Centre Especial de Recerca Planta de Tecnologia dels Aliments

Preview:

Citation preview

CERPTA

Centre Especial de Recerca Planta de Tecnologia dels Aliments

www.cerpta.com

AB BioticsFelnutiYpsicon

AB-BIOTICS

üProject Management R&D projects for companies.

Main clients belong to the Food Functional and Food

supplements.

üHistoric 5 years in operation and constant growth.

üIn company R&D for development of functional

ingredients, mainly probiotics for application in

functional foods and food supplements.

üCompany subsidiary dedicated to the development of

advanced genetic tools for Medical Diagnosis (SNP,

CNV)

üThe company has appropriate human and technical

resources to conducting genetic analysis.

üSubsidiary dedicated to developing a braking approach

in oncology: membrane-lipid therapy.

üPartnerships with laboratories at Drug Discovery to

ensure the inclusion of new molecules in the future.

YPSICON

Process-Plant Design, Installation & Maintenance

CERPTA

The main research area at CERPTAis the application of newtechnologies, nanotechnologiesand technofunctionality for theimprovement of food safety, foodnutritional value and the designand production of functional foods.

Fundamentos de alta pressäo:aplicaçöes e equipamento

para a indústria de alimentos

Centre Especial de Recerca Planta de Tecnologia dels Aliments

www.cerpta.com

Origin of European Projects of HP

-La Grande-Motte Congress Montpellier- France

September of 1992

High Pressures

• Hydrostatic High Pressures

• Dynamic High Pressures (UHPH)

Hydrostatic High Pressures

11 MPa = 9,869 atm = 10 bar = 10,197 kg/cm2

Abismo Challenger 120 MPa

Hydrostatic High Pressures

11 MPa = 9,869 atm = 10 bar = 10,197 kg/cm2

Paul Regnard 1891

* Hite y col. (1899), Bacterial inactivation in foods(milk, meat products and fruit juices).

* Giddings y col. (1929), Viruses inactivation.

* Timson y Short (1965), raw milk bacteria inactivation.

* Inorganic materials (ceramics, metals, steels, sintetics mat.) 70th.

HISTORY

• HP induces changes in the size, number, hydration, composition and light-scattering properties of casein micelles in HP-treated milk.

• Dairy whey hydrolysates obtained by pepsin and trypsin in combination with HP treatment could be used as a source of peptides in hypo-allergenic infant formulae.

• HP induces the association of whey proteins with casein micelles which positively affects rennet properties of milk

HHP Biochemical and Biophysical. Conclusions

• The amount of milk protein associated with the milk fat globules was increased by HP treatment. HP-induced aggregation and denaturation of agglutinins and lipoproteins are likely to have significant effects on HP-induced changes in the creaming characteristics of milk

• High pressure treatment induces tertiary structural changes of BSA, but no effect the secondary structure. We concluded that the pressure-induced elimination of BSA allergenicity seemed to be related to the tertiary structural change of BSA.

• The pressure-induced solubilisation of αS1- and αS2-caseins, essentially located in the core of the micelles, suggests that high pressure destabilised micelles including their internal structure.

• Unfolding of myosin and actin could be induced in extracted myofibrillarprotein with simultaneous treatment at 200 MPa and 40°C.

HHP Biochemical and Biophysical. Conclusions

• Treatments of 500 MPa combined with storage at 4 ± 1 °C produce high stability of lycopene when tomato puree was pressurized.

• In egg white proteins, pressure induces an increase in turbidity, surface hydrophobicity, exposed SH content and susceptibility to enzymatic hydrolysis, while it results in a decrease in protein solubility, total SH content, denaturation enthalpy and trypsin inhibitory activity.

• Pressures of 300 MPa and above cause denaturation of β-conglycinin(7S) and glycinin (11S) in soy milk. High pressure induces the formation of tofu gels that have gel strength and a cross-linked network microstructure.

HHP Biochemical and Biophysical. Conclusions

• The solubility of dietary fibre in white cabbage can be affected by high pressure temperature treatment, which may be of importance when producing foods with specific health effects.

• The effect of high-pressure processing (HPP) on cell wall polysaccharides in berries was investigated.

• Compared to treatment at atmospheric pressure, pecticpolysaccharides were degraded to a larger extent when HPP was used.

