TTHHEE THE AUTOMOBILES THE AUTOMOBILES AUTOMOBILES OF...

Preview:

Citation preview

Prof. C. Stan / 1

THE THE THE THE AUTOMOBILES AUTOMOBILES AUTOMOBILES AUTOMOBILES OF THE FUTUREOF THE FUTUREOF THE FUTUREOF THE FUTURE

functions, systems, propulsion, globalized manufacturingfunctions, systems, propulsion, globalized manufacturingfunctions, systems, propulsion, globalized manufacturingfunctions, systems, propulsion, globalized manufacturing

Professor Cornel Stan

West Saxon University of Zwickau, Germany

Prof. C. Stan / 2

“THE FORCE IS A CHILD OF MATERIAL MOVEMENT BUT A GRANDDAUGHTER OF THE SPIRITUEL MOVEMENT “

LEONARDO DA VINCI (1452-1519)

BUICK BUGS, 1910 – DRIVEN BY LOUIS CHEVROLET – VELOCIT Y IN INDIANAPOLIS (USA) 1910: 168 KM/H (BOB BURMAN)

Prof. C. Stan / 3

LaFerrari 2013

Gasoline Engine

6262 cm³ / 94,0 mm × 75,2 mm

Compression ratio: 13,5:1 /Cylinder: V12, 65°

Power at 9000 rpm 588 kW (800 PS)

Torque at 6750 rpm700 Nm

2 Electric Motors 120 kW (163PS)

(one at gear/one for engine functions)

Prof. C. Stan / 4

VW 2013

Prof. C. Stan / 5

PorscheCarrera 4

PorscheGT 3

Sw

eptv

olum

e (

Lite

r)

BugattiVeyron

6 8 10 12 16

Cylinders

3.0

8

.0

MaseratiSpider

AudiA8

JaguarXJ

PorscheCayenne

MercedesSL55 AMG

LamborghiniGallardo

BMW 760i

Aston Martin Vanquish

Bentley Coupè GT

VWPhaeton

Ferrari Enzo

LamborghiniMurcielago

Ferrari 360 Modena

Ferrari 575 Maranello

3 Liters?

Prof. C. Stan / 6

The automobile for the megacity

Traffic densitycompact car, acceleration / decceleration

Green house effectzero CO2 emission

Pollutants and noisezero

Prof. C. Stan / 7

Prof. C. Stan / 8

Influence of battery on car size

mass x acceleration = force

force x distance = work (energy)

energy = power x duration

8kWh = 8 kW (11 hp) for one hour(Opel Ampera )114 kg / 34.000 Euro

Prof. C. Stan / 9

Battery

- Lithium-Ion- 35 kWh- 3,8 h- 260 kg

Electric motor

- 150 kW- 152 km/h- 220 Nm- 0-100 km/h: 8,5s

The first problem of the electric car: the autonomy

Prof. C. Stan / 10

The second problem of the electric car: the energy sourceEnergy mix in various countries

Ele

ctric

Een

ergy

Prof. C. Stan / 11

Comparison of CO 2-emission:VW Diesel – VW Electric

99

188

171

5

89

115

0

50

100

150

200

250

Golf Diesel BlueMotion (1,6 l)

Braunkohle Steinkohle Kernkraft Strommix-EU(2007)

Strommix-D(2010)

CO

2-

Em

issi

on

VW Golf Blue - e - motion

Prof. C. Stan / 12

The car of the future: functions

Torque

Power

PollutantsComparison

Safety (active, passive)

Comfort(climate)

Prof. C. Stan / 13

The third problem of the electric car: the safety at impactEnergy mix in various countries

