30, 1959).

34. Abramson, H. N., Garza, L. R., and Kana, D. D., l lFuel S losh ing Stud SWRI, Quar t e r ly Progress Rept. No. 3, Con t rac t No. NAS8-1555, (Jan. 1, 1962).

e s f l ,

35. S i l v e i r a , M. A., Stephens, D. G. , and Leonard, H. W., IIAn Experimental I n v e s t i g a t i o n of t h e Damping of Liquid O s c i l l a t i o n s i n C y l i n d r i c a l - - Tanks w i t h Various B a f f l e s " , NASA TND-715, Langley Research Cen te r , (May 1961).

36. Abramson, H. N. and Ransleben, G. E. , Jr., lfSome S tud ie s of a F l o a t i n g Lid Type Device f o r Suppression of Liquid S losh ing i n Rigid C y l i n d r i c a l TanksTr, SWRI, Tech. Rept. No. 10, Cont rac t No. DA- 23- 07 2- ORD- 1 25 1

37. -----., "A Note on t h e E f f e c t i v e n e s s of Two Types of Slosh Suppression Devices", SWRI, Tech. Rept. No. 6, Cont rac t No. DA-23-072-ORD-1251, (June 15, 1959).

38. Garza, L. R., "A Brief Comparison of Ring and Asymmetrical B a f f l e C h a r a c t e r i s t i c s " , SWRI, Tech. Rept. No. 6 , Cont rac t No. NAS8-1555, (Apr i l 15, 1963).

39. Cole, H. A., Jr., and Gambucci, B. J., "Tests of an A s p e t r i c a l B a f f l e f o r Fuel-Sloshing Suppressionll, NASA TN D-1036, ( J u l y 1961).

40. E u l i t z , D r . W., "A Can-Type Anti-Slosh Device Derived from Basic S losh S tud ie s" , By D.O.D. Rept. No. D SD-TR-4-58, Redstone Arsenal , Alabama, (August 12, 1958).

41. Cole, H. A., Jr., and Gambucci, B. J., "Measured Two-Dimensional Damping E f f e c t i v e n e s s of Fuel-Sloshing B a f f l e s Applied t o Ring B a f f l e s i n C y l i n d r i c a l Tanks", NASA-TN-D-694, Ames Research Center , Mof fe t t F i e l d , C a l i f . , (Feb. 1961).

42. Eu l i t z , W. R., and Beduerftig, H., IfExperimental Inves t iga t ion of t h e Responses of a Liquid i n an Osc i l l a t ing Container", Off ice of Ordnance Research, Proceedings of the Third Conference on t h e Design of Experiments i n Army Research Development and Testing, Duke Sta t ion , Durham, North Carolina, (1958).

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Kachigan, K., "Forced Osc i l la t ions of a Fluid i n a Cyl indr ica l Tank", Convair Rept. ZU-7-046, ( O c t . 1955).

Schmitt, A. F., '!Forced Osc i l la t ions of a Fluid i n a Cyl indr ica l Tank Undergoing Translat ion and Rotationf1, Convair Rept. ZU-7-069. (Octa 1956).

Miles, J. W., !'On t h e Sloshing of Liquid i n a Cyl indr ica l Tank1', Ramo-Wooldridge Rept. AM6-5, (April 1956).

Abramson, N. H., Chu, W-H., and Ransleben, G. E , , Jr., "Representation of Fuel Sloshing i n Cyl indrical Tanks by an Equivalent Mechanical Model" ' - SWRI, Tech. Rept. No. 8, Contract No. DA-23-072-ORD-1251, (June 30, 1960).

Abramson, H. N., and Ransleben, G. E. , Jr., "Simulation of Fuel Slosh- ing Charac t e r i s t i c s i n Miss i le Tanks by Use of Models1', SWRI, Tech. Rept. No. 7, Contract No. DA-23-072-ORD-1251, (April 25, 1960).

Buckingham, E., "Model Experiments and the Form of Empirical Equationsff, Trans. ASME, Vol. 37, (1915), 263-296.

Bauer, H. E., "Mechanical Model of Fluid Osc i l l a t ions i n Cyl indr ica l Containers and Introduceon of Damping", MSFC, MTP-AERO-62-16, (February 26, 19621..