HHP Biochemical and Biophysical. Conclusions

• Carrot PME is much more thermostable and pressure-stable in carrot pieces than in carrot juice or purified form

• The catalytic activity of carrot PME was highly dependent on the temperature and pressure applied. In model and food systems (shredded carrots), optimal PME activity was registered at 50 °C in combination with pressures of about 300–500 MPa

• Soybean whey proteins hydrolysed at high pressure could be used as sources of peptides with low antigenicity when incorporated as food ingredients.

• High pressure combined with suitable enzymatic activity could be a useful tool for obtaining hydrolysates with low immunoreactivity to be used in special foods (hypoallergenic foods).

HHP Enzyme Conclusions

• High pressure-induced inactivation of the indigenous milk enzymes alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and phosphohexoseisomerase (PHI) was studied in the pressure range 400-800 MPa at temperatures between 5 and 40°C. With respect to pressure stability the following ranking was observed: ALP>GGT>PHI.

• Combined thermal and high pressure inactivation of tomato lipoxygenase occurs at pressures in the range of 100-650MPa combined with temperatures from 10-60°C, and followed first-order kinetics. In the high-temperature/low-pressure range, (T50°C and P300MPa) an antagonistic effect is observed

• Individual and total carotenoids, and provitamin A carotenoids, were significantly higher in HP tomato e than in the untreated and other treated tomato es

• High pressure processing constitutes an effective technology to inactivate the enzymes in fruit juices. Pressures higher than 400 MPacan be combined with mild heat (<50 °C) to accelerate enzyme inactivation.

HHP Enzyme Conclusions

Microorganisms

Tratamientos AP Código

300 MPa / 15 min / 30ºC300

400 MPa / 15 min / 30ºC400

60 MPa / 210 min / 30ºC G

60 MPa / 210 min / 30ºC + 300 MPa / 15 min / 30ºC G+30060 MPa / 210 min / 30ºC + 400 MPa / 15 min / 30ºC G+400

B. cereus ATCC 9139

B. cereus ATCC 9139

0

0,5

1

1,5

2

2,5

3

300 400 G G+300 G+400

Sin aditivosNisina 1Nisina 2Lisozima

Tratamientos AP

Red

ucci

ón L

og(N

o/N

)

Evolución de recuentos de B. Cereus, 15 días a 8ºC.

3

4

5

6

7

0 5 10 15

C

300

400

G

G+300

G+400

días

Rec

uent

os d

e B.

Cer

eus

(log

ufc/

g)

Serie N2

Lethality in CIN of three strains of Y. enterocolitica inoculated in model cheese and pressurized at 20ºC for 10 min at day 0.

Log

(No/

N)

SerotypeTreatment

(MPa)

Lethality (log No – log N)

Mean† CI‡

O:1

0 - -

300 ³3.36b ±0.41

400 ³3.36b ±0.41

500 ³3.36b ±0.41

O:3

0 - -

300 1.94c ±0.45

400 ³5.03a ±0.17

500 ³5.03a ±0.17

O:8

0 - -

300 3.48b ±0.17

400 ³4.28a ±0.40

500 ³4.28a ±0.40

Behaviour of Y. enterocolitica in model cheese after high hydrostatic treatment (a) serotype O:1, (b) serotype O:3 and (c)

serotype O:8.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Days) of storage at 8ºC

log

(C

FU

/g)

CIN ControlTALControlCIN 300 MPaTAL 300 MPaCIN 400 and 500 MPaTAL 400 and 500 MPa

a

Behaviour of Y. enterocolitica in model cheese after high hydrostatic treatment (a) serotype O:1, (b) serotype O:3 and (c)

serotype O:8.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Days) of storage at 8ºC

log

(C

FU

/g)

CIN ControlTAL ControlCIN 300 MPaTAL 300 MPaCIN 400 and 500 MPaTAL 400 and 500 MPa

b

Behaviour of Y. enterocolitica in model cheese after high hydrostatic treatment (a) serotype O:1, (b) serotype O:3 and (c)

serotype O:8.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Days) of storage at 8ºC

log

(C

FU

/g)

CIN Control TAL + CINCIN 300 MPaTAL 300 MPaCIN 400 and 500 MPaTAL 400 and 500 MPa

c

Lethality and counts in Sorbitol Mac Conkey agar of E. coli O157:H7 inoculated in model cheese and pressurized at 12ºC

for 10 min at day 0.