Prof. C. Stan / 14

Variety of car markets:regions, types, classes

objective and

subjective

acceptance

geographic,

economic and

ecologic

conditions

size,

power,

comfort,

price

Luxury, middle class, allrounder

Prof. C. Stan / 15

Car structure

Prof. C. Stan / 16

Car structure

Prof. C. Stan / 17

Car body structure

Prof. C. Stan / 18

Chassis – material with fibres in one direction

Prof. C. Stan / 19

PSA 2013 Common platform for 50% of Peugeot and Citroen cars

Prof. C. Stan / 20

VW MQB Platform

Prof. C. Stan / 21

VW MQB Platform

Prof. C. Stan / 22

VW MQB Platform

Prof. C. Stan / 23

Interieur - comfort

Prof. C. Stan / 24

Interieur - design

Prof. C. Stan / 25

Connection configuration

Propulsion(Data)

CANFlexRay

Comfort Applications(Data)

CANLIN

Infotainment(Data, Language, Images)

CANMOST

Radio/TV(DAB/DVB)

Phone(GSM/UMTS)

Data(GPRS/UMTS)

Navigation(GPS/Galileo)

Prof. C. Stan / 26

Electronic systems - Frequency range

1 MHz 100 MHz 1 GHz 10 GHz

Mobile PhoneGSMUMTS

Sat-RadioNavigationGPSGalileo

TelematicsToll Collect

Radio/TVAM/FMDABAnalog TVDVB

Prof. C. Stan / 27

Life Cycles

Vehicle Industry:

3 Years Development 7 Years Lifetime

Media Industry: 0.5 – 1 Years Lifetime

Prof. C. Stan / 28

• future internal combustion engines –function supplier arround combustion

• future fuels for internal combustion engines –natural gas, liquid petroleum gas, alcohols, oils

• electric motors and internal combustion engines –competition or concurrents?

• What is the propulsion concept for tomorrow? –universality or variety?

Future propulsion and alternative fuels

Prof. C. Stan / 29

Overview of processes, propulsion systems and energy sources for automotive propulsion

����

SunWater

Wind

Energy-sources Air

Propulsion

Synchronous Current

Asynchronous CurrentThree-Phase Current

Direct Current

Electric motor

ZiBrNiCdPbEnergy Storage

+ electric -

Time

Hot FluidHydrogen

Vegetable Oil

Gas, Gasoline, DieselEnergy Storage

(thermal)

Gas Turbine, axial

Gas Turbine, radial

Stirling

WankelCI, Piston, DI, 2 Stroke

CI, Piston, DI, 4 Stroke

SI, Piston, DI, 2 Stroke

SI, Piston, DI, 4 Stroke

Thermal Engine

OptimizedThermodynamic

ProcessesEnergy Conversion

on Board

Energy Conversionon Board

Energy ConversionStation

Gas Turbine, axial

Gas Turbine, radial

Stirling

Wankel

CI, Piston, DI, 2 Stroke

CI, Piston, DI, 4 Stroke

SI, Piston, DI, 2 Stroke

SI, Piston, DI, 4 Stroke

Thermal Engine

Synchronous Current

Asynchronous Current

Three-Phase Current

Direct Current

Electric motor

Energy Conversionon Board

Energy Conversionon Board

Energy ConversionStation

Hot Fluid

HydrogenVegetable Oil

Gas, Gasoline, Diesel

Energy Storage(thermal)

ZiBrNiCd

Pb

Energy Storage+ electric -

Prof. C. Stan / 30

Prof. C. Stan / 31

Future internal combustion engines

Prof. C. Stan / 32

Fuel/air mixture and combustion

flame front

injection

mixture

combustion

Prof. C. Stan / 33

Direct injection in combustion chamber: process simu lation

5 Energiemanagement: Kombinationen von Antriebssystem en, Energieträgern, -wandlern und -speichern

Prof. C. Stan / 34

Diesel engine – fuel spray and temperature developmen t within the combustion chamber

Prof. C. Stan / 35

Diesel engine – fuel spray and temperature development within the combustion chamber

