32
ORIGINAL ARTICLE Bryozoans, corals, and microfacies of Lower Eifelian (Middle Devonian) limestones at Kierspe, Germany Andrej Ernst Andreas May Stephan Marks Received: 29 June 2011 / Accepted: 13 December 2011 / Published online: 20 January 2012 Ó Springer-Verlag 2012 Abstract The Lower Eifelian Meinerzhagener Korallen- kalk (= upper Cultrijugatus Beds) at Kierspe, Sauerland, contains a rich reefal fauna. Eight bryozoan species are described, two of them are new: the cystoporate Fistuliporella kierspensis n. sp. and the trepostome Leptotrypella sophiae n. sp. The bryozoans from the Meinerzhagener Korallenkalk shows distinct similarities to the Lower–Middle Devonian of Spain (Santa Lucı ´a Formation, Emsian–Eifelian), and to the Middle Devonian (Eifelian) of Transcaucasia. The coral fauna comprises five tabulate corals and one rugose coral that document a paleobiogeographic relationship between Central and Eastern Europe and Central Asia. The associated fauna is represented by brachiopods, ostracods, and echinoderms. The studied limestones also commonly contain calcimicrobes represented by three species. The faunal and microfacial characteristics indicate a shallow marine depositional envi- ronment just above the storm wave base, with a supposed depth of 20 m, within the photic zone. The nutrient regime was at least a mesotrophic. The upper boundary of the Cultrijug- atus Beds coincides with the Chotec ˇ-Event that strongly affected brachiopods, whereas corals and bryozoans were insensitive to this event. Keywords Middle Devonian Germany Microfacies Bryozoa Corals Brachiopods Calcimicrobes Taxonomy Paleoecology Paleobiogeography Introduction The regional geology, stratigraphy, and paleontology of the Middle Devonian sequences of the northern Rhenish Massif (Eifel, Bergisches Land, and Sauerland) have been investigated for many decades. As a result of this extended research, there are many paleontological, stratigraphical and regional geological publications (e.g., Richter 1971; Grabert 1980; Langenstrassen 1983; Meyer 1986; Koch et al. 1990; Meyer and Stets 1996; Ribbert 1998; Weddige and Ziegler 2000; May 2003). Paleontological publications include numerous studies of invertebrates such as bra- chiopods (e.g., Solle 1953, 1971; Struve 1964, 1982a, 1992; May 1989, 1991; Gad 1995, 1997; Thormann and Weddige 2001), stromatoporoids (May 1993d; Krebedu ¨n- kel 1995; Salerno 2008), rugose and tabulate corals (e.g., Birenheide 1979, 1985; Byra 1983; Coen-Aubert and Lu ¨tte 1990; Lu ¨tte 1987, 1990, 1993; May 1993 a, b; Avlar and May 1997; Schro ¨der 1998; Bru ¨hl 1999; Schro ¨der and Salerno 2001; Stadelmaier et al. 2005), trilobites (e.g., Struve 1996; Basse and Lemke 1996; Basse 1998, 2002, 2003, 2006, 2010) and gastropods (e.g., Heidelberger and Koch 2005; Heidelberger 2003, 2008). The current knowledge of bryozoan diversity in the Devonian of the Eifel area was originally restricted to a few papers in the last century (e.g., Solle 1937, 1952, 1968; Toots 1951; Kra ¨usel 1953, 1957, 1981), but it has recently increased (Ernst and Schro ¨der 2007; Ernst 2008a, b; Ernst and Bohaty ´ 2009; Ernst et al. 2011b), Paleozoic bry- ozoans belong mainly to the Class Stenolaemata and are A. Ernst (&) Institut fu ¨r Geowissenschaften der Christian-Albrechts-Universita ¨t zu Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany e-mail: [email protected] A. May C/Canada 69, 5 B, 28850 Torrejo ´n de Ardoz, Madrid, Spain e-mail: [email protected] S. Marks Dauvemu ¨hle 49, 48159 Mu ¨nster, Germany e-mail: [email protected] 123 Facies (2012) 58:727–758 DOI 10.1007/s10347-011-0289-6

Bryozoans, corals, and microfacies of Lower Eifelian (Middle Devonian) limestones at Kierspe, Germany

Embed Size (px)

Citation preview

ORIGINAL ARTICLE

Bryozoans, corals, and microfacies of Lower Eifelian(Middle Devonian) limestones at Kierspe, Germany

Andrej Ernst • Andreas May • Stephan Marks

Received: 29 June 2011 / Accepted: 13 December 2011 / Published online: 20 January 2012

� Springer-Verlag 2012

Abstract The Lower Eifelian Meinerzhagener Korallen-

kalk (= upper Cultrijugatus Beds) at Kierspe, Sauerland,

contains a rich reefal fauna. Eight bryozoan species are

described, two of them are new: the cystoporate Fistuliporella

kierspensis n. sp. and the trepostome Leptotrypella sophiae n.

sp. The bryozoans from the Meinerzhagener Korallenkalk

shows distinct similarities to the Lower–Middle Devonian of

Spain (Santa Lucıa Formation, Emsian–Eifelian), and to the

Middle Devonian (Eifelian) of Transcaucasia. The coral fauna

comprises five tabulate corals and one rugose coral that

document a paleobiogeographic relationship between Central

and Eastern Europe and Central Asia. The associated fauna is

represented by brachiopods, ostracods, and echinoderms. The

studied limestones also commonly contain calcimicrobes

represented by three species. The faunal and microfacial

characteristics indicate a shallow marine depositional envi-

ronment just above the storm wave base, with a supposed

depth of 20 m, within the photic zone. The nutrient regime was

at least a mesotrophic. The upper boundary of the Cultrijug-

atus Beds coincides with the Chotec-Event that strongly

affected brachiopods, whereas corals and bryozoans were

insensitive to this event.

