Chapters 18 , 22 - Biochemistry

  • View
    65

  • Download
    0

  • Category

    Science

Preview:

Citation preview

18|  Amino  Acid  Oxida/on  Produc/on  of  Urea  

© 2013 W. H. Freeman and Company

22|  Nitrogen  Assimila/on,  Biosynthe/c  Use,  and  Excre/on  

The  use  of  amino  acids  as  fuel    varies  greatly  by  organism    

•  About  90%  of  energy  needs  of  carnivores  can  be  met  by  amino  acids  immediately  a*er  a  meal    

•  Microorganisms  scavenge  amino  acids  from  their  environment  for  fuel  when  needed  

•  Only  a  very  small  frac3on  of  energy  needs  of  herbivores  are  met  by  amino  acids  

•  Plants  do  not  use  amino  acids  as  a  fuel  source,  but  can  degrade  amino  acids  to  form  other  metabolites  

Metabolic  Circumstances    of  Amino  Acid  Oxida/on  

•  Le?over  amino  acids  from  normal  protein  turnover  •  Dietary  amino  acids  that  exceed  body’s  protein  synthesis  needs  

•  Proteins  in  the  body  can  be  broken  down  to  supply  amino  acids  for  energy  when  carbohydrates  are  scarce  (starvaFon,  diabetes  mellitus)    

Dietary  proteins  are  enzyma/cally  hydrolyzed  into  amino  acids  

•  Pepsin  cuts  protein  into  pepFdes  in  the  stomach  •  Trypsin  and  chymotrypsin  cut  proteins  and  larger  pepFdes  into  smaller  pepFdes  in  the  small  intesFne  

•  AminopepFdase  and  carboxypepFdases  A  and  B  degrade  pepFdes  into  amino  acids  in  the  small  intesFne  

Dietary  protein  is  enzyma/cally  degraded  through  the  diges/ve  tract  

Overview  of  Amino  Acid  Catabolism  

The amino groups and the carbon skeleton take separate but interconnected pathways.

Removal  of  the  Amino  Group  The  first  step  of  degradaFon  for  all  amino  acids  

Fates  of  Nitrogen  in  Organisms  •  Plants  conserve  almost  all  the  nitrogen  •  Many  aquaFc  vertebrates  release  ammonia  to  their  

environment  –  Passive  diffusion  from  epithelial  cells  –  AcFve  transport  via  gills  

•  Many  terrestrial  vertebrates  and  sharks  excrete  nitrogen  in  the  form  of  urea  –  Urea  is  far  less  toxic  that  ammonia  –  Urea  has  very  high  solubility  

•  Some  animals  such  as  birds  and  repFles  excrete  nitrogen  as  uric  acid  –  Uric  acid  is  rather  insoluble  –  ExcreFon  as  paste  allows  the  animals  to  conserve  water  

•  Humans  and  great  apes  excrete  both  urea  (from  amino  acids)  and  uric  acid  (from  purines)  

Excretory  Forms  of  Nitrogen  

Notice that the carbon atoms of urea and uric acid are highly oxidized; the organism discards carbon only after extracting most of its available energy of oxidation.

Enzyma/c  Transamina/on  

•  Catalyzed  by  aminotransferases    • Uses  the  pyridoxal  phosphate  cofactor  •  Typically,  α-­‐ketoglutarate  accepts  amino  groups  

•  L-­‐Glutamine  acts  as  a  temporary  storage  of  nitrogen    •  L-­‐Glutamine  can  donate  the  amino  group  when  needed  for  amino  acid  biosynthesis  

Enzyma/c  Transamina/on  

readily reversible

Structure  of  Pyridoxal  Phosphate  and  Pyridoxamine  Phosphate  

• Intermediate,  enzyme-­‐bound  carrier  of  amino  groups    • Aldehyde  form  can  react  reversibly  with  amino  groups  • Aminated  form  can  react  reversibly  with  carbonyl  groups  

Pyridoxal  phosphate  is  covalently  linked  to  the  enzyme  in  the  res/ng  enzyme    

•  By  an  internal  aldimine  

•  The  linkage  is  made  via  a  nucleophilic  aVack  of  the  amino  group  of  an    acFve-­‐site  lysine  

Chemistry  of  the  Amino  Group  Removal  by  the  Internal  Aldimine  

The  external  aldimine  of  PLP  is  a  good  electron  sink,  avoiding  formaFon  of  an  unstable  carbanion  on  the  α  C  allowing  removal  of  α-­‐hydrogen  

3 alternative fates for the external aldimine

tran

sam

inat

ion

decarboxylation

racemization

•  OxidaFve  deaminaFon  occurs  within  mitochondrial  matrix  

•  Can  use  either  NAD+  or  NADP+  as  electron  acceptor  

•  Ammonia  is  processed  into  urea  for  excreFon  

•  Pathway  for  ammonia  excreFon;  transdeaminaFon  =  transaminaFon  +  oxidaFve  deaminaFon  

Ammonia  collected  in  glutamate  is  removed  by  glutamate  dehydrogenase  

Ammonia  is  safely  transported  in  the  bloodstream  as  glutamine  

•  Excess  ammonia  in  Fssues  is  added  to  glutamate  to  form  glutamine  (by  glutamine  synthetase).    

•  Excess  glutamine  is  processed  in  intesFnes,  kidneys,  and  liver  (by  glutaminase)  liberaFng  NH4

+  in  mitochondria.      

Glutamate  can  donate  ammonia  to  pyruvate  to  make  alanine  

•  Vigorously  working  muscles  operate  nearly  anaerobically  and  rely  on  glycolysis  for  energy  

• Glycolysis  yields  pyruvate  –   if  not  eliminated  lacFc  acid  will  build  up  

•  This  pyruvate  can  be  converted  to  alanine  for  transport  into  liver    

The  Glucose-­‐Alanine  Cycle  

Alanine serves as a carrier of ammonia and of the carbon skeleton of pyruvate from skeletal muscle to liver.

Excess  glutamate  is  metabolized  in  the  mitochondria  of  hepatocytes    

Ammonia  is  highly  toxic  and    must  be  u/lized  or  excreted  

•  Free  ammonia  released  from  glutamate  is  converted  to  urea  for  excreFon.  