Abramson, H. N., Martin, R. J., and Ransleben, G. E., Jr., IfApplication of Simil i tude Theory t o t h e Problem of Fuel Sloshing i n Rigid Tanks!!, SWRI, Tech. Rept. No. 1, Contract No. DA-23-072-ORD-1251, (May 23, 1958).

Scanlan, R. H., and Mendelson, A., "Structural Dampingf1, AIAA Journal, Vol. 1, No. 4, (April 1963).

Bauer, H. E., fWechanical Analogy of Fluid Osc i l l a t ions i n Cyl indrical Tanks with Ci rcu lar and Annular Cross Sections", MSFC, MTP AERO-61-4, Huntsvi l le , Alabama, (January 1 2 , 1961).

Miles, J. W., " S t a b i l i t y of Forced Osc i l l a t ions of a Spherical Pendulumff, Quarterly of Applied Mathematics, (1962); a l so , Space Tech. Labs., No. EM 11-2, (March 1960).

Stephens, D. G., and Leonard, H. W., "The Coupled Dynamic Response of a Tank P a r t i a l l y F i l l e d with a Liquid and Undergoing Free and Forced Planar Osc i l l a t ions f f , NASA TN, D-1945, Langley Research Center, (August 1963).

B -4

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Abramson. H. N., Garza, L. R., and Kana, D. D., "Fuel S losh ing S tud ie s" , e, Quar t e r ly Progress Report- No. 2 , Contrac t No. NAS8-1555, (Oct. 1, 1961).

-----. , !!Fuel S losh ing S t u d i e s f t , m, Quar t e r ly Progress Rept. No. 1, Con t rac t No. NAS8-1555, ( J u l y 1, 1961).

Abramson, H. N., and Ranselben, G. E . , Jr. , "Total Force Response Resu l t ing from Liquid S losh ing i n a Rigid C y l i n d r i c a l Tank wi th a V e r t i c a l Center Wall B a f f l e f t , SWRI, Tech. Rept. NO. 9 , Cont rac t No. DA-23-072-ORD-1251, (May 1, 1961).

Garza, L. R. , vlMeasurements of Liquid Natura l Frequencies and Damping i n Compartmented C y l i n d r i c a l Tanks", SWRI, Tech. Rept. NO. 8, Contrac t No. NAS8-1555, (Feb. 5 , 1964).

Bowman, F., I n t r o d u c t i o n t o Bessel Functions. New York: Dover Pub1 i c a t ions.

Walls, J., Ryan, J . , and Mooney, J., ? 'Torsional Pendulum Analogy f o r Quar te r and Eighth Sectoyed C y l i n d r i c a l Tanks Subjec ted t o Roll O s c i l l a t i o n t t , Northro:, Space Labs., Tech. Memo. No. 9 , (Feb. 21, 1964).

Liquid S losh ing i n Compartmented C y l i n d r i c a l Tanks", m, Tech. Rept. No. 1, Cont rac t iJo. NAS8-1555, (Feb. 15, 1962); a l s o , ARS J o u r n a l , (June 1962).

Abramson, H. N., Garza, L. R., and Kana, D. D., "Some Notes on

Abramson, H. N., Chu, W., and Garza, L. R., "Liquid S losh ing i n 45' Sector Compartmented C y l i n l r i c a l Tanks", SWRI, Tech. Rept. No. 3 , (Nov. 1, 1962).

Bauer, H. F., "Theory of t h e F lu id O s c i l l a t i o n s i n a C i r c u l a r C y l i n d r i c a l Ring Tank P a r t i a l l y F i l l e d w i t h Liquid", NASA-TN-D557, (Dec. 1960).

Mooney, J., Ryan, J., and Walls, J., "Slosh Handbook", NSL Tech. Memo. No. 10, (Feb. 21, 1964).

Mooney, J., Walls, J., and Ryan, J., "Liquid Natura l Frequencies o f a Tank w i t h P a r t i a l l y Submerged Sector Wal l s l~ , NSL Tech. Memo. No. 14, (Apr i l 7 , 1964).

Bauer, H. F., "The E f f e c t i v e Moment of I n e r t i a i n Roll of P r o p e l l a n t and Roll Damping", ABMA Report DA-TM-67-59.