Keywords Middle Devonian � Germany � Microfacies �Bryozoa � Corals � Brachiopods � Calcimicrobes �Taxonomy � Paleoecology � Paleobiogeography

Introduction

The regional geology, stratigraphy, and paleontology of the

Middle Devonian sequences of the northern Rhenish

Massif (Eifel, Bergisches Land, and Sauerland) have been

investigated for many decades. As a result of this extended

research, there are many paleontological, stratigraphical

and regional geological publications (e.g., Richter 1971;

Grabert 1980; Langenstrassen 1983; Meyer 1986; Koch

et al. 1990; Meyer and Stets 1996; Ribbert 1998; Weddige

and Ziegler 2000; May 2003). Paleontological publications

include numerous studies of invertebrates such as bra-

chiopods (e.g., Solle 1953, 1971; Struve 1964, 1982a,

1992; May 1989, 1991; Gad 1995, 1997; Thormann and

Weddige 2001), stromatoporoids (May 1993d; Krebedun-

kel 1995; Salerno 2008), rugose and tabulate corals (e.g.,

Birenheide 1979, 1985; Byra 1983; Coen-Aubert and Lutte

1990; Lutte 1987, 1990, 1993; May 1993 a, b; Avlar and

May 1997; Schroder 1998; Bruhl 1999; Schroder and

Salerno 2001; Stadelmaier et al. 2005), trilobites (e.g.,

Struve 1996; Basse and Lemke 1996; Basse 1998, 2002,

2003, 2006, 2010) and gastropods (e.g., Heidelberger and

Koch 2005; Heidelberger 2003, 2008).

The current knowledge of bryozoan diversity in the

Devonian of the Eifel area was originally restricted to a few

papers in the last century (e.g., Solle 1937, 1952, 1968;

Toots 1951; Krausel 1953, 1957, 1981), but it has recently

increased (Ernst and Schroder 2007; Ernst 2008a, b; Ernst

and Bohaty 2009; Ernst et al. 2011b), Paleozoic bry-

ozoans belong mainly to the Class Stenolaemata and are

A. Ernst (&)

Institut fur Geowissenschaften der

Christian-Albrechts-Universitat zu Kiel,

Ludewig-Meyn-Str. 10, 24118 Kiel, Germany

e-mail: [email protected]

A. May

C/Canada 69, 5 B, 28850 Torrejon de Ardoz, Madrid, Spain

e-mail: [email protected]

S. Marks

Dauvemuhle 49, 48159 Munster, Germany

e-mail: [email protected]

123

Facies (2012) 58:727–758

DOI 10.1007/s10347-011-0289-6

often diverse and abundant in different marine sediments

from Ordovician to Permian time. Due to their stable cal-

cite skeletons, bryozoans usually show better preservation

than many other animals, which makes them an important

fossil group. They are significant in regional stratigraphy,

paleobiogeography, and paleoecology. Bryozoans can be

especially useful in the interpretation of past environments,

because they are sessile organisms strongly dependent on

environmental conditions. Bryozoans are abundant and

diverse in the Devonian worldwide (Cuffey and McKinney

1979). This period was a time of important changes in the

structure and global composition of bryozoan faunas

(Bigey 1985).

This paper is a study of representative material from the

Meinerzhagener Korallenkalk from the limestone quarry at

Kierspe in the western Sauerland, Germany (Fig. 1). The

Meinerzhagener Korallenkalk is a facies of the upper part of

the Cultrijugatus Beds and belongs to the Lower Eifelian.

The Cultrijugatus Beds are equivalent to the Hohenhof

Formation of northern Sauerland. The UTM coordinates

of the studied quarry are r 3402658.71, h 5666076.91 to

r 3402660.03, h 5666087.76. All investigated material was

collected in the quarry during excavating a new access to

the Hulloch, a locally famous cave (Marks 2010).

The study includes an overview of the macrofauna and

microflora and provides microfacies analysis as well as

systematic descriptions of the bryozoans and corals. The

results obtained from the bryozoan faunal analysis can thus

be compared with those from the coral fauna. A recon-

struction of the paleoenvironment of this horizon is given,

stratigraphic correlation and paleobiogeographic connec-

tions are also discussed.

Geological setting

The Rhenish Massif is generally assigned to the Avalonia

terrain, which become separated from Gondwana in the

Early Ordovician and drifted northwards (e.g., Oncken et al.

2000; Tait et al. 2000; Romer and Hahne 2010). Avalonia

collided with Baltica in the Late Ordovician—Early Silurian,

which led to the closure of the Tornquist Sea. Due to the

collision of Baltica and Avalonia with Laurentia, the Iapetus

Ocean was closed and as a result of this Laurussia was

formed (e.g., Linnemann et al. 2008; Kroner et al. 2007;

Nance et al. 2010). According to Kroner et al. (2007),

Sanchez Martınez et al. (2007), and Nance et al. (2010), the

closure of the Rheic Ocean began in the Late Silurian—Early

Devonian and continued until the Early Carboniferous by

successive closing from west to east.

Marine Devonian sediments in Europe can be generally

assigned to two facies settings, the ‘‘Rhenish’’ facies and

the ‘‘Hercynian’’ facies (Erben 1962). The Rhenish facies

is characterized by thick siliciclastic successions, which are

regarded to have been deposited in deltaic shallow marine

environments (e.g., Stets and Schafer 2002; Wehrmann

et al. 2005). Typical sediments of the ‘‘Hercynian’’ facies

are pure limestones and argillaceous shales; sandstones are

rare. Beginning in the Early Devonian, the Rhenohercynian

Basin developed as a narrow (about 250–350 km wide) but

rather elongate (more than 2,000 km) trough south of

the Old Red Sandstone Continent. Towards the south, the

trough was confined by the Mid-German High during the

Early Devonian (Lochkovian and Pragian). Detrital sedi-

ment was delivered from northern (Wierich 1999) as well as

southern source areas (Hahn 1990; Hahn and Zankl 1991).