•  Carbamoyl  phosphate  synthetase  I  captures  free  ammonia  in  the  mitochondrial  matrix  

•  First  step  of  the  urea  cycle  •  Regulated  

Ammonia  is  recaptured  via    synthesis  of  carbamoyl  phosphate  

•  The  first  nitrogen-­‐acquiring  reacFon  of  the  urea  cycle  

Nitrogen  from  carbamoyl  phosphate  enters  the  urea  cycle    

The  Reac/ons  in  the  Urea  Cycle  

Entry  of  Aspartate  into  the  Urea  Cycle  This  is  the  second  nitrogen-­‐acquiring  reacFon.  

Aspartate  –arginosuccinate  shunt  links    urea  cycle  and  citric  acid  cycle  

Regula/on  of  the  Urea  Cycle  •  Carbamoyl  phosphate  synthetase  I  is  acFvated  by      N-­‐acetylglutamate  

•  Formed  by  N-­‐acetylglutamate  synthase    –  When  glutamate  and  acetyl-­‐CoA  concentraFons  are  high  

–  AcFvated  by  arginine  •  Expression  of  urea  cycle  enzymes  increases  when  needed  –  High  protein  diet  –  StarvaFon,  when  protein  is  being  broken  down  for  energy  

 

Not  all  amino  acids  can  be    synthesized  in  humans  

•  EssenFal  amino  acids  must  be  obtained  as  dietary  protein  

•  ConsumpFon  of  a  variety  of  foods  supplies  all  the  essenFal  amino  acids    –  including  vegetarian-­‐  only  diets  

End  products  of  Amino  Acid  Degrada/on  •  Intermediates  of  the  Central  Metabolic  Pathway  •  Some  amino  acids  result  in  more  than  one  intermediate  •  Ketogenic  amino  acids  can  be  converted  to  ketone  bodies  

•  Glucogenic  amino  acids  can  be  converted  to  glucose  Six to pyruvate Ala, Cys, Gly, Ser, Thr, Trp

Five to α-ketoglutarate Arg, Glu, Gln, His, Pro

Four to succinyl-CoA Ile, Met, Thr, Val

Two to fumarate Phe, Tyr

Two to oxaloacetate Asp, Asn

Seven to Acetyl-CoA Leu, Ile, Thr, Lys, Phe, Tyr, Trp

Summary  of  Amino  Acid  Catabolism  

Only two amino acids, leucine and lysine, are exclusively ketogenic.

Several  cofactors  are    involved  in  amino  acid  catabolism  

•  Important  in  one-­‐carbon  transfer  reacFons  –  Tetrahydrafolate  (THF)  –  S-­‐adenosylmethionine  (adoMet)  –  BioFn  

•  BioFn,  as  we  saw  in  Chapter  16,  transfers  CO2  

THF  is  a  versa/le  cofactor  •  Tetrahydrofolate  is  formed  from  folate    

–  an  essenFal  vitamin  (B9)  

•  THF  can  transfer  1-­‐carbon  in  different  oxidaFon  states  –  CH3,  CH2OH,  and  CHO  

•  Used  in  a  wide  variety  of  metabolic  reacFons  •  Carbon  generally  comes  from  serine  •  Forms  interconverted  on  THF  before  use    

THF  is  a  versa/le  cofactor  

adoMet  is  beTer  at  transferring  CH3  •  S-­‐adenosylmethionine  is  the  prefered  cofactor  for  methyl  transfer  in  biological  reacFons  –  Methyl  is  1000  Fmes  more  reacFve  than  THF  methyl  group  

•  Synthesized  from  ATP  and  methionine    

Ac/vated  Methyl  Cycle  

Degrada/on  of  ketogenic  amino  acids  

Degrada/on  intermediates  of  tryptophan  are  to  synthesize  other  molecules  

Gene/c  defects  in  many  steps  of  Phe  degrada/on  lead  to  disease  

Phenylketonuria  is  caused  by  a  defect  in  the  first  step  of  Phe  degrada/on  

•  A  buildup  of  phenylalanine  and  phenylpyruvate  

•  Impairs  neurological  development  leading  to  intellectual  deficits  

•  Controlled  by  limiFng  dietary  intake  of  Phe  

Degrada/on  of  Glycine  

•  Pathway  #1:  hydroxylaFon  to  serine  à  pyruvate  

•  Pathway  #2:  Glycine  cleavage  enzyme  –  Apparently  major  pathway  in  mammals  –  SeparaFon  of  three  central  atoms  –  Releases  CO2  and  NH3  –  Methylene  group  is  transferred  to  THF  

•  Pathway  #3:  D-­‐amino  oxidase  –  RelaFvely  minor  pathway  –  UlFmately  oxidized  to  oxalate  –  Major  component  of  kidney  stones  

Degrada/on  of  Amino  Acids  to    α-­‐Ketoglutarate  

Degrada/on  of  branched  chain    amino  acids  does  not  occur  in  the  liver  

•  Leucine,  Isoleucine,  and  Valine  are  oxidized  for  fuel  –  In  muscle,  adipose  Fssue,  kidney,  and  brain  

Degrada/on  of  Asn  and  Asp  to    Oxaloacetate  

Importance  of  Nitrogen  in  Biochemistry  

•  Nitrogen  (with  H,  O,  and  C)  is  a  major  elemental  consFtuent  of  living  organisms    

• Mostly  in  nucleic  acids  and  proteins  •  But  also  found  in:  

–  several  cofactors  (NAD,  FAD,  bioFn  …  )  – many  small  hormones  (epinephrine)  – many  neurotransmiVers  (serotonin)  – many  pigments  (chlorophyll)  – many  defense  chemicals  (amaniFn)  

Biochemistry  of  Molecular  Nitrogen  

•  Atmosphere  is  80%  N2  but  non-­‐useful  form  – N2  chemically  inert  – Need  N2  +  3  H2  à  2  NH3    –  Even  though  ΔGʹ′°=  –33.5  kJ/mol…breaking  triple  bond  has  high  ac4va4on  energy  

A  few  non-­‐biological  processes  can  convert  N2  to  biologically  useful  forms  

•  N2  and  O2  à  NO  via  lightning  •  N2  and  H2  à  NH3  via  the  industrial  Haber  process  • Requires  T>400°C,  P>200  atm  

Some  bacteria  can  “fix”  N2    to  useful  forms

•  Most  are  single-­‐celled  prokaryotes  (archaea)  •  Some  live  in  symbiosis  with  plants    

-­‐    (e.g.,  proteobacteria  with  legumes  such  as  peanuts,  beans)  

•  A  few  live  in  symbiosis  with  animals    -­‐  (e.g.,  spirochaete  with  termites)    They  have  enzymes  that  overcome  the  high  ac3va3on  energy  by  binding  and  hydrolyzing  ATP.  