Prof. C. Stan / 36

NOx formation within the combustion chamber

Prof. C. Stan / 37

Future engines: function improvement

Variable

Valve Timing

Exhaust Gas RecirculationManagement of

Heat Transfer

Homogeneous Charge

Compression Ignition

Gas Wave Tuning

Supercharging

Turbocharging

Internal Mixture Formation by

Direct Injection

Advanced Catalyst

Technology

Prof. C. Stan / 38

Turbocharger

Limited Valve trainElements

Exhaust System

Cam Phaser

Variable Intake ManifoldPort De Activation

Flex Fuel (E20 → E100Bi Fuel (CNG/ LPG)

Cam Shaft(s)

Fully Flexible Valve Train

Direct Injection

Modular configuration of functions arround combustion

Prof. C. Stan / 39

Prof. C. Stan / 40

Criteria of convergence of SI & CI engines based on thermodynamic proesses

SI engine CI engine

Prof. C. Stan / 41

ICE fuel consumption evolution trends

CO2emission

Turbo-charging

SIDIVVT

SIDIlean

PDA

+start-stop

com

bina

tions

Downsizing, incl. Launch improvements

80 %

2004 2008 2012

100 %

Euro5

Low temp. combustion

+ DPF

+ Noxaftertreatment

Diesel Oxi-Catcommon rail

Gasoline PFIw/ EGR

Prof. C. Stan / 42

ICE cost evolution trends

Cost

Low temp. combustion+ DPF

+ NOxaftertreatment

100 %

2004 2008 2012

200 %

Euro5

Turbo-charging

SIDI VVT

SIDIlean

PDA

+start-stop

Downsizing, incl. Launch improvements

com

bina

tions

Gasoline PFIw/ EGR

Diesel Oxi-CatCommon rail

Prof. C. Stan / 43

• future internal combustion engines –function supplier arround combustion

• future fuels for internal combustion engines –natural gas, liquid petroleum gas, alcohols, oils

• electric motors and internal combustion engines –competition or concurrents?

• What is the propulsion concept for tomorrow? –universality or variety?

Future propulsion and alternative fuels

Prof. C. Stan / 44

Energy sources and resources

light

Prof. C. Stan / 45

Properties of conventional and alternative fuels for automobiles

APS-2002 /45

FUEL STRUCTURE DENSITY

[ ]3/ dmkg

VISCOSITY (KIN.)

[ ]cSt

FUEL ENTHALPY

[ ]kgMJ /

STOECH. AIR-FUEL

RATIO [ ]FuelkgkgL/

MIXTURE ENTHALPY

[ ]MixkgMJ /

OCTAN NO / CETAN NO

VAPORIZATION ENTHALPIE

[ ]kgKJ /

HYDROCARBONS GASOLINE DIESEL NATURAL GAS (85-95% METHAN) LPG 50% PROPAN; 50% BUTAN)

CmHn (<<<<C8H18) CmHn (<<<<C8H18) CH4 C3H8/C4H10

0,72-0,78

0,78-0,84

0,141 (0°C/20MPa) 0,409 (-

150°C/0,1MPa) 0,00079

(0°C/0,1MPa) 0,00235 GAS (0°C/0,1MPa)

ca. 0,5 LIQUID (0°C/0,5–1,0MPa)

<<<< 1,2

3,7

...

...

44

43,2

45

46

14,6-14,7

14,5

14,5

15,5

3,9

3,8

4,0

3,8

91-99

50*-54*

ca. 120

98

350

270

0,51 (GAS)

386

ALCOHOLS METHANOL ETHANOL

CH3-OH C2H5-OH

0,792

0,785

...

...

20

26

6,47

9,00

3,5

3,5

106

107

1103

840

HYDROGEN H2

0,009 (GAS) (-200°C/0,1MPa) 0,071 (LIQUID)

(-253°C/0,1MPa)

- 120 34,3 3,0 - 436

VEGETABLE ÖILS RAPSED OIL RAPSED OIL METHYLESTHER

CmHnOpRi

0,92

0,89

68-75

6-8

37,6

37,2

12,4

12,5

...