The Lower Devonian sequences in the Rhenish Massif are

dominated by sandstones and siltstones, which were rapidly

deposited in sedimentary troughs and on swells (e.g., Meyer

and Stets 1980, 1996; Mittmeyer 1982) that formed during a

rift stage. In the southern and western Rhenish Massif,

Middle Devonian successions are predominantly composed

of shales, platy limestones and reef limestones. In contrast,

within Bergisches Land and Sauerland, siliciclastic sedi-

ments were delivered from the north, i.e., from the Old Red

Sandstone Continent (Langenstrassen 1982, 1983; May

2003) during the Lower Devonian and early Middle Devo-

nian (Eifelian and Lower Givetian). This siliciclastic input

diminished during Givetian time when shallow subtropical

carbonates were established over much of the region. The

occurrence of biostromal and biohermal limestones in the

Bergisches Land and Sauerland can be directly correlated

with sea level changes (see May 2003: 60–61, fig. 3): Sea-

level rises pushed back the siliciclastic sedimentation and

permitted the growth of reef builders.

The study area lies within the southwestern part of the

Ebbe saddle and comprises sediments of Emsian to Eifelian

age (Fig. 2). The outcrop (a limestone quarry in Kierspe)

exposes deposits of the so-called Meinerzhagener Koral-

lenkalk that belongs in the upper Cultrijugatus Beds (Avlar

and May 1997).

The Cultrijugatus Beds are slightly more marine time

equivalents of the Hohenhof Formation of northwestern

Sauerland. The Cultrijugatus Beds comprise a ca. 200-m-

thick succession of greenish, yellowish or yellowish-grey

marly or sandy argillites, Upper Emsian and Lower Eif-

elian age, and can be divided into three parts (Fig. 2).

Carbonate lenses occasionally are developed in the middle

and upper part, whereas the lower part contains rare

sandstones and gray-blue argillites. Biostromal or bioher-

mal limestones and fossiliferous marlstones within the

upper Cultrijugatus Beds of the geological map sheet

Meinerzhagen have been named ‘‘Meinerzhagener Koral-

lenkalk’’ by Fuchs (1923).

The Emsian/Eifelian boundary occurs within the middle

part of the Cultrijugatus Beds, and is constrained because

the lower part of the middle Cultrijugatus Beds contains a

728 Facies (2012) 58:727–758

123

spiriferid brachiopod fauna that suggests an Upper Emsian

age (Avlar and May 1997: 106); whereas the upper part of

the middle Cultrijugatus Beds contains the Eifelian index

fossil Arduspirifer intermedius (Schlotheim, 1820) (Solle

1953; Struve 1982b; Avlar and May 1997). Furthermore, a

fauna from the upper part of the middle Cultrijugatus Beds

documented by May (1989: 16) also suggests a Middle

Devonian age. The Cultrijugatus Beds overlie the siliciclastic

Remscheid Formation (Emsian) and are covered by the

Hobracke Formation (higher Lower Eifelian), which repre-

sents a succession of mixed carbonate and siliciclastic

deposits. The transition between the Cultrijugatus Beds and

10˚

10˚

12˚

12˚

50˚ 50˚

52˚ 52˚

54˚ 54˚

s’-Gravenhage

Brussels

Antwerpen

Rotterdam

Amsterdam

Kierspe

KölnBonn

Koblenz

Frankfurt

Bremen

Kassel

Hannover

Hamburg

Kiel

Maastricht

0 50 100

km

Düsseldorf

0 50 100

m

Quarry

Fig. 1 Geographic position of

the quarry near Kierspe,

Germany (map sketch created at

http://www.aquarius.geomar.de/

omc/make_map.html; local map

based on an illustration pro-

vided by � Markischer Kreis,

Katasterbehorde 11-04615 with

approval of Markischer Kreis on

8th June 2011, Az FD

67-Kundenzentrum)

Facies (2012) 58:727–758 729

123

the Hobracke Formation is defined by detailed lithological

differences (Cultrijugatus Beds with more greenish-yellowish

shales and Hobracke Formation with more siltstones and fine-

grained sandstones) and the disappearance of Paraspirifer

cultrijugatus (Roemer, 1844), Paraspirifer sandbergeri Solle,

1971 and Alatiformia alatiformis (Drevermann, 1907) (Avlar

and May 1997).

Materials and methods

Bryozoans, corals, and sediment were investigated using

thin-sections studied with a transmitted light binocular

microscope. Fifty-five thin-sections of different sizes

(28 mm 9 48 mm and 50 mm 9 50 mm) were made from

five representative rock samples and two coral colonies

collected from the outcrop. The thin-sections were used for

bryozoan and coral taxonomy and microfacies study. The

material is housed at the Senckenberg Museum (Frankfurt

am Main, Germany) under collection numbers SMF

21.385–SMF 21.499, SMF 21.683–SMF 21.684.

The terminology of Hill (1981) is used for the corals.

The corallite diameter is measured from the dark median

suture of the outer wall of one side to the other side. The

common wall thickness represents the complete thickness

of the both outer walls of neighboring corallites. For the

corallite diameter and wall thickness, 15–20 measurements

were taken in each case. Given are the observed minimum,

maximum and mean values.

For bryozoans, the morphologic character terminology

is adopted from Anstey and Perry (1970) for trepostomes

and from Hageman (1993) for cryptostomes. The spacing

of structures is measured as the distance between their

centers. Statistics were summarized using arithmetic mean,

sample standard deviation, coefficient of variation, and

minimum and maximum values.