Treatment(MPa)

Counts log (CFU/g)

Lethality (log No – log N)

Mean† CI‡ Mean† CI‡

0

7.30

0.22 - -

300 3.71 0.88 3.59a 1.08

400 n.d - ³6.30b 0.22

500 n.d - ³6.30b 0.22

Behaviour of E. coli O157:H7 inoculated in model cheese after HHP treatments at 300, 400 and 500 MPa.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Days)

Lo

g (

CF

U/g

)Control TAL

Control Sorbitol

300 MPa TAL

300 MPa Sorbitol

400 MPa TAL

500 MPa TAL

400 and 500 MPa Sorbitol

• For the inactivation of spores of B. subtilis and Clostridium sporogenes,, the addition of nisin to the plating medium appeared to be synergistic in some instances when combined with pressurization at elevated temperatures and reduced pH. The adition of 0.1% sucrose laurate, may be dramatic synergistic effects.

• HHP treatments at 5 degrees C induced more E. coli inactivations than those at 25 degrees C in liquid whole egg, from results of approximately 3 log reductions of E. coli and over 5 log reductions of Pseudomonas and Paenibacillus, HHP treatment of LWE (liquid whole egg) at 5 degrees C is regarded to be as effective as conventional thermal pasteurization

• In skim milk suplemented with the lactoperoxidase-hydrogen peroxide-thiocianate (LP) system considerable further inactivation of food borne bacteria occurred in the first hours after pressure treatment.

HHP Effects on MicroorganismsConclusions

• In minced chicken, vacuum packaging favour the growth of lactic acid bacteria allowing the generation of desirable organisms as well as the growth of spoilage indicators. High pressure treatment combined with vacuum packaging and effective cold storage proved to be a very effective tool for enhancing the microbial quality.

• Reduction of microorganisms increase when the rate of pressurization and depressurization is increased.

• The high pressure pasteurisation processes are capable to inactivate more than 5 log decades of the viable microorganisms present originally in raw juice and product is free of coli-form bacteria, yeast, moulds and salmonella during 30 days of storage at the chilled room temperature conditions (temperature up to 5 °C). The high-pressure treated broccoli juices are comparable in sulforaphane content and anti-mutagenic activity with frozen version.

HHP Effects on MicroorganismsConclusions

• The addition of nisin to cell suspensions after HP treatment, produce irreversible effects in sublethal damages.

• Pressure inactivation of L. lactis is strongly temperature dependent, baroprotection by sucrose occurs at any temperature but the baroprotective effects of NaCl is temperature dependent.

• Whit combination of PEF and HHP processes, the non-treated spores gradually turned into phase-dark spores and finally germinated and changed into vegetative cells, while the spores subjected to PEF/HHP treatment did not transfer to the phase-dark stage, meaning no germination

HHP Effects on MicroorganismsConclusions

• As expected, the rate of spore inactivation increased with increasing pressure and temperature.

• A small fraction of the spore populations survives conditions of up to 120°C and 1.4 GPa in isothermal treatments. Because of this tailing and the fact that pressure-temperature combinations stabilizing bacterial endospores vary from strain to strain, food safety must be ensured in case-by-case studies demonstrating inactivation or non growth of C. botulinum with realistic contamination rates in the respective pressurized food and equipment

HHP Effects on MicroorganismsConclusions

Hydrostatic High Pressure Machinery

Low pressure

pump

Water entry

Pressure intensifier

Decompression valve

Water exit

HP Cylinder

Heating/Cooling circuit

Product

STANSTED-INMAPA

STANSTED

Industrial Machinery

Discontinuous Industrial Machine from EMBUTIDOS ESPUÑA (OLOT, GIRONA)

AVURE

Hyperbaric

Semi-continuous Equipment

Treatment Cost of HHP

â Se debe considerar– Costes amortización (relacionado con Pmáx del equipo)

– Mantenimiento y personal

– Consumo energía

Coste de inversión equipo AP para alimentos a 600 MPa

0,6-3 millones €Tratamiento de 6000 L/h a 600 MPa, con un factor de eficiencia de volumen del 50%, puede costar entre =0,0 5-0,25 €/L según sea la productividad. El coste estimado está basado en una amortización a 5 años, con un 15% de interés, e incluye costes de tratamiento y mantenimiento del equipo.

• Primer producto cárnico HPP en el mundo.

• Lanzó en 1998 el primer jamón cocido loncheado tratado por HPP.