Review:    Oxida/on  States  of  Nitrogen  Compounds  

•  N+5  O3–    à  N+3  O2

–      •  Nitrate  àNitrite  •  “ate” is  the  higher  oxidaFon  state  •  (Memory  trick:    I  ate  too  much)  

•  NH3:    N  has  oxidaFon  state  of  –3  

The  Nitrogen  Cycle  

Chemical  transforma4ons  maintain  a  balance  between  N2  and  biologically  useful  forms  of  nitrogen.  

1.   Fixa4on.    Bacteria  reduce  N2  to  NH3/NH4+        

2.   Nitrifica4on.    Bacteria  oxidize  ammonia  into  nitrite  (NO2–)  and  

nitrate  (NO3–).  

3.   Assimila4on.    Plants  and  microorganisms  reduce  NO2–  and  NO3

–  to  NH3  via  nitrite  reductases  and  nitrate  reductases.    NH3  is  incorporated  into  amino  acids,  etc.    Organisms  die,  returning  NH3  to  soil.  

 Nitrifying  bacteria  again  convert  NH3  to  nitrite  and  nitrate.  4.  Denitrifica4on.    Nitrate  is  reduced  to  N2  under  anaerobic  condiFons.      

 NO3–  is  the  ulFmate  electron  acceptor  instead  of  O2.  

The  Nitrogen  Cycle  

Two  Important  Enzymes  in  Nitrate  Assimila/on  

Nitrate  AssimilaFon:  (step  3)  process  by  which  plants  and  microorganisms  convert  NO3

–  to  NH3        

1.  Nitrate  reductase  NO3–  +  2  e–  à  NO2

–      -­‐  large,  soluble  protein,  contains  novel  Mo  cofactor,  e–  from  NADH  

2.  Nitrite  reductase  NO2–  +  6  e–  à  NH4

+    -­‐ Found  in  chloroplasts  in  plants,  e–  comes  from  ferredoxin  

-­‐   In  nonphotosyntheFc  microbes,  e–  comes  from  NADPH  

Nitrate  Assimila/on  by  Nitrate  Reductase  

Nitrate  Assimila/on  by  Nitrite  Reductase  

Nitrate  Assimila/on  (step  3)  vs.  Nitrogen  Fixa/on  (step  1)  

•  Both  are  electron-­‐transfer  processes  •  Both  use  Mo  cofactor  

–  Nitrate  reductase  has  an  Mo  cofactor  –  The  nitrogenase  complex  has  an  Fe-­‐Mo  cofactor  

•  Both  processes  involve  electron  transfer  through  groups  such  as  Fe-­‐S  complexes,  cytochromes,  SH  groups,  NADH,  NADPH,  etc.  

Nitrogen  fixa/on  is  carried  out  by  the  nitrogenase  complex  

•  N2  +  3  H2  =  2  NH3    –  Exergonic  (ΔG°  =  –33.5  kJ/mol)  but  very  slow  due  to  the  triple  bond’s  

high  acFvaFon  energy    

•  The  nitrogenase  complex  can  accelerate  this  rx  –  Has  two  subunits:      

•  Dinitrogenase  reductase  •  Dinitrogenase  

•  Passes  electrons  to  N2  and  catalyzes  a  step-­‐wise  reducFon  of  N2  to  NH3    

   N2  +  8  H+  +  8  e–  +  nATP  =  2  NH3  +  H2  +  nADP  +  nPi                2  NH3  +  2  H+  =  2  NH4

+    

   About  16  ADP  molecules  are  consumed  per  one  N2.  

Features  of  the  Nitrogenase  Complex  

•  Source  of  e–  varies  between  organisms  –  O?en  pyruvate  àferredoxin  

•  ATP  hydrolysis  and  ATP  binding  help  overcome  the  high  acFvaFon  energy  

•  Has  regions  homologous  to  GTP-­‐binding  proteins  used  in  signaling  

•  Has  novel  FeMo  cofactor  (or  V  in  some  organisms)  

Enzymes  and  Cofactors  in  the  Nitrogenase  Complex  

The  Fe-­‐Mo  Cofactor  in  the  Dinitrogenase  Subunit    

•  Consists  of:    –  7  Fe  atoms  

–  9  S  atoms  –  1  Mo  atom  

–  1  bound  homocitrate  

•  The  nitrogen  binds  to  the  center  of  the  Mo-­‐FeS  cage  and  is  coordinated  to  the  molybdenum  atom  

•  Electrons  are  passed  to  the  molybdenum-­‐bound  nitrogen  via  the  iron-­‐sulfur  complex  

The  Electron-­‐Transfer  Cofactors  

Oxida/on  of  pyruvate  provides  electrons  to  nitrogenase  

•  Pyruvate  passes  e–  to  ferredoxin  or  flavodoxin  •  Ferredoxin  or  flavodoxin  pass  e–  to  dinitrogenase  reductase  

•  The  reductase  passes  e–  to  dinitrogenase  •  Dinitrogenase  passes  e–  to  nitrogen  (or  to  protons)  to  make  NH3  

•  FormaFon  of  H2  appears  an  obligatory  side-­‐reacFon  

Nitrogen  Fixa/on  by  the  Nitrogenase  Complex  

Redox  Reac/ons  in  Dinitrogenase  

•  The  net  rx  of  the  nitrogenase  complex:  

           N2  +  8  H+  +  8  e–  +  16  ATP  =  2  NH3  +  H2  +  16  ADP  +  16  Pi    

•  Dinitrogenase  reductase  catalyzes:    –  transfer  of  8  e–  to  dinitrogenase    –  hydrolysis  of  ATP  with  release  of  protons  

•  Dinitrogenase  catalyzes:    –  transfer  of  6  e–  to  nitrogen:  formaFon  of  NH3    

–  transfer  of  2  e–  to  protons:  formaFon  of  H2    

The  mechanism  of  dinitrogenase  remains  poorly  understood  

•  Extremely  complex  redox  reacFon  that  involves  several  metal  atoms  as  cofactors  and/or  electron  transporters  

•  Two  mechanisms  are  plausible  that  involve  the  Fe-­‐Mo  cofactor  binding  directly  to  N  

Two  Hypotheses  for  the  Intermediates  of  N2

 Reduc/on  

The  nitrogenase  complex  is  very  unstable  in  O2  

–  Some  bacteria  live  in  anaerobic  environments  –  Some  bacteria  uncouple  electron  transfer  and  ATP  synthesis―so  that  O2  is  removed  quickly  from  the  cell.  