Macrofauna (corals and brachiopods)

The Meinerzhagener Korallenkalk within this studied sec-

tion contains abundant tabulate corals represented by the

dominant species Pachyfavosites vilvaensis (Sokolov,

1952) (Fig. 3a, b, i, 4d, e) and Coenites vermicularis

(M‘Coy, 1850) (Fig. 3h, i, Fig. 4f, g), and the less common

species Thamnopora angusta Lecompte, 1939 (Fig. 3c–f).

Fig. 2 Stratigraphy and lithofacies of the Cultrijugatus Beds in the southwestern Ebbe saddle (modified after Avlar and May 1997)

Fig. 3 Macrofauna (corals and brachiopods). Pachyfavosites vilva-ensis (Sokolov, 1952). a External view. b Exposed broken side of the

colony with ‘‘ragged’’ margins within rock sample. c–f Thamnoporaangusta Lecompte, 1939. c Thin-section of the encrusting basal part of

a colony, SMF 21.488. d Broken branch of colony within rock sample.

e Several branches of a colony embedded in rock, transverse view.

f Thin-section of a branch SMF 21.489. g Platyaxum (Roseoporella)

gradatum (Lecompte, 1939), SMF 21.683. h Colony of Roemerolitestenuis (Schluter, 1885), stabilizing the sediment, a bafflestone to

floatstone composed of branches of Coenites vermicularis (McCoy,

1850), SMF 21.684. i Bafflestone to floatstone containing isolated

corallites of Sociophyllum semiseptatum rolfwerneri Birenheide, 1979,

abundant branches of Coenites vermicularis (McCoy, 1850), and an

irregularly laminated colony of Pachyfavosites vilvaensis (Sokolov,

1952). j Alatiformia alatiformis (Drevermann, 1907)

c

730 Facies (2012) 58:727–758

123

Facies (2012) 58:727–758 731

123

732 Facies (2012) 58:727–758

123

Platyaxum (Roseoporella) gradatum (Lecompte, 1939)

(Fig. 3g) and Roemerolites tenuis (Schluter, 1885)

(Fig. 3h) are rather rare species here. Rugose corals are

represented by the relatively rare Sociophyllum semisept-

atum rolfwerneri Birenheide, 1979 (Figs. 3i, 4a–c) and

rare, small, horn-like solitary corals.

The common brachiopod Alatiformia alatiformis

(Drevermann, 1907) (Fig. 3j) was collected from marly

argillites at the top of the Meinerzhagener Korallenkalk at

this locality, along with rare specimens of the brachiopod

Xystostrophia sp.

Microfacial characteristics of the limestones at Kierspe

Limestones from Kierspe display different types of mi-

crofacies. The most common microfacies is represented by

crinoid-coral-bryozoan floatstones (Fig. 5a). Furthermore,

autochthonous limestones are represented by coral-bryo-

zoan bafflestones (Fig. 5b), algal-bryozoan bindstones

(Fig. 6d–g), and locally by pure bryozoan bindstones

(Figs. 7d, e, 8a, b). Bryozoan bindstones are produced by

encrusting cystoporates (Fistuliphragma gracilis, Fistu-

lporella kierspensis) and trepostomes (Leioclema passita-

bulatum and two unidentified species).

Among the corals, Coenites vermicularis (M‘Coy, 1850),

Thamnopora angusta Lecompte, 1939 and Sociophyllum

semiseptatum rolfwerneri Birenheide, 1979 were bafflers,

whereas Pachyfavosites vilvaensis (Sokolov, 1952), Platy-

axum (Roseoporella) gradatum (Lecompte, 1939) and

Roemerolites tenuis (Schluter, 1885) (Fig. 3h) were binders.

Besides abundant bryozoans, corals and crinoid fragments,

the following components were identified in thin-sections:

brachiopod shells, thick-walled ostracods (Fig. 5d), echi-

noid spines (Fig. 5c), and rare trilobites (Fig. 5e).

The most common calcareous alga is Girvanella weth-

eredii Chapman 1908 that occurs in about 30% of thin-

sections. This alga produces locally significant masses and

sheets 0.12–0.35 mm in thickness (Fig. 5f–j), preferen-

tially occurring on the surface of the tabulate corals Coe-

nites vermicularis (M‘Coy, 1850). Girvanella wetheredii

develops masses consisting of small, densely spaced tubes

(tube diameter: 0.005–0.0075 mm; 10–20 tubes per

0.1 mm distance). Another species, Girvanella problem-

atica Nicholson and Etheridge, 1878, is rather rare,

developing loose tubes 0.010–0.015 mm in diameter.

Rothpletzella munthei (Rothpletz, 1913) Wood, 1948 is

the rarest species, observed here in only three thin sections.

This species was found encrusting an undescribed trepos-

tome bryozoan and Acanthoclema parvula (Fig. 6d–g).

Rothpletzella munthei produces unilaminar encrusting

sheets consisting of tubes 0.025–0.050 mm in diameter,

spaced 22–27 per 1 mm distance.

The microfacies of the Meinerzhagener Korallenkalk is

similar to the microfacies of the limestones of the

Grunewiese Member of the Ihmert Formation in north-

western Sauerland (May 1992a, 1993d), which are earliest

Givetian in age (Schone et al. 1998). Furthermore, the coral

fauna of the Grunewiese Member shows several similarities

(May 1993a, b), and Girvanella wetheredii Chapman 1908,

Girvanella problematica Nicholson and Etheridge, 1878 and

Rothpletzella munthei (Rothpletz, 1913) Wood, 1948 have

been described by May (1992b) from the limestones of the

Grunewiese Member. At first glance it seems that the

Meinerzhagener Korallenkalk contains more bryozoans and

fewer stromatoporoids than the Grunewiese Member.

Remarkably, in this case the same trend is evident, which

May (2005) observed comparing Pragian and Middle

Devonian limestones of Bohemia. May (2005: 234)

suggested that an increase in the water temperature from the

Lower Devonian to the Middle Devonian could possibly

explain these variations. Further investigations must be

undertaken in order to prove whether this could be also an

explanation for the observed differences between the

Meinerzhagener Korallenkalk and the Grunewiese Member.