ESPUÑA (Spain): El pionero

MARTIKO (España)Wave 6000/55

para productos de pato

ABRAHAM - ALEMANIA

Hiperbaric 150Proscuitto alemán exportado a USA

KRAFT FOODS (Ameriqual) - USA

Wave 6000/300Loncheado Natural

MAPLE LEAF (Canadá)

Wave 6000/300 para platos precocinados

MRM (España)

Hiperbaric 55

Moira Macs (Australia)

Hiperbaric 135

• Higienización y aumento de la vida útil• Conservación del color, sabor y vitaminas.• Reducción de la actividad de la PPO• Reducción de la retrogradación del arroz

Pais Año Producto Japan 1990 Mermeladas y salsas de frutas y verduras. Japan 1994 Arroz pre-cocido e hipoalergénico. USA 1997 Productos derivados del aguacate: guacamole

y salsas. Italy 2001 Mermeladas de frutas. USA 2002 Productos derivados del aguacate. Mexico 2003 Productos derivados del aguacate.. Mexico 2003 Productos derivados del aguacate. Mexico 2003 Productos derivados del aguacate. USA 2003 Aros de cebolla. Canada 2003 Productos a base de manzana: mermeladas y

salsas. USA 2004 Tofu. Spain 2005 Productos vegetales RTE. USA 2006 Salsa de tomate. USA 2007 Ensaladas Australia 2008 Puré de frutas

Vegetable products

Guacamole HPP

VERFRUCO (Mexico)

Hiperbaric 55Guacamole y productos de aguacate

Hiperbaric 420

Sandridge (USA)

Para “wet salads” - PP

SANDRIDGE FOODS (USA)

Nuevo producto “premium” en 2011

SimplyFresco (USA)Salsas

Stand Up Resealable Doy pack

CHIC FOODS

Hiperbaric 55 - PP

LEAHY ORCHARD: CANADA

• Puré de frutas• Estable a temperatura

ambiente

http://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/nf-an108decdoc-eng.php

Compañia País Año Producto Pokka Japan 1991 Zumo de uva. Wakayama Japan 1992 Zumo de mandarina Ulti France 1994 Zumos de cítricos. Jumex Mexico 2000 Zumos de cítricos y smoothies Ksun Lebanon 2001 Zumo s de frutas. Lovitt Farms USA 2001 Zumo de manzana. Frubaça Portugal 2001 Mezcla de zumos de manzana y cítricos. Ata Italy 2001 Zumos de frutas y vegetales. Avomex USA 2002 Zumos de naranja y limón y smoothies Beskyd Czech Republic 2004 Zumos de remolacha, broccoli,

manzana y zanahoria.

• Higienización y aumento de la vida útil• Conservación del color, sabor y vitaminas.• Reducción del amargor en el zumo de pomelo.

Drink and Juices

Preshafruit – Donny Boy (Australia) con sus zumos HPP ganó:

- Premio al mejor zumo- Premio a mejor concepto de bebidasAt Beverage Innovation Awards ceremony, Drinktec 2009

Preshafruit – Donny Boy (Australia)

Coldpress (England) - PET

FRUBAÇA (Portugal) –PET/HDPE

Felixia-PET

PET

Macè (Italy)

Hiperbaric 55 - Zumos & smoothies

EVOLUTION FRESH (USA)

Hiperbaric 420 en zumos - HDPE

ü Destrucción de los microorganismos patógenosü Incremento de la productividad y reducción de costes.ü Higienización y aumento de la vida útilü Estabilización de productos sin aditivosü Conservación de las emulsiones

País Año Producto España 2007 Rellenos de sandwich con queso EEUU 2007 Jerky cheese N Zelanda 2009 Calostro

Dairy Products

Wave 6000/120

www.hiperbaric.com

RODILLA (España)

Rellenos para sándwich basado en queso o mayonesa y con ingredientes

PET

Bebida a base de calostro - HDPE

Hiperbaric 55

NEW IMAGE Natural Health (NZ)

ü Extracción de la carne cruda de mariscos y crustáceos, procesada pero no cocida.

ü Desarrollo de nuevos productos.ü Incremento de la productividad y reducción de costes.ü Higienización (inactivación de Vibrio)ü Incremento de la vida útil.