– Many  bacteria  live  in  root  nodules  coated  with  O2-­‐binding  heme  leghemoglobin.  

Broader  Impact  of  Understanding  the  Nitrogen  Fixa/on  

•  Industrial  synthesis  of  NH3  via  the  Haber  process  is  one  of  mankind’s  most  significant  chemical  processes  –  Made  chemical  ferFlizer  possible!  –  Yields  over  100  million  tons  of  ferFlizer  annually  –  sustains  life  of  over  one-­‐third  of  human  populaFon  on  Earth  –  Consumes  non-­‐renewable  energy  (1–2%  of  total  annual  energy)  

   

•  Mimicking  biological  nitrogen  fixaFon  (biomimeFc  nitrogen  fixaFon)  may  yield  significant  energy  savings,  or  allow  use  of  renewable  energy  sources.  

Nitrogen-­‐Fixing  Bacteria  in  Root  Nodules  of  Legumes  

•  Takes  care  of  energy  requirement  and  O2  lability  •  Bacteria  have  access  to  plant’s  carbohydrate  and  CAC  intermediates  for  energy  

•  Bacteria  are  covered  with  leghemoglobin  to  bind  O2  

•  Can  produce  more  NH3  than  plant  needs;  excess  released  to  soil  

Nitrogen-­‐Fixing  Nodules  

The  Anammox  Reac/ons  

•  Anaerobic  ammonia  oxidaFon    •  Newly  discovered  ability  of  some  bacteria  to  oxidize  NH3  and  NO2

–  into  N2    

•  “short-­‐circuits”  the  nitrogen  cycle  (no  denitrificaFon)  

•  Used  in  waste  treatment  for  cheaper  ammonia  removal  

Surprising  Features  of  the  Anammox  Reac/ons  

•  Bacteria  are  of  unusual  phylum  Planctomycetes  –  Have  DNA  enclosed  in  membrane    –  Use  hydrazine  (N2H4)  à  (rocket  fuel),  toxic,  reacFve,  nonpolar  and  diffuses  across  membranes    

•  Phospholipids  made  of  ladderanes  –  FaVy  acid  chains  contain  cyclobutane  rings  that  stack  Fghtly,  slow  the  diffusion  of  N2H2  

Anammox  Reac/ons  

Ladderane  Lipids  

Ammonia  is  incorporated  into  biomolecules  through  Glu  and  Gln  

•  Glutamine  is  made  from  Glu  by  glutamine  synthetase  in  a  two-­‐step  process:  

       Glu              +                  ATP  à  γ-­‐glutamyl        +            NH4+  à          Gln                            +    Pi  

     phosphate  

•  PhosphorylaFon  of  Glu  creates  a  good  leaving  group  that  can  be  easily  displaced  by  ammonia  

H3N

NH2O

COOH3N

OO

COO H3N

OO

COO

P

O

O

O

OHP

O

O

O+ -+ -

ATP

+ -

NH3 +

Structure  of  Gln  Synthetase  

Regula/on  of  Glutamine  Synthetase  by  Allosteric  Inhibitors  

•  Endpoints  of  Gln  metabolism  provide  feedback  inhibiFon  – Ala,  Gly,  Trp,  carbamoyl  phosphate,  AMP,  CTP,  His,  glucosamine  6-­‐phosphate  

 

•  Effects  are  addiFve  

Regula/on  of  Gln  Synthetase―by  Six  Endpoints  of  Gln  Metabolism  

Gln  synthetase  is  also  inhibited  by  adenylyla/on  

Adenylyla4on  (aVachment  of  AMP)  to  Tyr-­‐397  assists  in  inhibiFon.  

–  Increases  sensiFvity  to  inhibiFtors  – AdenylaFon  via  adenylyltransferase  –  Part  of  complex  cascade  that  is  dependent  on  [Glu],  [α-­‐ketoglutarate],  [ATP],  and  [Pi]    

– AcFvity  of  adenylyltransferase  regulated  by  binding  to  regulatory  protein  PII  

PII  is  regulated  by  uridylyla/on  

(Remember  that  PII  regulates  adenylyltransferase,  which  helps  inhibit  Gln  synthetase.)  

• When  PII  is  uridylylated,  adenylyltransferase  sFmulates  deadenylylaFon  of  Gln  synthetase  (increasing  the  laVer’s  acFvity)  • ALSO,  uridylylated  PII  upregulates  transcripFon  of  Gln  synthetase  

End  Result  of  Mul/ple  Levels  of  Control  of  Gln  Synthetase  

• When  Gln  is  high,  Gln  synthetase  is  less  acFve  – Need  less  NH4

+  conversion  to  Gln  

• When  Gln  is  low  and  substrates  α-­‐ketoglutarate  and  ATP  are  available,  Gln  synthetase  is  more  acFve    –  To  convert  more  NH4

+  to  Gln  

Covalent  Modifica/on  of  Gln  Synthetase  

Biosynthesis  of  Amino  Acids  and  Nucleo/des―Three  Types  of  Reac/ons  

1. TransaminaFons  and  rearrangements  using  pyridoxal  phosphate  (PLP)  –  PLP  is  acFve  form  of  Vit  B6    –  Catalyzed  by  amidotransferases    –  PLP  has  aldehyde  group  that  forms  Schiff  base  with  Lys  of  aminotransferase  

2. Transfer  of  1-­‐C  groups  using  tetrahydrofolate  (H4  folate)  or  S-­‐adenosylmethionine  (adoMet)  –  Both  can  act  as  carbon  donors  

   

H4  folate                                                                                            adotMet  

3.  Transfer  of  amino  groups  derived  from  amide  of  Glu  

All  three  of  these  categories  of  reacFons  use  glutamine  amidotransferases.  