Systematic paleontology

Phylum Cnidaria Hatschek, 1888

Class Anthozoa Ehrenberg, 1834

Subclass Tabulata Milne-Edwards and Haime, 1850

Order Favositida Wedekind, 1937

Family Favositidae Dana, 1846

Genus Pachyfavosites Sokolov, 1952

Pachyfavosites: Sokolov, 1952: 43; Hill 1981: 548;

Birenheide 1985: 67; May 1993a: 123; Lutte 1993: 61;

Bruhl 1999: 39; Stadelmaier et al. 2005: 18; Niko 2007: 66;

Hubmann and Gaetani 2007: 314; May 2008: 3; Niko and

Senzai 2010: 41

Type species: Calamopora polymorpha var. tuberosa

Goldfuss 1826. Middle Devonian, Eifel (Germany).

Diagnosis and occurrence: See Birenheide (1985: 67) and

May (1993a: 123).

Pachyfavosites vilvaensis (Sokolov, 1952)

Figs. 3a, b, 4d, e

Fig. 4 Corals. Sociophyllum semiseptatum rolfwerneri Birenheide,

1979. a External view of complete colony. b Transverse thin-section

of several corallites of the colony, SMF 21.494. c Longitudinal

section of a corallite, SMF 21.492. d, e Pachyfavosites vilvaensis(Sokolov, 1952). d Tangential thin-section, SMF 21.491. e Longitu-

dinal thin-section, SMF 21.490. f, g Coenites vermicularis (McCoy,

1850). f Branch, vertical to oblique thin-section, SMF 21.498.

g Branch longitudinal thin-section, SMF 21.498

b

Facies (2012) 58:727–758 733

123

734 Facies (2012) 58:727–758

123

*1952 Favosites (Pachyfavosites) vilvaensis n. sp.

Sokolov: 48, pl. 11, figs. 1-4

1959 Pachyfavosites vilvaensis—Dubatolov: 59-60, pl.

14, figs. 3-4

2003 Pachyfavosites ex gr. cronigerus (Orbigny, 1849)

—May: 51

Material: One large corallum (Fig. 3b) cut in pieces with

2 thin-sections (Fig. 4d, e), and several smaller coralla

(SMF 21.490–SMF 21.491).

Description: The coralla are irregularly massive, tabular,

bulbous, or encrusting. The upper surface of the corallum is

flat or with dome-like excrescences (Fig. 3a).

In transverse thin-section corallites are polygonal with

rounded corners. The corallites are 0.6–1.4 mm in diameter

(mean 1.0 mm). The common wall between the corallites is

0.15–0.50 mm thick (mean 0.28–0.30 mm) with a well-

developed dark median suture. Rarely small, short septal

spines occur. No squamulae have been observed.

In longitudinal thin-section, mural pores are round,

0.15–0.25 mm in diameter and ordered in one row in the

middle of the side. Mural pores have a distance of about

1.1–1.5 mm from each other. Among the horizontal

skeletal elements tabulae dominate, which are horizontal

or slightly inclined. Inclined or curved tabellae occur

frequently. The number of horizontal skeletal elements

amounts to 24–30 per 10 mm.

Comparison: It is a typical species of Pachyfavosites.

However, it can be distinguished by its corallite diameter

from the type species Pachyfavosites polymorphus (Gold-

fuss, 1826) and from many other Pachyfavosites species,

whose mean corallite diameters are larger than 1 mm (e.g.,

Dubatolov 1959, 1963; Birenheide 1985; May 1993a;

Stadelmaier et al. 2005; Niko 2007; May 2008; Niko and

Senzai 2010).

Pachyfavosites multiperforatus: Dubatolov, 1959 from

the Salairka Formation of the Kuznetsk Basin (Siberia) has

significantly smaller corallite diameters (0.6–0.8 mm),

thinner walls (0.1–0.3 mm) and more mural pores (Dub-

atolov 1959: 61–62, pl. 17 fig. 8).

Pachyfavosites oekentorpi: Bruhl, 1999 from the Upper

Eifelian of the Eifel (Germany) has slightly smaller

corallite diameters (0.5–1.1 mm), slightly thicker walls

(about 0.25–0.35 mm, up to 0.6 mm) (Bruhl 1999: 40–42,

pl. 25–27). Furthermore, few squamulae have been

observed in Pachyfavosites oekentorpi Bruhl, 1999.

The material from Kierspe matches well the descriptions

of Pachyfavosites vilvaensis by Sokolov (1952) and

Dubatolov (1959).

Occurrence and geological age: Until this study, Pachyf-

avosites vilvaensis was known only from the Eifelian of the

Urals and from the Salairka Formation of the Kuznetsk Basin

(Siberia) (Sokolov 1952; Dubatolov 1959). The Salairka

Formation is Early Emsian in age (Weddige 2006; Yolkin

et al. 2006). This occurrence is significant for two reasons.

Firstly, it is the first evidence of Pachyfavosites vilvaensis

from central Europe. Secondly, it is one of the oldest

occurrences of the genus Pachyfavosites in central Europe.

Genus Thamnopora Steininger, 1831

Thamnopora: Steininger, 1831: 10; Hill 1981: 584; Bire-

nheide 1985: 69; May 1993a: 125; May 1993c: 78; Lutte

1993: 57; May 1998: 142; Bruhl 1999: 42; Stadelmaier et al.

2005: 14; Niko 2005: 22; Hubmann and Gaetani 2007: 316;

May 2008: 4; Niko and Senzai 2010: 49; Blake 2010: 151

Type species: Thamnopora madreporacea Steininger,

1831. Givetian, Bensberg (Germany).

Diagnosis and occurrence: See Birenheide (1985: 69) and

May (1993c: 78–79). For lists of assigned species and their

characterization see May (1993a: 126–130) and May (1998).

