Renewable energy course#00

Preview:

Citation preview

Renewable Energy

Dr. Suhail Zaki Farooqui

Pakistan Navy Engineering College

National University of Sciences & Technology

Text Book

Text Books

3. Wind Turbine Engineering Design

By David M. Eggleston

Van Nostrand Reinhold Company NY

4. Power From The Sunby William B. Stine and Michael Geyer, 2001

Energy Scenario for Pakistan

Total Installed capacity ~ 21,000 MW

Actual Demand ~ 18,000 MW

Actual Production ~ 12,000 MW

Shortfall ~ 6000 MW

Energy Mix of Pakistan

1

2

3

4

5

46% Gas

35% Oil

12% Hydel

6% Coal2% Nuclear

Fuel for Electricity Generation in Pakistan

1

2

3

4

36% Oil

32% Hydel

27% Gas

5% Others

Projected Power Demand in Pakistan (2009-2030)

20.59424.474

36.217

54.359

80.566

113.695

0

20

40

60

80

100

120

2005 2010 2015 2020 2025 2030 2035

Year

Po

we

r (G

W)

Energy Transitions• Global energy consumption ~ 15.4 billion MWh/y

• Demand for energy is to rise by 50% by 2030

• Conventional power stations will be phased out completely by 2037

• Required global investment in energy business up to 2030 ~ US $ 9 trillion

• Low-carbon energy industry is set to be worth $3 trillion per year by 2050.

• Renewable energy could contribute 80% of global energy supply by 2050, report Intergovernmental Panel on Climate Change (IPCC).

Targets 2020

• Australia to offer 50% rebate for small wind turbines to achieve 20% renewable by 2020 – may become 100% renewable if spends 3% of its GDP ($ 330bn)

• India’s ‘New Solar Mission’ – the most ambitious solar energy development plan in the world - 20 GW by 2022 – 75% of world’s total solar energy

• India aims to generate 15% of its electricity from renewables by 2020

• Brazil to invest $ 5.5bn on Renewable Energy until 2013

New Strategies

• US-DOE Announces Research Funding up to $6 Million for addressing 20% Wind Energy by 2030

• DOE Awards 16 Contracts for up to $80 Billion in Projects at Federal Facilities, December 2008

• Wind and solar power-generation combined will match new conventional generation by 2025

• AWEA Wind Power conference 2011had over 20,000 attendees – 2009 had 5,000

Renewable Energy Sources Solar Energy

Wind Energy

Biomass Energy

Biofuels

Geothermal Energy

Tidal / Wave / Ocean Energy

Hydel Power

Nuclear Energy

Wind Energy Technology

Wind Energy History

Nassuden Wind Park Sweden

3 MW

Wind Turbine

Wind Energy

• World’s total installed wind power capacity ~ 300 GW by the end of 2012

• Global wind power to reach 400 GW by 2014

• Wind capacity will reach 7,500GW by 2025

• US Off Shore wind power capacity > 4000 GW – Total US consumption ~ 1000 GW

Wind Blades ~ 80 meter length

• Global Wind Energy Business in 2011 > $ 100x109

Accumulated Global Wind Power Capacity 1995-2011

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Year (1995 - 2011)

Win

d P

ow

er (

MW

)

Projected US Wind Power Installation 2003-20165000 - 2,640,000 MW

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Year - 2003 - 2016

Me

ga

wa

t In

sta

lled

A factor of 100 from

2008 capacity

25000 MW

2008

Wind Targets 2030

• EU 20% Renewable by 2020 (17% Wind – 230 GW)

• EU 35% Wind by 2030 – 400 GW • China overtaken USA with currently 63000 MW

• China - All electricity from Wind by 2030

• India Currently at 16,000 MW aiming for 200,000 MW by 2030

Wind Turbine Engineering Design

David M. Eggleston

Aero Technology

One must enter into wind-turbine aerodynamics analysis with a proper feeling for the complexity of the subject.

After doing this sort of thing full-time for 30 to 40 years with many different flow problems, you begin to have a decent understanding of how fluid is likely to flow.