Glutamine  Amidotransferases  Catalyze  Bisubstrate  Reac/ons  

•  Two  domains  – One  binds  Gln  – Other  is  amino  group  acceptor  and  binds  substrate  

•  Cys  acts  as  nucleophile  to  cleave  amide  bond  of  Gln  – àForms  glutamyl-­‐enz  intermediate  

•  Then  second  substrate  binds  to  accept  amino  group  from  enzyme  

Proposed  Mechanism  for  Glutamine  Amidotransferases  

Amino  Acid  Biosynthesis―Overview  

•  Source  of  N  is  Glu  or  Gln  •  Derive  from  intermediates  of  

– Glycolysis  –  Citric  acid  cycle  –  Pentose  phosphate  pathway  

•  Bacteria  can  synthesize  all  20  • Mammals  require  some  in  diet  

Amino  Acid  Synthesis  Overview  

All  amino  acids  derive  from  one  of  seven  precursors    

(See  Table  22-­‐1  and  Figure  22-­‐11)  

•  CAC:  – α-­‐ketoglutarate,  oxaloacetate  

•  Glycolysis  –  Pyruvate,  3-­‐phosphoglycerate,  phosphoenolpyruvate,  erythrose  4-­‐phosphate  

•  Pentose  phosphate  pathway  –  Ribose  5-­‐phosphate  

Several  pathways  share  5-­‐phosphoribosyl-­‐1-­‐pyrophosphate  (PRPP)  as  an  intermediate  

•  Synthesized  from  ribose  5-­‐phosphate  of  PPP  via  ribose  phosphate  pyrophosphokinase  –  A  highly  regulated  allosteric  enzyme  

Proline  and  arginine  derive  from  glutamate  

•  (Glu  derives  from  α-­‐ketoglutarate)  •  Proline  is  a  cyclized  reduced  derivaFve  of  Glu  

–  ATP  reacts  w/  γ-­‐carboxyl  group  à  acyl  phosphate  –  NADPH  or  NADH  reduces  the  acyl  phosphate  to  a  semialdehyde  that  rapidly  cyclizes  

–  Final  reducFon  step  yields  proline  –  Pathway  operates  in  animals  AND  bacteria  –  See  Fig.  22-­‐12  

Biosynthesis  of  Pro  and  Arg  from  Glu  in  Bacteria  

Arginine  is  synthesized  from  Glu  via  ornithine  in  animals  

•  Ornithine  comes  from  the  urea  cycle  

•  In  bacteria,  ornithine  has  special  synthesis  pathway  –  Fig.  22-­‐12  shows  ornithine-­‐derived  synthesis  of  arginine  in  bacteria  

In  animals,  proline  can  ALSO  be  synthesized  from  arginine  

•  Arginase  converts  Arg  to  ornithine  •  Ornithine  δ-­‐aminotransferase  converts  ornithine  to  glutamate  γ-­‐semialdehyde  that  cyclizes  and  converts  to  Pro  

•  See  Fig  22-­‐13  

Mammalian  Conversion  of  Ornithine  (from  Arg)  to  Cyclized  Precursor  to  Pro  

Serine  derives  from  3-­‐phosphoglycerate  of  glycolysis  

•  Same  pathway  in  ~all  organisms  so  far  •  Requires  Glu  as  source  of  NH2  group  •  OxidaFon  àtransaminaFon  à  dephosphorylaFon  to  yield  serine  

•  See  Fig.  22-­‐14  

Glycine  derives  from  serine  

•  Carbon  removed  using  tetrahydrofolate  (H4  folate)  to  accept  the  C  atom  and  pyridoxal  phosphate  (PLP).  

•  Rx  uses  serine  hydroxymethyltransferase  •  See  Fig.  22-­‐14.  •  In  the  liver,  Gly  can  be  made  by  another  pathway  

Biosynthesis  of  Ser  and  Gly  from  3-­‐Phosphoglycerate  

Cysteine  also  derives  from  serine  

•  In  bacteria  and  plants,  sulfates  are  the  source  of  S  –  See  Fig.  22-­‐15  

•  In  animals,  Met  is  the  source  of  S  –  Met  à  S-­‐adenosylmethionine  –  Loses  CH3,  is  hydrolyzed  to  homocysteine,  which  reacts  with  Ser  

–  Yields  cystathionine  then  rx  w/PLP  and  a  cleavage  step  to  yield  cysteine  

–  See  Fig.  22-­‐16  

Biosynthesis  of  Cys  from  Ser  in  Plants  and  Bacteria  

Biosynthesis  of  Cys  from  Homocysteine  and  Ser  in  Mammals  

Oxaloacetate  yields  Asp,  which  yields  Asn,  Met,  Lys,  and  Thr  

Thr  can  be  converted  to  Ile  (or  Ile  can  be  made  from  pyruvate)  Lots  of  complicated  chemistry!  •  See  Fig.  22-­‐17  in  text  

Pyruvate  yields  Ala,  Val,  Leu  and  Ile  

•  Again,  see  Fig.  22-­‐17  in  text  (too  big  to  show  here)  

Reminder  of  Essen/al  Amino  Acids  

•  Humans  cannot  synthesize  Met,  Thr,  Lys,  Val,  Leu,  Ile  

The  bacteria-­‐derived  enzyme  asparaginase  is  a  chemotherapy  agent  

•  Childhood  acute  lymphoblasFc  leukemia  (ALL)  dependent  on  serum  Asn  

•  Asparaginase  removes  Asn  •  Has  side-­‐effects  •  Being  used  in  conjuncFon  with  inhibitor  of  human  Asn  synthetase  

Aroma/c  amino  acids  derive  from  phosphoenolpyruvate  and  erythrose  4-­‐

phosphate  

•  Very  complicated  chemistry!  •  Rings  must  be  synthesized  and  closed  then  oxidized  to  create  double  bonds  

•  Chorismate  is  a  common  intermediate  

See  Figs.  22-­‐18  through  22-­‐21  in  text.  

His  derives  from  PPP  metabolite  ribose  5-­‐phosphate  

•  Also  involves  the  purine  ring  of  ATP,  PRPP  (5-­‐phosphoribosyl-­‐1-­‐pyrophosphate,  which  is  also  derived  from  the  Pentose  Phosphate  Pathway)  and  of  course  Gln  (source  of  N)  –  See  Fig.  22-­‐22  in  text.  