Thamnopora angusta Lecompte, 1939

Fig. 3c–f

*1939 Thamnopora angusta n. sp. Lecompte: 115–116,

pl. 16, figs. 17-20

1993a Thamnopora angusta—May: 131-133, text-fig. 7,

pl. 3, figs. 3-4 [cum syn.]

1997 Thamnopora angusta—Avlar and May: 110, pl. 2,

figs. 3-5

2003 Thamnopora angusta—May: 51, pl. 1, fig. 1

Material: Two thin-sections SMF 21.488–SMF 21.489,

and several fragments of colonies.

Comparison: The material matches well with the

descriptions of Thamnopora angusta by Avlar and May

(1997), May (1993a), and Lecompte (1939). Avlar and

May (1997) gave a detailed description of material from

the Meinerzhagener Korallenkalk, there is no need for a

new description here.

Occurrence and geological age: Thamnopora angusta has

been described originally from the Lower and Upper

Fig. 5 Microfacies. a Floatstone with various fossils (bryozoans,

corals, brachiopods), SMF 21.478. b Coral-bryozoan bafflestone

(Coenites vermicularis, Acanthoclema parvula, Fenestrapora cauca-sica), SMF 21.479. Components. c Echinoid spine, SMF 21.480.

d Ostracode, SMF 21.481. e Trilobite, SMF 21.482. f–j Girvanellawetheredii Chapman, 1908. f irregular aggregation, SMF 21.483.

g Encrusting sheet on Coenites vermicularis (McCoy, 1850), SMF

21.484. h–j Globular aggregations, SMF 21.484

b

Facies (2012) 58:727–758 735

123

736 Facies (2012) 58:727–758

123

Givetian of Belgium (Lecompte 1939: 116). Furthermore,

this species occurs in the Lower and Upper Givetian of the

Eifel, Bergisches Land and Sauerland (Germany), as well

as in the Upper Emsian, Eifelian and Givetian of Poland

and the Givetian of France, the Urals and Siberia

(Birenheide 1985: 72, Tab. 2; May 1993a). Our material

from Kierspe as well as the material described by Avlar

and May (1997) and the material figured by May (2003)

originates from Lower Eifelian coral limestones of western

Sauerland and represents early occurrences of this species.

Family Alveolitidae Duncan, 1872

Genus Coenites Eichwald, 1829

Coenites: Eichwald, 1829: 179; Hill 1981: 600; Avlar

and May 1997: 113; Niko and Senzai 2010: 54

Type species: Coenites juniperinus Eichwald, 1829.

Upper Middle Silurian, Estonia.

Diagnosis and occurrence: See Hill (1981: 600).

Coenites vermicularis (M‘Coy, 1850)

Figs. 3h, i,4f-g

*1850 Alveolites vermicularis n. sp. M‘Coy: 377

1939 Thamnopora (?) vermicularis—Lecompte:

130-132, pl. 18, figs. 13-14 [cum syn.]

1978 Gracilopora vermicularis—Stasinska and Now-

inski: 205-206, pl. 18, fig. 2, pl. 19, fig. 1

1997 Coenites vermicularis—Avlar and May: 113–114,

pl. 2, figs. 6-8 [cum syn.]

1999 Thamnopora schouppei Bruhl: 44-45, pls. 30–31

2003 Coenites vermicularis—May: 50, 51, pl. 1, fig. 1

Material: Two thin-sections SMF 21.498–SMF 21.499,

and several fragments of colonies.

Comparison: The material matches the descriptions of

Coenites vermicularis provided by Avlar and May (1997)

and Lecompte (1939) as well as the original description of

Thamnopora schouppei Bruhl 1999. Thamnopora schouppei

from the Upper Eifelian of the Eifel (Germany) is not a

thamnoporid, but a branching alveolitid and without doubt

conspecific with the material described by Avlar and May

(1997) and Lecompte (1939). As Avlar and May (1997) gave

a detailed description of material from the Meinerzhagener

Korallenkalk, there is no need here to give a new description.

Coenites kamei Niko and Senzai, 2010 from the Lower

Devonian of Japan (Niko and Senzai 2010: 54–57, fig. 12)

is very similar to Coenites vermicularis (M‘Coy, 1850).

However, Coenites kamei can be distinguished by its much

smaller height-width ratios (0.3–0.4) of the calices.

Occurrence and geological age: Lecompte (1939)

described Coenites vermicularis from the Middle Eifelian

to Lower Givetian of Belgium. Furthermore, this species

occurs in the Upper Eifelian of the Eifel (Germany) (Bruhl

1999) and in the Frasnian of Poland (Stasinska and Now-

inski 1978). Our material from Kierspe as well as the

material described by Avlar and May (1997) and the

material figured by May (2003) originates from Lower

Eifelian coral limestones of the western Sauerland and

represents early occurrences of this species.

Genus Platyaxum Davis, 1887

Platyaxum: Davis, 1887: Explanations to plates 60 and

61; Birenheide 1985: 85; May 1993a: 170

Type species Platyaxum turgidum: Davis 1887. Middle

Devonian of Indiana.

Diagnosis and occurrence: See Birenheide (1985: 85–86)

and May (1993a: 170–171).

Subgenus Roseoporella Spriestersbach, 1935

Roseoporella: Spriestersbach, 1935: 485; Birenheide

1985: 88; May 1993a: 176; Lutte 1993: 58; Avlar and May

1997: 114; Bruhl 1999: 53

Type species: Roseoporella rhenana Spriestersbach,

1935. Eifelian of Oberhabbach, Germany.

Diagnosis and occurrence: See Birenheide (1985: 88) and

May (1993a: 176).