...

40*-44*

54*-58*

...

...

DIMETHYLETHER CH3OCH3 0,00197

(15°C/0,1MPa) - - - ... 55* ...

EXHAUST STORAGE LUBRICATION OPER. FUEL BMEP KNOCK COLD STARTGAS ON BOARD RANGE DOSAGE MIXTURE COOLINGCOMPONENTS CHARGE MASS

Prof. C. Stan / 46

Comparison fuel enthalphy – mixture enthalpy

Hgem

METHANOL20.0

6.47

DIESEL43.2

GASOLINE44.0

HYDROGEN120.0

14.5 14.6 34.3 6.47 14.5 14.6 34.3

DIESEL3.9

METHANOL3.5

GASOLINE3.8

HYDROGEN3.0

0

20

60

40

80

120

Hu

0

1

2

4

MJ/m³

(AIR/FUEL)ST

FUEL ENTHALPY

(AIR/FUEL)ST

MIXTURE ENTHALPY

Prof. C. Stan / 47

CNG Car

Prof. C. Stan / 48

Layout of hydrogen powered automobiles

Prof. C. Stan / 49

Engine performances when using gasoline and hydrogen

Prof. C. Stan / 50

Cryogenic hydrogen reservoir for car applications

pV = mRT

R = 8314/M

M=2 kg/kmol

Prof. C. Stan / 51

Hydrogen / air mixture formation: manifold injection and direct injection

- Low mass but high volume

- Uncontrollable ignition

- High combustion temperature

� NOX

Prof. C. Stan / 52

Car with internal combustion engine adapted for variable r atioof gasoline / ethanol (flex fuel)

low frictionvalves

spark anglecorrection

fuel masscorrection

ethanol sensor

ethanol resistent components

torq

ue

n/rpm

pow

er

n/rpm

Prof. C. Stan / 53

Ethanol: production, properties, utilization

Production Brasilien USA

Source Sugar Cane Corn / Cellulose*

CO2-Recycling (well-to-wheel) 61 % /EPA 2011,USA/ 13 % / 20…30%

EEthanol/ EProduktion 8,3…10,2 1,3…1,6

Price 22 Cent/l 30 Cent/l

Flex-Fuel Cars 12 Millions 9,3 Millions89 % worldproduction in USA and Brasil

*vegetable waste, in the future cellulose based ethanol from industrial waste (paper, wood, housewaste)/Cyanobakteria

Combustion Ethanol Gasoline

Consumption 1,568 l 1 l

Emission CO2 2,356 kg 2,285 kg

H2O 1,44 kg 1,013 kg (≈ 1 l)

N2 8,452 kg 8,45 kg

Prof. C. Stan / 54

107 aus buch aa

Production of Ethanol

Prof. C. Stan / 55

fermented fruits

alcohol

flame

pipe

cooling

water reservoirfor cooling

combustible

Most known ethanol production

Prof. C. Stan / 56

• future internal combustion engines –function supplier arround combustion

• future fuels for internal combustion engines –natural gas, liquid petroleum gas, alcohols, oils

• electric motors and internal combustion engines –competition or concurrents?

• What is the propulsion concept for tomorrow? –universality or variety?

Future propulsion and alternative fuels

Prof. C. Stan / 57

Future propulsion – OEM opinions

• our USA full hybrids not for Europe• in Europe Diesel is even better

• full hybrids for urban use• Diesel for intercities and motor ways

• Two Mode Hybrid Systems for GM-BMW-Daimler only for USA• in Europe Diesel is even better

• Diesel good for India but not for China and USA

Diesel in USA - not realistic

2009 – Prius with LiIon Battery

• Diesel in USA –15% in 2015• 30% less consumption in US test

• Batteries – poor energy density• short life time hydrogen in fuel cells for propulsion

hydrogen in piston engine for propulsionand in steady fuel cell for energyon board

• Hybrids will conquestthe market – (mild/micro)

• full hybrids in niches because price

4000 €8000 €

5-6 [kW] 300 –800 €

10-20 [kW] 1000 - 2000 €

Prof. C. Stan / 58

Prof. C. Stan / 59

Hybrid vehicles (examples)

Type Propulsion Energy ConsumptionModell mass Type Power [kW] Torque [Nm] Batterie Energie City Land Comb.