País Año Producto USA 1999 Ostras USA 2001 Ostras

USA 2001 Ostras

USA 2001 Ostras

Canada 2004 Pescado Canada 2004 Langosta N. Zealand 2004 Mejillones en mitades. Italy 2004 Bacalao desalado. Spain 2004 Salmón, atún y merluza RTE USA 2005 Langosta Korea 2006 Mariscos Canada 2006 Pescado Japón 2007 Mariscos

Nota : letra azul = equipos de NC Hyperbaric

Fish Products

Supermarket in USA

High Pressure High Temperature (HPHT or PATS):Vasija de 55 litros - 630 MPa - hasta +120ºC bajo presión

HIPERBARIC 55HTü Diseño horizontal:gradiente de temperatura reducidoü Control independientre de temperatura del agua de presiónü Sistema de carga y descarga automáticaü Control de temperatura de la vasija de presiónü Sistema de calentado/enfriado

Ultra High Pressure Homogenization

1900. First Homogenizers

1902. Gaulin

Aims of Conventional Homogenizers

• Emulsion Stabilization

• Improved Taste

• Improved Texture

• Milk, Cream and Ice creams

• Pressures up to 50 MPa

1980 High Pressure Homogenization is Born (HPH)

HPH

Up to 150 MPa

HPH

HPH Conclusions

• More Stable Emulsions

• Improved Texture in Yogurts

• Microbial Counts Reduction

200-250 MPa

1990 First Prototypes of Ultra High Pressure Homogenization

2003. First Valves and Prototypes of UHPH with Double Intensifier Capable of

Working up to 350 MPa

TEM

Listeria monocytogenes inoculate in PBS (0.01 M, pH 7.2)

(a) Untreated cells

(b, c, d) Treated Cells at 100, 200 and 300 MPa at 25ºC

(Vachon et al., 2002)

(a) (b)

(c) (d)

Destrucción de microorganismosHPH- UHPH

Ø Microbial reductionØ Enzymatic activity

reduction

Food preservation

Without treatment

(Vachon et al., 2002)

100 MPa

200 MPa 300 MPa

Ø Particle size reductionØ Modification of colloidal

structures

Increasing physical stability

UHPH Effects on colloidal foods

UHPH and Milk and Dairy Products

Microbiological quality of goat milk for making cheese treated by UHPH (log cfu/ml)

Microbial inactivation by UHPH

Treatment

Microbiota RA 100 200 300

Total bacteria 6.41 ± 1.38 a 5.54 ± 0.57 b 1.80 ± 0.52 c 1.39 ± 0.15 c Psychrotrophic bacteria 6.49 ± 1.36 a 5.62 ± 0.67 b 1.34 ± 0.21c 1.21 ± 0.36 c Enterobacteriaceae 2.01± 0.85 a 0.96 ± 0.40 b ND ND Lactobacilli 3.64 ± 0.38 a 3.12 ± 0.22 b ND ND Lactococci 6.35 ± 1.46 a 5.41 ± 0.54 b 1.62 ± 0.56 c 0.95 ± 0.15 d

Quevedo et al. (2011)ND: not detected (under detection limit)

Milk fat globule disruption

15-20 MPa

X30.000

200 MPa

Conventionalhomogenization

UHPH

RA

Particle size (µm)

Transmission electron microscopyMilk fat globule membrane

Rennet coagulation aptitude

Quevedo et al. (2011)

Rennet coagulation

Confocal microscopy

Fresh cheese from UHPH milkCheesemaking

Zamora et al. (2011)

UH PA HP

Yogurt from UHPH milkYogurt making

• Yogurts from UHPH-treated milk are firmer than those from HT+SMP

•UHPH gels are more homogeneous, compact and less porous than HT+SMP gels

•The fat fraction is much more dipersed in UHPH gels and so, it is completely incorporated into the network

HT+SMP

10µ

200 MPa

10µ

200 MPa

10µ

200 MPa

10 µ

200 MPa

10 µ

Treatment Storage Time (days)

1 7 14 21 28

HT+SMP 1.42a 1.42a 1.43a 1.37a 1.42a

200 MPa 1.83b 1.79b 1.81b 1.86b 1.87b

300 MPa 1.99c 2.13c 2.27c 2.33c 2.23c

Firmness (N)

Yogurt from UHPH milkYogurt making

ü Good aptitude of milk to acid coagulation without needing to add skim milk powder

ü Great firmness and water retention capacity during storage at cold temperatures

ü Low acidity and excellent sensory characteristics

Serra et al. (2007, 2008, 2009)

Effects of UHPH on milkü Similar microbial quality to high pasteurized milk (90ºC for 15 s) with a treatment of 200-300 MPa and Ti = 30ºC or possibility to sterilization with 300 Mpa and Ti=75ºC compared to UHT milk.