Remarks: Birenheide (1985: 88) assumed that Roseopo-

rella rhenana Spriestersbach, 1935 was a junior synonym

of Alveolites taenioformis Schluter, 1889. However, the

material described by May (1993a: 179–180, pl. 10 fig. 2)

suggests that a specific distinction between Platyaxum

(Roseoporella) rhenana (Spriestersbach, 1935) and Platy-

axum (Roseoporella) taenioformis (Schluter, 1889) is

justified.

Platyaxum (Roseoporella) gradatum (Lecompte,

1939) Fig. 3g

*1939 Coenites gradatus n. sp. Lecompte: 69–70, pl. 11,

fig. 11-17

1993a Platyaxum (Roseoporella) gradatum—May:

180-182, fig. 19, pl. 11, fig. 1 [cum syn.]

1997 Platyaxum (Roseoporella) gradatum—Avlar and

May: 114–115, pl. 3, fig. 12, pl. 4, fig. 18

1999 Platyaxum (Roseoporella) gradatum—Bruhl: 54,

pl. 38

Fig. 6 a–c Girvanella problematica Nicholson and Etheridge, 1878,

SMF 21.485. d–g Rothpletzella munthei (Rothpletz, 1913) Wood,

1948. d, e SMF 21.487. f, g SMF 21.486

b

Facies (2012) 58:727–758 737

123

738 Facies (2012) 58:727–758

123

Material: One corallum SMF 21.683 (Fig. 3g).

Comparison: The material matches well the descriptions

of Platyaxum (Roseoporella) gradatum given by Avlar and

May (1997), May (1993a), and Lecompte (1939). Avlar

and May (1997) gave a detailed description of material

from the Meinerzhagener Korallenkalk, there is no need to

provide a new description here.

Occurrence and geological age: Platyaxum (Roseoporel-

la) gradatum has been described originally from the Eifelian

and Givetian of Belgium (Lecompte 1939: 70, 74). Several

authors documented and described this species from the

Eifelian and Lower Givetian of the Eifel, Germany

(Birenheide 1985: 88–89, pl. 30 fig. 3, tab. 2; Bruhl 1999),

the Lower Givetian of the Sauerland (Germany) (May

1993a) and the Eifelian of Siberia (Dubatolov 1959:

171–172, pl. 55 fig. 1; Dubatolov 1963: 104–105, pl. 38

fig. 2). Furthermore, P. (Roseoporella) gradatum has been

mentioned or doubtful material has been described from the

Eifelian and Givetian in other parts of Europe and Asia (May

1993a; Avlar and May 1997). Our material from Kierspe, as

well as the material described from Avlar and May (1997),

originates from Lower Eifelian coral limestones of western

Sauerland and represents early occurrences of this species.

Order Auloporida Sokolov, 1947

Genus Roemerolites Dubatolov, 1963

Roemerolites: Dubatolov, 1963: 58; Hill 1981: 659;

Birenheide 1985: 117; May 1993a: 197; Lutte 1993: 63;

Stadelmaier et al. 2005: 20

Type species: Roemerolites batschatensis Dubatolov

1963. Salairka Formation of the Kuznetsk Basin (Siberia),

Lower Emsian (see Weddige 2006; Yolkin et al. 2006).

Diagnosis and occurrence: See Birenheide (1985:

117–118) and May (1993a: 198).

Roemerolites tenuis (Schluter, 1885)

Fig. 3h

*1885 Syringopora tenuis n. sp. Schluter: 12–13

1889 Syringopora tenuis—Schluter: 429, pl. 16, figs. 1-4

1983 Syringoporella tenuis—Byra: 63–64, pl. 22 fig. 64

[cum syn.]

1985 Roemerolites tenuis—Birenheide: 120, fig. 75

1993 Roemerolites tenuis—Lutte: 63, figs. 1-2

2005 Roemerolites tenuis—Stadelmaier et al.: 22, pl. 8,

figs. 7-8

Material: Single corallum SMF 21.684 (Fig. 3h).

Description: Corallum dendroid with cerioid growth

centers. At the base of the corallum the corallites are rep-

tant, resembling Aulopora. Later corallites turn abruptly to

vertical growth. Large parts of the corallum are a 4–5-mm-

thick layer of dendroid corallites. In other parts, cerioid

growth centers are developed, which form branch-like

excrescences of up to 35 mm in height.

Diameter of adult corallites 1.0–1.4 mm, mean 1.1 mm.

Single wall thickness 0.1–0.5 mm (mean about 0.35 mm).

Connecting pores not frequent, with a diameter of about

0.2–0.3 mm. Tabulae not common. No septal spines

observed.

Comparison: The corallum matches well the descriptions

of Roemerolites tenuis (Schluter 1885) published by Byra

(1983) (type material), Lutte (1993) and Stadelmaier (et al.

2005). Roemerolites tenuis can be distinguished from the

other species of Roemerolites from central Europe by its

small corallite diameter and/or its growth form (Birenheide

1985: 119–120; May 1993a: 198–201; Stadelmaier et al.

2005: 20–22).

Occurrence and geological age: All material of Roemer-

olites tenuis previously described originated from the

Givetian of the Eifel (Germany) (Schluter 1885, 1889;

Byra 1983; Lutte 1993; Stadelmaier et al. 2005). Our

material from a Lower Eifelian coral limestone is the

earliest known occurrence of this species.

Subclass Zoantharia Blainville, 1830

Superorder Rugosa Milne-Edwards and Haime, 1850

Order Stauriida Verrill, 1865

Family Stringophyllidae Wedekind, 1922

Genus Sociophyllum Birenheide, 1962

Sociophyllum: Birenheide, 1962: 53; Birenheide 1979:

202; Hill 1981: 250; Coen-Aubert 1989: 8; Coen-Aubert

1990: 24; May 1993b: 51; Coen-Aubert 1999: 33;

Brownlaw and Jell 2008: 24.