[kg] IC elektrisch fossil elektr. komb. fossil elektr. komb. - [kWh] [l/100km] [l/100km] [l/100km]Lexus GS 450h 1875 Otto Synchron 221 147 254 368 203 k.A. Ni-MH 1.9 10.7 9.4 10.2Lexus HS 250h 1710 Otto Synchron 110 105 140 187 270 k.A. Ni-MH 1.6 6.7 6.9 6.7Lexus LS 600h 2360 Otto Synchron 291 165 360 382 220 k.A. Ni-MH 1.9 12.4 10.2 11.8Lexus RX 450h 2050 Otto Synchron 182 125 220 317 350 k.A. Ni-MH 1.9 7.8 8.4 8.1Lincoln MKZ Hybrid 1702 Otto Synchron 116 70 142 184 225 k.A. Ni-MH 1.4 5.7 6.5 6.0Mazda Tribute 1656 Otto Synchron 99 52 116 167 k.A. k.A. Ni-MH k.A. 6.9 7.8 k.A.Mercedes ML 450 Hybrid 2381 Otto Synchron 205 60 246 350 260 517 Ni-MH 2.4 11.2 9.8 k.A.Mercedes S 400 BlueHybrid 2029 Otto Synchron 205 15 220 350 160 385 Li-Ion 0.9 12.4 9.4 k.A.Nissan Altima Hybrid 1584 Otto Synchron 138 105 148 220 270 k.A. Ni-MH k.A. 4.7 4.9 k.A.Peugeot 3008 Hybrid4 1701 Diesel Synchron 120 27 147 300 200 500 Ni-MH k.A. 3.9 3.7 3.8Porsche Cayenne S Hybrid 2240 Otto Synchron 245 34 279 440 300 580 Ni-MH 1.7 11.8 10.2 k.A.Porsche Panamera S Hybrid 1980 Otto Synchron 245 34 279 440 300 580 Ni-MH 1.7 10.2 8.4 k.A.Suzuki Twin 703 Otto Synchron 32 5 k.A. 57 33 k.A. k.A. k.A. k.A. k.A. 2.9Toyota Auris Hybrid 1455 Otto Synchron 73 60 100 142 207 k.A. Ni-MH 1.3 3.8 3.8 3.8Toyota Camry Hybrid 1480 Otto Synchron 110 105 140 187 270 k.A. Ni-MH k.A. 10.7 7.1 k.A.

Toyota Highlander Hybrid 1790 Otto Synchron 17212551

209 292335130

k.A. Ni-MH k.A. 11.8 9.4 k.A.

Toyota Prius 1380 Otto Synchron 73 60 100 142 207 k.A. Ni-MH k.A. 4.6 4.9 4.7Volkswagen Touareg Hybrid 2329 Otto Synchron 248 34 290 441 580 576 Ni-MH 1.7 11.8 9.8 k.A.Volvo V60 Plug-in Hybrid k.A. Diesel k.A. 158 52 k.A. 440 200 k.A. Li-Ion 12 k.A. k.A. k.A.