There  are  many  layers  of  regula/on  in  amino  acid  synthesis  

•  First  enzyme  in  a  sequence  is  o?en  most  highly  regulated  

•  Feedback  inhibiFon  can  be  coupled  with  allosteric  regulaFon  –  Example:  Ile  synthesis  from  Thr    

• Threonine  dehydratase  is  inhibited  by  Ile  • See  next  slide  (Fig.  22-­‐23)  

Feedback  Inhibi/on  in  Ile  Synthesis  from  Thr  

Use  of  isozymes  is  another  important  means  of  regula/on  

Example:  Asp  can  lead  to  Lys,  Met,  Thr,  and  Ile.    Use  of  isozymes,  all  regulated  by  different  effectors,  allows  E.  coli  to  produce  the  amino  acids  when  needed.        

–  Example:  At  step  1,  isozyme  A1  is  inhibited  if  Ile  is  high  but  not  if  Met  or  Thr  are  high  

– Only  the  A1  isozyme  is  inhibited  by  Ile  at  this  step  

 

Regula/on  of  Aspartate-­‐Derived  Pathways  

Glycine  or  glutamate  is  the  precursor    to  porphyrins  

•  Porphyrin  makes  up  the  heme  of  hemoglobin,  cytochromes,  myoglobin  

•  In  higher  animals,  porphyrin  arises  from  rx  of  glycine  with  succinyl-­‐CoA  

•  In  plants  and  bacteria,  glutamate  is  the  precursor  •  Pathway  generates  two  molecules  of  the  important  intermediate  δ-­‐aminolevulinate  

•  Porphobilinogen  is  another  important  intermediate  

Synthesis  of  δ-­‐Aminolevulinate  in  Higher  Eukaryotes  

Synthesis  of  δ-­‐Aminolevulinate  in  Plants  and  Bacteria  

Synthesis  of  Heme  from    δ-­‐Aminolevulinate  

•  Two  molecules  of  δ-­‐aminolevulinate  condense  to  form  porphobilinogen  

•  Four  molecules  of  porphobilinogen  combine  to  form  protoporphyrin  

•  Fe  ion  is  inserted  into  protoporphyrin  with  the  enzyme  ferrochelatase

Synthesis  of  Heme  from    δ-­‐Aminolevulinate    

Defects  in  Heme  Biosynthesis  

•  Most  animals  synthesize  their  own  heme  •  MutaFons  or  misregulaton  of  enzymes  in  heme  biosynthesis  pathway  lead  to  porphyrias  –  Precursors  accumulate  in  red  blood  cells,  body  fluids,  and  liver.  

–  Homozygous  individuals  also  suffer  intermiVent  neurological  impairment,  abdominal  pain  

–  King  George  III  may  have  been  affected  

Other  Types  of  Porphyrias  

•  AccumulaFon  of  precursor  uroporphyrinogen  I  –  Urine  becomes  discolored  (pink  to  dark  purplish  depending  on  light,  heat  exposure)  

–  Teeth  may  show  red  fluorescence  under  UV  light  –  Skin  is  sensiFve  to  UV  light  –  Craving  for  heme  

•  Explored  as  possible  biochemical  basis  for  vampire  myths  as  well  as  neurological  condiFons  of  famous  individuals  (King  George  III,  etc.)  but  all  speculaFve  

Enzymes  Inhibited  in  Heme  Synthesis  Defects  

Heme  is  the  source  of  bile  pigments  

•  Heme  from  dying  erythrocytes  is  degraded  to  bilirubin  in  two  steps:  1.  Heme  oxygenase  linearizes  heme  to  create  

biliverdin,  a  green  compound  (seen  in  a  bruise)  

2.  Biliverdin  reductase  converts  biliverdin  to  bilirubin,  a  yellow  compound  that  travels  bound  to  serum  albumin  in  the  bloodstream

•  In  liver,  bilirubin  diglucouronide  is  made  from  bilirubin  –  Secreted  with  rest  of  bile  into  small  intesFne  – Microbial  enzymes  break  it  down  to  urobilinogen  and  other  compounds  

–  Some  urobilinogen  is  transported  to  the  kidney  and  converted  to  urobilin  • Gives  urine  its  yellow  color  

•  Remaining  intesFnal  urobilinogen  is  microbially  digested  to  stercobilin  of  feces  

Forma/on  and  Breakdown  of  Bilirubin  

Jaundice  is  caused  by  bilirubin  accumula/on  

•  Jaundice  (yellowish  pigmentaFon  of  skin,  whites  of  eyes,  etc.)  can  result  from:  –  Impaired  liver  (in  liver  cancer,  hepaFFs)  –  Blocked  bile  secreFon  (due  to  gallstones,  pancreaFc  cancer)  

–  Insufficient  glucouronyl  bilirubin  transferase  to  process  bilirubin  (occurs  in  infants)  • Treated  with  UV  to  cause  photochemical  breakdown  of  bilirubin  

Gly  and  Arg  are  precursors  of  crea/ne  and  phosphocrea/ne  

•  PhosphocreaFne  is  hydrolyzed  for  energy  in  muscle  

•  Gly  and  Arg  combine,  then  Adomet  acts  as  a  methyl  donor  

Biosynthesis  of  Crea/ne  and  Phosphocrea/ne  

Glutathione  (GSH)  derives  from  Glu,  Cys,  and  Gly  

•  GSH  is  present  in  most  cells  at  high  amounts  

•  Reducing  agent/anFoxidant  –  Keeps  proteins,  metal  caFons  reduced  –  Keeps  redox  enzymes  in  reduced  state  –  Removes  toxic  peroxides  

•  Oxidized  to  a  dimer  (GSSG)  

Biosynthesis  and  Oxida/on  of  Glutathione  

D-­‐amino  acids  in  bacteria  arise  from  racemases  

•  Bacterial  pepFdoglycans  contain  D-­‐Al  and  D-­‐Glu  

•  Racemases  act  on  D-­‐amino  acids,  use  PLP  as  cofactor  

•  Racemase  inhibitors  are  used/studied  as  anFbioFc  targets  

 

Aroma/c  amino  acids  are  precursors  to  plant  lignins,  hormones,  and  natural  

products  

•  Lignin  (rigid  polymer  in  plants)  from  Phe  and  Tyr  

•  Auxin  (growth  hormone  indole-­‐3-­‐acetate)  from  Trp  

•  Other  extracts:    spices  (nutmeg,  vanilla),  alkaloids  (morphine),  etc.  