ü Great physical stability against creaming during storage at cold temperatures

ü Whey protein denaturation and aggregation (UHPH at 300 MPa: 37%; PA at 90ºC for 15 s: 47%; b-Lg)

ü Slight reduction of micelle casein size

ü Slight mineral equilibrium alteration (transfer of soluble calcium and phosphate to colloidal phase)

ü Fat globule disruption and composition of milk fat globule membrane altered

ü No lipolysis phenomena due to LPL inactivation by UHPH (200-300 MPa)

ü Good technologic aptitude to rennet and acid coagulations

Pereda et al. (2006, 2007, 2008, 2009) and Zamora et al. (2007)

UHPH and Vegetable Milks

Composition of vegetable milks

% w/w

Almond milk Soy milk

Dry matter 5.18±0.01

Protein 1.15±0.04

Fat 1.93±0.07

carbohydrates 1.99±0.02

ashes 0.11±0.04

6.53±0.39

2.68±0.17

1.92±0.18

1.35±0.05

0.18±0.05

Microbiological analysis

Almond milk Soy milk

Treatment Total counts* Spores* Total counts* Spores*

Control 4.4 ± 0.5 4.21 ± 0.07 4.21 ± 0.16 3.18 ± 0.06

UHT ND ND ND ND

Pasteurized 4.0 ± 0.18 3.60 ± 0.20 3.27 ± 0.17 2.27 ± 0.01

200, 55 (1) 3.21 ± 0.16 3.20 ± 0.03 3.06 ± 0.05 2.05 ± 0.07

200, 65 2.03 ± 0.07 1.83 ± 0.01 1.76 ± 0.17 1.02 ± 0.01

200, 75 ND ND ND ND

300, 55 ND ND ND ND

300, 65 ND ND ND ND

300,75 ND ND ND ND

(1) MPa, ºC: inlet temperature of UHPH-treated samples* cfu/ml

Temperatures in UHPH

UHPH treatments

(MPa)

Inlet temperature of sample

(ºC)

T in the high pressure

valve (ºC)

Outlet temperature of sample

(ºC)

200 55±0.5 105.7 ± 0.58 27.1 ± 1.0

300 55±0.5 128.3 ± 1.53 27.3 ± 1.1

200 65±0.5 111.7 ± 1.15 27.0 ± 1.0

300 65±0.5 130.7 ± 1.15 26.2 ± 0.8

200 75±0.5 117.0 ± 2.00 25.6 ± 2.7

300 75±0.5 135.7 ± 1.53 26.2 ± 2.2

Time less than 0.3 sec.

Sterility Study

Samples were taken aseptically into sterilized bottles and then incubated at 30ºC for 20 days.

Treatment—Ti Tm-less 0.5sg Day 2 Day 7 Day 20

200 MPa 65ºC 111,7 coagulated

200 MPa 75ºC 130,7 coagulated

300 MPa 65ºC 117,0 - 3.97 ± 0.08 coagulated

300 MPa 75ºC 135,7 - - -

UHT (142ºC- 6 sec.) - - -

Sediment formation measured by turbiscan

Particle size analysis

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Contro

lUHT

Paste

urized

200,

5520

0, 65

200,

7530

0, 55

300,

6530

0,75

Almond milk

Soymilk

Particle size (mm) of vegetable milks: Sauter Diameter (d3,2)

300 MPa

200 MPa

UHT

Raw

Pasteurized

Particle size distribution in soymilk

Stability index by centrifugation (% w/w of sedimented particles)

0

1

2

3

4

5

6

7

8

9

10

Control

UHTPasteurized

200, 55

200, 65

200, 75

300, 55

300, 65

300,75

Almond milk

Soymilk

Oxidation (meq/L hydroperoxides)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Contro

lUHT

Paste

urized

200,

55

200,

65

200,

75

300,

55

300,

65

300,7

5

Almond milk

Soymilk

Reasons for applying UHPH to vegetable milks

Ø Alternative to dairy milk

Ø Health benefits: fat fraction composition, rich in antioxidants, balanced nutritional profile

Ø Processed by conventional heat treatments, specially UHT, which implies heat damage

Ø Stability problems, specially sedimentation of solid particles and creaming of fat globules

UHPH and Juices

Effect on temperature in apple juice during UHPH treatment atdifferent inlet temperature (Ti).