Prof. C. Stan / 60

Cross section through the hybrid system (SI engine – Elect ric motor) of an automobile TOYOTA PRIUS (Courtesty: TOYOTA)

Prof. C. Stan / 61

AUDI Q7 HYBRID

Internal combustion engine4,2 l FSI V8257 kW (350 PS), 440 Nm

E Motorup to 30 km/h without i.c.e.32 kW (44 PS), 200 Nm

Performances2400 kgTraction 4x40 – 100 km/h in 6,8 s (- 0,6 s)80 – 120 km/h in 7 s (- 2 s)Fuel cons: 12 l/100 km (- 13 %)

BatteryNi-MH, 140 kg

(Quelle: www.audi.de)

Prof. C. Stan / 62

Parallel hybrid propulsion system (Diesel engine – Elect ric motor) for high power made by DAIMLER CHRYSLER

Prof. C. Stan / 63

Porsche Panamera S Hybrid

Prof. C. Stan / 64

BMW Active Hybrid X6

Prof. C. Stan / 65

Peugeot 3008 hybrid

1 E Motor 2 Battery3 PTMU

(Powertrain Management Unit)4 Electronic Control Unit5 Stop- /Go Actuator6 Automatic Transmission – 6 Gears7 Diesel Engine

Courtesy: Peugeot)

Internal combustion engine 2,2 l Diesel120 kW

E Motor 27 kWFuel cons: 3,8 l/100 km (-35 %)CO2-Emission: 99 g/km

Propulsion strategy electric propulsion only(3 – 4 km) ICE + E motor

Prof. C. Stan / 66

Parallelhybrid – Audi duo

1989 1991 1997

1989 Audi 100 duo 1991 Audi 100 duo 1997 Audi A4 duo

ICE 2,3 l 5 Cylinder 2,0 l 4 Cylinder 1,9 l 4 Cylinder TDI

136 hp 90 hp

Front Front + Rear Front

E rotary current motor

12,6 hp 28,6 hp 29 hp

Rear Rear Front

Battery Ni-Cd Ni-Cd Pb

Prof. C. Stan / 67

Source: GM

Parallelhybrid versus Diesel

Prof. C. Stan / 68

0

20

40

60

80

100

120

140

160

180

200

500 1000 1500 2000 2500 3000 3500 4000 4500

Dre

hmom

ent

Drehzahl

5 kW

10 kW

15 kW20 kW 30 kW 40 kW 50 kW

210 215225

250

275210 215

225

250

275

Motor mit großem HubraumMotor mit geringem Hubraum

Anforderungsbereich im Stadtverkehr

Volllastkurve

[Nm]

[min-1]

Down Sizing

Prof. C. Stan / 69

Electric cars: history

1851 – locomotive with electric motor (USA)

1860 – lead batteries for vehicles (USA)

1881 – automobile with electric propulsion (USA)

1890 – automobile with motors in wheels (Germany)

1900 – mobility in USA38% electric / 40% damp / 22% gasoline

1992-2005 series cars with electric propulsion

1992-1996 VW-City Stromer ( 120 cars)

1995-2005 PSA- Peugeot, Citroen (10.000 cars)

1996-1999 GM – EV1 ( 1100 cars)

Prof. C. Stan / 70

Berlin 1882: Electric urban vehicle of Siemens

Prof. C. Stan / 71

VW Golf Blue e-motion

Prof. C. Stan / 72

Motors integrated in wheels: Mitsubishi, Michelin, Honda

Prof. C. Stan / 73

Electric car with motors in wheels

Prof. C. Stan / 74

Electric car: components configuration

Prof. C. Stan / 75

Weight: 1600 kgMotor: 4 x AsynchronPower: 230 kWTorque: 4500 NmBatteriy: Li-Ionen, 42,4 (53) kWh,

450V, 470 kgRange : 248 km (NEFZ)vmax: 200 km/h0 – 100 km/h 4,8 s

(Quelle: www.audi.de)

Electric cars: prototypes

Prof. C. Stan / 76

Climate control conditions

Prof. C. Stan / 77

Electric cars in prodution (selection)

Type Propulsion Battery Performancesmass motor P M battery energy range vmax

[kg] - [kW] [Nm] - [kWh] [km] [km/h]