Biosynthesis  of  Auxin  from  Trp  and  Cinnamate  from  Phe  

Amino  acid  decarboxyla/on  yields  neurotransmiTers,  inhibitors  

•  DecarboxylaFons  o?en  require  PLP  •  Trp  yields  catecholamines  such  as  dopamine,  norepinephrine,  and  epinephrine  

•  Glu  yields  neurotransmiVers  γ-­‐aminobutyrate  (GABA)  and  serotonin  

•  His  yields  the  vasodilator  and  stomach  acid  secreFon  sFmulant  Histamine  

Biosynthesis  of  Some  NeurotransmiTers  

Arg  is  precursor  for  nitric  oxide  (NO)  

• Mid-­‐80’s  discovery  that  pollutant  NO  played  important  role  in  blood  pressure  regulaFon,  blood  clo{ng,  etc.  

•  Synthesized  from  Arg  via  nitric  oxide  synthase  using  NADPH  –  Enz  similar  to  cyt  P450  reductase  –  SFmulated  by  interacFon  with  Ca2+  and  calmodulin  

Biosynthesis  of  Nitric  Oxide  

Nucleo/de  Biosynthesis    

•  NucleoFdes  can  be  synthesized  de  novo  from  amino  acids,  ribose-­‐5-­‐phosphate,  CO2,  and  NH3  

•  NucleoFdes  can  be  salvaged  from  nucleobases  •  Many  parasites  (e.g.,  malaria)  lack  de  novo  biosynthesis  pathways  and  rely  exclusively  on  salvage  –  Compounds  that  inhibit  salvage  pathways  are  promising  anF-­‐parasite  drugs  

De  Novo  Biosynthesis  of  Nucleo/des  

•  Approximately  the  same  in  all  organisms  studied  •  Bases  synthesized  while  aVached  to  ribose  •  Glu  provides  most  amino  groups  •  Gly  is  precursor  for  purines  •  Asp  is  precursor  for  pyrimidines  •  NucleoFde  pools  are  kept  low,  so  cells  must  conFnually  synthesize  them  –  This  synthesis  may  actually  limit  rates  of  transcripFon  and  replicaFon  

Origin  of  Ring  Atoms  in  Purines  

De  novo  biosynthesis  of  purines  begins  with  PRPP  

•  Adenine  and  guanine  are  synthesized  as  AMP  and  GMP  

•  Synthesis  begins  with  rx  of  5-­‐phosphoribosyl  1-­‐pyrophosphate  (PRPP)  with  Glu  

•  Purine  ring  builds  up  following  addiFon  of  three  carbons  from  glycine  

•  The  first  intermediate  with  full  purine  ring  is  inosinate  (IMP)  

Construc/on  of  IMP  

Synthesis  of  AMP  and  GMP  from  IMP  

Regula/on  of  purine  biosynthesis  in  E.  coli  is  largely  feedback  inhibi/on  

Four  major  mechanisms  1.  Glutamine-­‐PRPP  amidotransferase  is  feedback  

inhibited  by  end-­‐products  IMP,  AMP,  and  GMP    2.  Excess  GMP  inhibits  formaFon  of  xanthylate  

from  inosinate  by  IMP  dehydrogenase    (or  excess  adenylate  inhibits  formaFon  of  adenylosuccinate  by  adenylosuccinate  synthetase)  

3.  GTP  limits  conversion  of  IMP  to  AMP,  and  ATP  limits  conversion  of  IMP  to  GMP  

4.  PRPP  synthesis  is  inhibited  by  ADP  and  GDP  

Regula/on  of  Adenine  and  Guanine  Biosynthesis  in  E.  coli  

Pyrimidines  are  made  from  Asp,  PRPP,  and  carbamoyl  phosphate  

•  Unlike  purine  synthesis,  pyrimidine  synthesis  proceeds  by  first  making  the  pyrimidine  ring  and  then  aVaching  it  to  ribose  5-­‐phosphate  

•  First  commiVed  step  is  rx  between  Asp  and  N-­‐carbamoylphosphate,  catalyzed  by  aspartate  transcarbamoylase  (ATCase)

De  novo  Synthesis  of  Pyrimidine  Nucleo/des  

ATCase  channels  substrates  from  one  site  to  another  

Regula/on  of  pyrimidine  biosynthesis  is  also  via  feedback  inhibi/on  

•  ATCase  is  inhibited  by  end-­‐product  CTP  and  is  accelerated  by  ATP  

Allosteric  Regula/on  of  ATCase  by  CTP  and  ATP  

Ribonucleo/des  are  precursors  to  deoxyribonucleo/des  

•  2’C-­‐OH  bond  is  directly  reduced  to  2’-­‐H  bond…without  acFvaFng  the  carbon!  –  Catalyzed  by  ribonucleo3de  reductase  

• Mechanism:    Two  H  atoms  are  donated  by  NADPH  and  carried  by  proteins  thioredoxin  or  glutaredoxin  

Reduc/on  of  Ribonucleo/des    to  Deoxyribonucleo/des    

by  Ribonucleo/de  Reductase  

Structure  of  Ribonucleo/de  Reductase  

Proposed  ribonucleo/de  reductase  mechanism  involves  free  radicals  

•  Most  forms  of  enzyme  have  two  catalyFc/regulatory  subunits  and  two  radical-­‐generaFng  subunits  –  Contain  Fe3+  and  dithiol  groups  –  Enz  creates  stable  Tyr  radical  to  abstract  H•  from  sugar  

•  A  3’-­‐ribonucleoFde  radical  forms  •  2’-­‐OH  is  protonated  to  help  eliminate  H2O  and  form  a  radical-­‐stabilized  carbocaFon  

•  Electrons  are  transferred  to  the  2’-­‐C  

Proposed  mechanism  for  ribonucleo/de  reductase  

Ribonucleo/de  reductase  has  two  types  of  regulatory  sites  

•  One  type  affects  ac3vity  –  ATP  acFvates,  dATP  inhibits  

•  Other  type  affects  substrate  specificity  in  order  to  maintain  balanced  pools  of  nucleoFdes    –  If  ATP  or  dATP  high  à  less  specificity  for  adenine  and  MORE  specificity  for  UDP  and  CDP,  etc.  

–  Enzyme  oligomerizes  to  accomplish  this  change.  