Temperatures (ºC)

Ti(ºC)

Pressures (MPa)

T 1 T 2 To

4

0 6.5 0.2 14.2 2.5 15.5 2.3

100 6.4 0.5 38.5 2.6 19.5 0.8

200 6.9 0.3 63.8 1.6 22.3 3.1

300 7.9 0.5 85.8 2.1 29.5 3.7

20

0 19.5 0.9 20.3 1.6 21.3 1.2

100 19.3 0.5 45.5 0.5 27.8 1.3

200 20.0 0.6 72.5 1.9 30.8 1.7

300 20.4 0.5 90.7 4.2 31.5 1.5

Mean Standard Deviation of three independent experiments (n=3) .(T1) temperature just before the high-pressure valve, (T2) temperaturejust after the high-pressure valve, (To) the outlet temperature. ~0.5 s

TEMPERATURES DURING PROCESSING

• BI • HMF

CtrlPast

100 MPa200 MPa

300 MPa

4º C

20º C0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

Brow

ning

Inde

x

CtrlPast

100 MPa200 MPa

300 MPa

4º C

20º C0,0

0,5

1,0

1,5

2,0

2,5

HM

F ( m

g/L

)

PA<R=100=200=300

PA>>UHPH=R

Ctrl100 MPa

200 MPa300 MPa

4º C

20º C

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

HM

F ( m

g/L

)

PHYSICOCHEMICAL ANALYSIS Apple Juice

Figure 1. Microbial population (log cfu/mL) of raw and treated apple juice during storage at 4 ºC.The present data are the mean value of three experiments standard deviation (n=6). WhereA)Total Count B)Psichrotrophs C)Mould and Yeast D)Lactobacilli E)Enterobacteria and F)FaecalColiforms at differents treatments. Raw(¨), 100 MPa at Ti=4 ºC (¡), 100 MPa at Ti=20 ºC (•),200M Pa at Ti=4 ºC ( ), 200 MPa at Ti=20 ºC (*), 300 MPa at Ti=4 ºC ( ), 300 MPa at Ti=20 ºC (+).

0

2

4

6

8

1 15 30 45 60

Lo

g (

cfu

/mL

)

.

Days

Microbial analysis

100 MPA 200 MPA 300 MPA PA

PME14.4/7.8

%20.9/43.1

%ND ND

PPO 30% 40% ND ND

CtrlPast

100 MPa200 MPa

300 MPa

4º C

20º C0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

Brow

ning

Inde

x

Enzymes

Treatment Ascorbic Acid(mg/L)

Vit C Total(mg/L)

b-Carotene(mg/L)

R 0.22 0.03 a 6.77 1.10 b 11.38 0.59 d

100 at 4ºC 0.23 0.03 a 6.08 0.33 b 9.71 1.00 cd

200 at 4ºC 0.23 0.04 a 6.17 0.71 b 9.11 0.81 bc

300 at 4ºC 0.23 0.03 a 6.29 0.76 b 7.46 0.85 ab

100 at 20ºC 0.23 0.03a 6.56 0.96 b 7.75 1.00 ab

200 at 20ºC 0.23 0.02 a 6.47 0.88 b 7.48 0.09 ab

300 at 20ºC 0.24 0.03 a 6.49 0.88 b 7.67 0.35 ab

PA 0.23 0.04 a 0.76 0.14 a 6.82 0.43 a

R=UHPH=PA R=UHPH>>PA

Vitamins

40

45

50

55

60

0

250

500

750

1000

1250

1500

1750

2000

Tot

al p

heno

lics

(mg

GA

E L

-1)

Ant

ioxi

dant

Cap

acit

y ( mM

TE

)

.

Antioxidan Capacity (ORAC) Antioxidant Capacity (TEAC)Antioxidant Capacity (FRAP) Antioxidant Capacity (DPPH)Total phenolics (Folin-Ciocalteau)

ab

c

*

a abbbbb

**

ANTIOXIDANT CAPACITY

ControlControl

Control

150 MPa

150 MPa

150 MPa225 MPa

225 MPa

225 MPa

300 MPa

300 MPa

300 MPa

Control

225 MPa

Day: 0

Evolution Day: 30

Evolution Day: 15

Evo

luti

on

Day

: 30

It is possible to produce long life apple juice byUHPH processing coupled with aseptic packaging.UHPH treatment (300 MPa and Ti=5ºC) was selectedto preserve apple juice and was successfully coupledto aseptic package technology. The UHPH-treatedjuice could exhibe microbiological, nutritional,physicochemical, biochemical and organolepticstability for about 21 months at 4 ºC (refrigerationtemperature).