Aptera 2e 682 - 22.8 112 LiFePO4 13 160 137

Beijing Automotive BAIC C71 1880 Synchron 63 160 LiFePO4 22 150 160

Beijing Automotive BE701 EV 1790 Synchron 110 300 - - 200 160

Beijing Automotive C30 EV 1000 - 47 82 Li-Polymer 31 200 160

BMW Mini E 2009 Synchron 150 220 Li-Ion 35 160 153

Bomobil 1000 Synchron 10 300 - 27 150 130

BYD e6 2295 Synchron 75 450 LiFePO4 60 300 185

BYD K9 14300 Synchron 90 550 LiFePO4 324 250 96

Chery QQ3 EV 1100 Synchron 12 72 Li-Ion - 120 60

Chery Riich M1 EV 1060 Synchron 40 - LiFePO4 - 120 150

Citroen c-Zero, Mitsubishi i-MIEV, Peugeot iOn*

1120 Synchron 47 180 Li-Ion 16 160 130

Detroit Electric e63 1242 - 150 380 Li-Polymer 25 320 192

Fine Mobile Twike Easy 250 Asynchron 5 - Li-Ion - 200 85

Ford Focus Electric 1675 - 92 246 Li-Ion 23 170 136

Foton Midi EV - - 80 280 LiFePO4 24 150 160

Prof. C. Stan / 78

Main characteristics of electrical batteries

System Pb-PbO2 Ni-Cd Ni-MH Zn-Br 2 Na-NiCl2 Na-S Li-Ion

Betriebs-temperatur

[°C]0...45 -20...50 -40...50 20...40 300...350 300...350 -40...60

Energiedichte2h Entl. [Wh/kg]

20...30 40...55 50...60 50...70 80...100 90...120 90...140

Zellspann. U 0[V]

2,1 1,35 1,35 1,79 2,58 2,08 3,6

functiontemperature[°C]

energy density2h discharge[Wh/kg]

cell tension[V]

Prof. C. Stan / 79

Energy storage on boardequivalent to 37 liters diesel fuel

Equivalent to 37 liters diesel fuel

Prof. C. Stan / 80

Energy conversion in a fuel cell

anode:

cathode

complete reaction:

Prof. C. Stan / 81

Configuration of modules in a fuel cell car

(COURTESY: DAIMLER CHRYSLER)

Prof. C. Stan / 82

0

0.2

0.4

0.6

0.8

1

0 200 400 6000

100

200

300

400

500

600

700

800

XPixels

YP

ixe

ls

Energy from chemical reaction

battery:

- cold (<300°C)

- macroscopic staticmicroscopic movement

fuel cell:

- cold (<300°C)

- macroscopic flows

combustion:

- hot (1800 – 2000°C)

- turbulent flows

Prof. C. Stan / 83

„Tulip“ park-and-charge system for automobiles with elect ric propulsion

Prof. C. Stan / 84

Configuration of the function modules within a series hybrid propulsion system for an urban car

Prof. C. Stan / 85

Range Extender – MAZDA 5 wankel engine with hydrogen LiIon battery

Prof. C. Stan / 86

Electric motor

− 111 kW / 370 Nm

Li-Ion Battery

16 kWh 180 kg

Internal combustion engine1,4 l

63 kW /4800 min-11

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Prof. C. Stan / 87

– Jaguar C-X75

− 4x145 kW / 4x400 Nm( 4 motors in wheels)

− System power: 580 kW

− System torque: 1600 Nm

− 2 Gasturbines : 2x 70 kW

− Battery: 19,6 kWh

− CO2-emission: 99 g/km

− Höchstgeschwindigkeit: 330 km/h

− 3,4 s von 0 auf 100 km/h

Range Extender: Gasturbine

Prof. C. Stan / 88

Alternative propulsion: tendencies worldwide

(Quelle: Bosch )