Regula/on  of  Ribonucleo/de  Reductase  by  dNTPs  

Oligomeriza/on  of  Ribonucleo/de  Reductase  when  dATP  Binds  

dTMP  is  made  from  dUTP  

•  Roundabout  pathway…  1. dUTP  is  made  (via  deaminaFon  of  dCTP  or  by  phosphorylaton  of  dUDP)  

2. dUTP  à  to  dUMP  by  dUTPase  3. dUMP  à  dTMP  by  thymidylate  synthase    -­‐  adds  a  methyl  group  from  tetrahydrofolate  

Thymidylate  synthase  is  a  target  for  some  anFcancer  drugs.  

Biosynthesis  of  dTMP  

Conversion  of  dUMP  to  dTMP  by  Thymidylate  Synthase  

Folic  acid  deficiency  leads  to  reduced  thymidylate  synthesis  

•  Folic  acid  deficiency  is  widespread,  especially  in  nutriFonally  poor  populaFons  

•  Reduced  thymidylate  synthesis  causes  uracil  to  be  incorporated  into  DNA  

•  Repair  mechanisms  remove  the  uracil  by  creaFng  strand  breaks  that  affect  the  structure  and  funcFon  of  DNA  – Associated  with  cancer,  heart  disease,  neurological  impairment  

Catabolism  of  Purines:    Forma/on  of  Uric  Acid  

•  DegradaFon  of  purines  proceeds  through  dephosphorylaFon  (via  5’-­‐nucleo3dase)  

•  Adenosine  is  deaminated  to  inosine  and  then  hydrolyzed  to  hypoxanthine  and  ribose  

•  Guanosine  yields  xanthine  via  these  hydrolysis  and  deaminaFon  reacFons  

•  Hypoxanthine  and  xanthine  are  then  oxidized  into  uric  acid  by  xanthine  oxidase  

•  Spiders  and  other  arachnids  lack  xanthine  oxidase  

Catabolism  of  Purines  

Conversion  of  Uric  Acid  to  Allantoin,  Allantoate,  and  Urea  

Catabolism  of  Purines:    Degrada/on  of  Urate  to  Allantoin  

•  Urate  is  oxidized  into  a  5-­‐hydroxy-­‐isourate  by  urate  oxidase  

•  Hydrolysis  and  the  subsequent  decarboxylaFon  of  5-­‐hydroxy-­‐isourate  yields  allantoin  

•  Most  mammals  excrete  nitrogen  from  purines  as  allantoin  

•  Urate  oxidase  is  inacFve  in  humans  and  other  great  apes;  we  excrete  urate  

•  Birds,  most  repFles,  some  amphibians,  and  most  insects  also  excrete  urate  

NH

N NH

NH

OO

O

NH

N N

NH

OO

O OH

NH2

NH

NH

NH

OO

O

H

H+

-

-

O2 + H2O

H2O2

CO2

H2O

urate oxidase

spontaneous or catalyzed

urate

5-hydroxyisourate

allantoin

Catabolism  of  Purines:    Degrada/on  of  Allantoin  

•  Most  mammals  do  not  degrade  allantoin  

•  Amphibians  and  fishes  hydrolyze  allantoin  into    allantoate;  bony  fishes  excrete  allantoate  

•  Amphibians  and  carFlaginous  fishes  hydrolyze  allantoate  into  glyoxylate  and  urea;  many  excrete  urea  

•  Some  marine  invertebrates  break  urea  down  into  ammonia  

NH2

NH

NH

NH

OO

O

H

NH2

NH

NH

NH2

O O

O

H

O

H+

OH

OO

NH2

NH2

ONH2

NH2

O

NH4+

H2O

H2O

2 H2O + 4 H+

2 CO2

4

allantoinase

allantoicase

urease

allantoin

allantoate

urea

ammonium cation

Catabolism  of  Pyrimidines  

•  Leads  to  NH4+  then  urea  

•  Can  produce  intermediates  of  CAC  –  Example:  Thymine  is  degraded  to  succinyl-­‐CoA  

Catabolism  of  Thymine,  a  Pyrimdine  

Purine  and  pyrimidine  bases  are  recycled  by  salvage  pathways  

•  Free  bases,  released  in  metabolism,  are  reused  –  Example:    Adenine  reacts  with  PRPP  to  form  the  adenine  nucleoFde  AMP  •  Catalyzed  by  adenosine  phosphoribosyltransferase  

•  Brain  is  especially  dependent  on  salvage  pathways  

•  Lack  of  hypoxanthine-­‐guanine  phosphoribosyltransferase  leads  to  Lesch-­‐Nyhan  Syndrome  with  neurological  impairment,  finger-­‐and-­‐toe-­‐biFng  behavior  

Excess  uric  acid  seen  in  gout  

•  Painful  joints  (o?en  in  toes)  due  to  deposits  of  sodium  urate  crystals  

•  Primarily  affects  males  •  May  involve  geneFc  under-­‐excreFon  of  urate  and/or  may  involve  over-­‐consumpFon  of  fructose  

•  Treated  with  avoidance  of  purine-­‐rich  foods  (seafood,  liver)  or  avoidance  of  fructose.  

•  Also  treated  with  xanthine  oxidase  inhibitor  allopurinol  

Allopurinol  inhibits  xanthine  oxidase  

Many  chemotherapeu/c  agents  target  nucleo/de  biosynthesis  

•  Glutamine  analogs:    azaserine,  acivicin  –  Inhibit  glutamine  amidotransferases  

•  Fluorouracil  –  Converted  by  salvage  pathway  into  FdUMP,  which  inhibits  thymidylate  synthase  

• Methotrexate  and  aminopterin  –  Inhibit  dihydrofolate  reductase  (compeFFve  inhibitors)  

An/bio/cs  also  target  nucleo/de    biosynthesis  

•  Allopurinol,  etc.  –  Studied  against  African  sleeping  sickness  (trypanosomiasis)  because  the  trypanosomes  lack  enzymes  for  de  novo  nucleoFde  synthesis  

•  Trimethoprim  –    –  Inhibits  bacterial  dihydrofolate  reductase  but  binds  human  enzyme  several  orders  of  magnitude  less  strongly  

Azaserine  and  Acivicin,  Inhibitors  of  Glutamine  Amidotransferases  

Chemotherapy  Targets―Thymidylate  Synthesis  and  Folate  Metabolism  

fdUMP  Inhibi/on  of  dUMPàdTMP  Conversion