TTT

Things

Take

Time

The Gharo Wind Corridor – 11,000 MW

Vertical Axis

Over 8000 components

Lift Production in Airfoil

NACA 4415

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160

Coefficient of Lift For NACA 4415

-1.5

-1

-0.5

0

0.5

1

1.5

2

-20 -15 -10 -5 0 5 10 15 20 25

Angle (degrees)

Cl

Coefficient of Drag Versus Lift for NACA 4415

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

-1 -0.5 0 0.5 1 1.5 2

Cl

Cd

Design theories grasped and computer simulated

i) Frankine –Froude Actuator Disc Theory

ii) Glauert Annulus Momentum Vortex Theory

iii) Prescribed-Wake Vortex Theory

iv) Free-Wake Vortex Theory

v) Optimal Rotor Theory

vi) Dual Optimum Theory

vii) Modified Glauert Momentum Theory

viii) Wilson & Lissaman’s Theory

ix) Linearized Tip Correction Theory

Design Equations – Linearized Tip Correction Theory

P = Cp A V3 / 2 (1)

F = (2/) cos-1[exp{(-B/2)((Ro- r)/r sin)}] (2)

Cp = 8 F sin2 (cos – X sin) (sin + X cos) [1 - Cd / Cl cot] X2 dX / 2 (3)

Xhub

opt = MAX [ F sin2 (cos – X sin) (sin + X cos) {1 - Cd / Cl cot} ] (4)

where , X, and Cd / Cl are held constant in the maximization process

(c Cl / Ro)opt = [(8/B) (r/ Ro) F sin (cos – X sin) / (sin + X cos)]=opt (5)

500 Watt

250 Watt

Both Both 500 Watt

250 Watt

Both

Blade Section No.

Radial Position

(meters)

Radial Position

(meters)

Twist(opt-)

(Degrees)

(c Cl / Ro)opt Cord Length

(meters)

Cord Length

(meters)

TipCorrec

Factor

1. 0.249 0.185 22.0 0.224 0.233 0.172 1.000

2. 0.319 0.235 17.5 0.205 0.212 0.158 1.000

3. 0.388 0.285 14.0 0.184 0.191 0.144 1.000

4. 0.458 0.335 11.0 0.169 0.175 0.130 1.000

5. 0.528 0.385 9.0 0.151 0.156 0.118 0.999

6. 0.597 0.435 7.0 0.139 0.145 0.108 0.999

7. 0.667 0.485 5.5 0.128 0.132 0.098 0.998

8. 0.737 0.535 4.5 0.116 0.120 0.090 0.995

9. 0.806 0.585 3.5 0.106 0.110 0.084 0.989

10. 0.876 0.635 2.5 0.099 0.103 0.077 0.980

11. 0.946 0.685 2.0 0.088 0.092 0.072 0.959

12. 1.015 0.735 1.0 0.083 0.086 0.066 0.928

13. 1.0854 0.785 0.5 0.072 0.074 0.059 0.857

14. 1.155 0.835 -0.5 0.061 0.063 0.050 0.735

15. 1.224 0.885 -0.1 0.032 0.043 0.036 0.403

Twist Distribution with Tip Correction Features

-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Spanwise Radial Position (meters)

Tw

ist

An

gle

(d

egre

es)

Optimal Tip Corrected Blade Shape

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Blade Span (meters)

Bla

de

Ch

ord

(m

ete

rs)

4 8 18 21 32 42 50 mm

Root Cut Area

Side View of the Log (2” x 6” x 45”)

Front face

drop

Balancing weights

Suspension

Twisted Aluminum pipe piece

Stainless Steel Rod

Galvanized iron sheet

Rivets

Electric Generators

500 Watts

1500 Watt Generator

Gear Ratio Calculation

Tip Speed Ratio = 6

Power Required = 500 Watts

Rated Wind Speed = 8 m/s

Air Density = 1.2 kg / m^3

Efficiency = 25 %

Power = Density x Area x Efficiency x (Speed)^3 / 2

Blade Length = 4’-8”

RPM = 320

Generator RPM = 1500

Gear Ratio = 1500 / 320 = 4.7

Wind Rose

Wind Data Profile at Shahabandar (May 21-June 21, 2002)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Wind Velocity (m/s)

Nu

mb

er

of

Ho

urs

30 feet

100 feet

Average 6.02 m/s

Average 7.53 m/sPower (100') = 2 x Power (30')

Power Versus Wind Speed

-10

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

Wind Speed (m/s)

Po

wer

(k

W/m

2)

Accumulated Power Versus Wind Speed Rating

-20

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

Wind Speed (m/s)

Ava

ilab

le P

ow

er a

t T

urb

ine

Rat

ing

(kW

/m2)

Recommended