Ben

zin

Die

sel

(68,

49 %

)

(24,

66 %

)

(5,2

7 %

)

(0,8

9 %

)

(0,3

3 %

)

(0,3

3 %

)

(0,0

3 %

)

6,8 % AlternativeAntriebe

Ben

zin

Die

sel

13 % AlternativeAntriebe

(0,3

9 %

)

(0,3

4 %

)

(0,9

9 %

)

(3,3

%)

(8,1

9 %

)

(26,

37 %

)(60,

44 %

)0

10

20

30

40

50

60

70

80

[Mio]

100

91 Millionen Fahrzeuge 2015

Alk

ohol

/ Ben

zin

Hyb

rid

Erd

gas

(CN

G)

Flü

ssig

gas

(LP

G)

Ele

ktro

mot

or(P

lug

In)ve

rkau

fte

Fah

rzeu

ge p

ro J

ahr

0

10

20

30

40

50

60

70

80

[Mio]

100

73 Millionen Fahrzeuge 2008

Alk

ohol

/ Ben

zin

Hyb

rid

Erd

gas

(CN

G)

Flü

ssig

gas

(LP

G)

Ele

ktro

mot

or(P

lug

In)

50

18

3,850,65 0,25 0,25 0,02 0,350,30,9

3

7,45

24

55

6,8 % alternativepropulsion

13 % alternative propulsion

73 Millionen vehicles2008

91 Millionen vehicles2010

sold

vehi

cles

per

year

Prof. C. Stan / 89

• future internal combustion engines –function supplier arround combustion

• future fuels for internal combustion engines –natural gas, liquid petroleum gas, alcohols, oils

• electric motors and internal combustion engines –competition or concurrents?

• What is the propulsion concept for tomorrow? –universality or variety?

Future propulsion and alternative fuels

Prof. C. Stan / 90

Dimensions of the automotive world

SedanSUV Coupé Cabriolet

City Car Station wagon

Luxury Middle Cheap

Prof. C. Stan / 91

Luxury class : full hybrid

1 ICE2 E3 Gear4 ECU5 Lithium-Ionen Battery

Prof. C. Stan / 92

Middle class : propulsion by ICE, electric energy on board byfuel cell (same fuel for both)

Prof. C. Stan / 93

Compact city car : electric propulsion + battery

motor charger

ECU

Li-Ionen Battery

cooling system

gear

Prof. C. Stan / 94

Land / City car : electric propulsion + small battery + battery charger (I CE)

r

Prof. C. Stan / 95

Cheap car for mutiple use

Prof. C. Stan / 96

Globalization Aspects of Development and Manufacturi ng –

from Technical to Cultural Peculiarities

Prof. C. Stan / 97

Horizontal and vertical connectionsfrom research and development up to manufacturing

( ) ( )

TP

Luft

st

Luft

stTP

N

hussLuftüberscts)K/O(st)K/L(gVerbrennun

M

)K/L(1

M

)K/L(2099.01

2

h

32

s

12

cN

−+−+

++=′ λ

Prof. C. Stan / 98

Distribution of roles – from research and development up to manufacturing

c

c

Prof. C. Stan / 99

program strategy

development directions

product configuration

high context communicationbackground knowlegde

information network

high context communicationbackground knowlegde

information network

high context communicationbackground knowlegde

information network

polychroneculture

Low context communicationspecial knowledge

polarized information

Low context communicationspecial knowledge

polarized information

low context communicationspecial knowledge

polarized information

monochroneculture

Adaptation of communication formswithin a global development and production

Prof. C. Stan / 100

Globalized automotive engineering betweenrequirements and premises

economical and political structure

cultural peculiarities

social structure

technological support

technical know-how

Prof. C. Stan / 101

„Proportion is in every force, which ever itcould be “

Leonardo da Vinci (1452 – 1519)

... which ever it could be – the proportion or the force?

Recommended