-----., "Prope l l an t Sloshing", Rept. No. DA-TR-18-58, C-AB-71091, Dev. Operations Div., Army B a l l i s t i c Missile Agency, Redstone Arsenal , Alabama, (Nov. 5, 1958).

Ransleben, G. E . , Jr., "A T h e o r e t i c a l and Experimental Study of Fuel Sloshinglf , Progress Rept. No. 1, Cont rac t DA-23-072-ORb-1251, Southwest Research I n s t i t u t e , (May 1, 1958).

69. Keulegan, G. H. , and Carpenter , L. H., "Forces on Cy l inde r s and P l a t e s i n an O s c i l l a t i n g F lu id" , Nat iona l Bureau o f S tanda rdsL Report No. 4821, (Sept. 5, 1956).

70. Brown, J., "Laboratory Tes t of Fuel Sloshing!!, Rept . No. SM-Dev. 783, Douglas A i r c r a f t Co., Inc.

71. Case, K. and Parkinson, W. C. , "The Damping of a Liquid i n a Right C i r c u l a r C y l i n d r i c a l Tank", Ramo-Wooldridge Rept. GM 45-75; (Sept. 1956).

72. Howell, E., and Eh le r , F. G., "Experimental I n v e s t i g a t i o n of t h e In f luence of Mechanical B a f f l e s on t h e Fundamental S losh ing Mode of Water i n a C y l i n d r i c a l Tank", Ramo-Wooldridge ReptT GM 45, 3-87, GM-TR-69, ( J u l y 1956).

73. Langhaar, H. S., Dimensional Analys is and Theory of Models. John Wiley, 1953.

74. Epperson, T. B., Pengelley, C. D., Ransleben, G. E., Jr., Wilson, L. E . , and Younger, D. G., "Nonstationary A i r l o a d D i s t r i b u t i o n s on a , S t r a i g h t , F l e x i b l e Wing 3 s c i l l a t i n g in a Subsonic Wing Stream", ( T i t l e U n c l a s s i f i e d ) , W A X TR-55-323, ( January 1956).

75. Mooney, J., Basurto, E . , Kincaid, J., Ryan, J., and Walls, J., I'Slosh Handbookll, Progress Report No. 2 , Northrop Space Labs., Tech. Memo No. 18, (May 25, 1964).

76. Graham, E. W., "The Forces Produced by Fuel O s c i l l a t i o n i n a Rectangular Tank", Douglas A i r c r a f t Company, Inc., Report No. SM-13748, (Apr i l 1951).

77. L o r e l l , J., "Forces Produced by Fuel O s c i l l a t i o n s " , Je t Propuls ion Laboratory, Progress Report No. 20-149, Con t rac t No. DA-04-495-0rd 18, (October 1951). -

78. Graham, E. W., and Rodriguez, A. M., "The C h a r a c t e r i s t i c s of Fuel Motion which Affect--Airplane Dynamics", Douglas A i r c r a f t Company, - Inc. ,Repor t No. SM-14212, (November 1951).

79. Luskin, H.., and Lapin, E., lrAn Ana ly t i ca l Approach t o t h e Fuel S lcahing and Buf fe t ing Problems of A i r c r a f t " , J o u r n a l of t h e AeronauLical Sciences, (Apr i l 1952).

80. Cooper, R. M., "Dynamics of Liquids i n Moving Conta iners" , ARS J o u r n a l , (August 1960).

81. Lawrence, H. R., Wang, C. J., and Reddy, R. B., "Var i a t iona l So lu t ion of Fuel S losh ing Modes", Je t Propuls ion, (November 1958).

82. Ring, E., Rocket P r o p e l l a n t and P r e s s u r i z a t i o n Systems. P ren t i ce - Hall, Inc., Englewood C l i f f s , N. J., 1964.

B -6

83

84.

Liu, F. C . , "Pressure on Baf f l e Rings due t o Fuel Sloshing i n a Cylindrical Tank", (January 17, 1964).

MSFC , R-AERO-4-64, Huntsvi l le , Alabama,

O f N e i l l , J . P . , "Final Report on an Experimental Invest igat ion of Sloshing'!, STL/TR-59-0000-09960, Contract No. AF-04(647)-309, (March 4 , 1960).

B-7