UHPH and Orange Juice

0,00

0,40

0,80

1,20

1,60

UP

E/m

l

Control 100 MPa 200 MPa 300 MPa 90ºC/1min

Treatments

IT 10ºC/HT 30 sec IT 10ºC IT 20ºC

- PME activity as a function of the applied UHPH treatment.

- For comparing also control and thermal pasteurization treatment data are shown.

Orange Juice

- Counts of main microbial groups before and after UHPH and thermal pasteurization treatments

Orange Juice

45,87 ± 0,42 de8,66 ± 1,15 aPasteurized (90ºC/1min)

45,51 ± 0,42 d8,06 ± 1,73 a300 (IT 20 ºC)

44,21 ± 1,67 e7,60 ± 0,88 a300 (IT 10 ºC)

46,87 ± 1,43 c7,78 ± 0,99 a300 (IT 10 ºC/HT 30sec)

47,62 ± 0,45 c7,91 ± 1,71 a200 (IT 20 ºC)

46,58 ± 0,35 c7,78 ± 1,10 a200 (IT 10 ºC)

48,73 ± 0,70 b8,42 ± 1,35 a200 (IT 10 ºC/HT 30sec)

45,06 ± 0,35 de8,23 ± 2,44 a100 (IT 20 ºC)

47,47 ± 0,40 c7,88 ± 0,79 a100 (IT 10 ºC)

50,48 ± 1,82 a8,41 ± 1,23 a100 (IT 10 ºC/HT 30sec)

51,06 ± 1,18 a9,20 ± 1,26 aControl (Fresh juice)

Ascorbic acid(mg/100 ml)

Antioxidant capacity *FRAP (mmol Trolox

equivalent/l)Treatments

45,87 ± 0,42 de8,66 ± 1,15 aPasteurized (90ºC/1min)

45,51 ± 0,42 d8,06 ± 1,73 a300 (IT 20 ºC)

44,21 ± 1,67 e7,60 ± 0,88 a300 (IT 10 ºC)

46,87 ± 1,43 c7,78 ± 0,99 a300 (IT 10 ºC/HT 30sec)

47,62 ± 0,45 c7,91 ± 1,71 a200 (IT 20 ºC)

46,58 ± 0,35 c7,78 ± 1,10 a200 (IT 10 ºC)

48,73 ± 0,70 b8,42 ± 1,35 a200 (IT 10 ºC/HT 30sec)

45,06 ± 0,35 de8,23 ± 2,44 a100 (IT 20 ºC)

47,47 ± 0,40 c7,88 ± 0,79 a100 (IT 10 ºC)

50,48 ± 1,82 a8,41 ± 1,23 a100 (IT 10 ºC/HT 30sec)

51,06 ± 1,18 a9,20 ± 1,26 aControl (Fresh juice)

Ascorbic acid(mg/100 ml)

Antioxidant capacity *FRAP (mmol Trolox

equivalent/l)Treatments

-Antioxidant power and total content of ascorbic acid in the samples before and after UHPH and thermal pasteurization treatments.

Orange Juice

Submicroencapsulation

Submicroencapsulation

UHPH up to 400 MPa

Control 300 MPa

Casein (2,5%) + β-Carotene (0,01%)

Results

Turbiscan

STABLE DISPERSIONS

UNSTABLE DISPERSIONS

TEM Casein submicrocapsules

UHPH System 15 Prototype.

UHPH System 100 Prototype.

Ultra high pressure homogenization UAB team:

Buenaventura Guamis Victoria FerragutToni TrujilloArtur Xavier RoigManoli FernándezJoan Miquel QuevedoTomás López

Martín BuffaRamón GervillaJordi SaldoMaria del Mar SerraAna ZamoraAngela SuarezRoger Escriu

Acknowledgments:

Thank you for your attention

Funentech EU ProjectStansted Fluid PowertABBioticsNectinaUABUMPIIMax Rubner-Institut (MRI)

Acknowledgments:

Recommended