Type species: Spongophyllum elongatum Schluter 1881.

Lower Givetian, Berndorf, Eifel (Germany).

Diagnosis and occurrence: See Hill (1981: 250) and May

(1993b: 52).

Sociophyllum semiseptatum rolfwerneri Birenheide,

1979 Figs. 3i,4a-c

*1979 Sociophyllum semiseptatum rolfwerneri n. subsp.

Birenheide: 202–203, pl. 6 fig. 8, pl. 12 fig. 19

Fig. 7 a–d Fistuliphragma gracilis Ernst, 2008a, a tangential sec-

tion, SMF 21.385. b Tangential section SMF 21. 388. c Longitudinal

section SMF 21.386. d Longitudinal section, SMF 21.389.

e–k Fistuliporella kierspensis n. sp. e, f Longitudinal section,

holotype SMF 21.391. g Longitudinal section, paratype SMF

21.400. h, i Tangential section, holotype SMF 21.391

b

Facies (2012) 58:727–758 739

123

740 Facies (2012) 58:727–758

123

1990 Sociophyllum rolfwerneri—Coen-Aubert: 26–27,

pl. 4, figs. 21-27

Material: One large corallum (Fig. 4a) cut in pieces with

5 thin-sections (Fig. 4b, c) (SMF 21.492–SMF 21.493),

and some isolated corallites contained within the rock.

Description: Corallum phaceloid. Diameter of adult cor-

allites 7.5–12 mm. Diameter of juvenile corallites about

5 mm. In all juvenile corallites and a part of the adult

corallites the septal elements are reduced to irregularly

distributed spines and short septal segments. However, in

many adult corallites the septal segments are longer and

better developed. In these cases 30–36 septa can be

counted. Lonsdaleoid dissepiments occur normally in one

row, and less frequently in two rows, in vertical sections.

In longitudinal sections, the dissepiments are steeply

inclined. The tabularium is approximately half of the whole

diameter. The tabulae and tabellae are concave. In a

distance of 10 mm, there are 14–18 horizontal skeletal

elements.

Comparison: The material correlates with the descrip-

tions of Sociophyllum semiseptatum rolfwerneri by Bire-

nheide (1979) and Coen-Aubert (1990). Only the number

of septa is slightly higher in the material from Kierspe

(30–36 instead of 24–30). Taking into account the high

variability in the number of the septa, this difference can be

ignored. Sociophyllum semiseptatum rolfwerneri Birenhe-

ide 1979 can be distinguished from the other subspecies of

Sociophyllum semiseptatum (Schluter 1881) by its well-

developed lonsdaleoid dissepiments and septa. For more

detailed comparison, see Birenheide (1962, 1979) and

Coen-Aubert (1990).

Occurrence and geological age: Sociophyllum semisept-

atum rolfwerneri has been described originally from the

Lauch Formation (Lower Eifelian) of the Eifel (Birenheide

1979). The material from Kierspe is of the same age.

Furthermore, this species occurs in the Upper Eifelian of

Belgium (Coen-Aubert 1990).

Phylum Bryozoa Ehrenberg, 1831

Class Stenolaemata Borg, 1926

Order Cystoporata Astrova, 1964a

Family Fistuliporidae Ulrich, 1882

Genus Fistuliphragma Bassler, 1934

Fistulipora: Rominger, 1866: 121

Fistuliphragma: Bassler, 1934: 407; Utgaard 1983: 395;

Yang and Lu 1983: 270–271; Ernst 2008a: 326; Ernst and

Konigshof 2010: 9–19; Ernst et al. 2011a: 305

Type species: Fistulipora spinulifera Rominger, 1866.

Traverse Group (Middle Devonian); Michigan, USA.

Diagnosis: Solid, ramose and encrusting colonies, the

latter usually in form of hollow tubes. Secondary over-

growth occurring. Autozooecia originating from a thin

epitheca, bending sharply at their bases towards colony

surface, with circular apertures and large, prominent lu-

naria. Hemiphragms present, positioned in alternating

pattern in autozooecia, originating in laminated skeleton of

autozooecia, rare in endozones, rare to abundant in exoz-

ones. Basal diaphragms rare to abundant. Vesicular skele-

ton well developed. In the center of each vesicle roof a

single acanthostyle present. Monticules present.

Comparison: Fistuliphragma Bassler, 1934 is similar to

Cliotrypa Ulrich and Bassler in Bassler, 1929 and Stroto-

pora Ulrich in Miller, 1889 in the presence of hemi-

phragms, but differs from both genera in the absence of

gonozooecia.

Stratigraphic and geographic range: Middle Devonian of

USA, Germany, Western Sahara and Spain, and Upper

Carboniferous of China.

Fistuliphragma gracilis Ernst, 2008a

Fig. 7a–d; Table 1

2008a Fistuliphragma gracilis n. sp. Ernst: 329-332,

fig. 11A-G

2011a Fistuliphragma gracilis Ernst—Ernst et al.:

305-307, fig. 3e-g

Material: SMF 21. 385–SMF 21. 390.

Table 1 Descriptive statistics for Fistuliphragma gracilis Ernst,

2008a

N X SD CV MIN MAX

Aperture width (mm) 20 0.17 0.021 12.73 0.12 0.19

Autozooecial aperture

spacing (mm)

20 0.30 0.025 8.35 0.26 0.35

Lunarium length (mm) 6 0.062 0.014 23.15 0.050 0.088

Lunarium width (mm) 6 0.101 0.013 13.11 0.088 0.125

Lunarium thickness

(mm)

6 0.027 0.005 17.33 0.020 0.033

Vesicle width (mm) 10 0.085 0.025 29.78 0.050 0.125

Vesicles per aperture 10 8.3 1.252 15.08 7.0 11.0

N number of measurements, X mean, SD sample standard deviation,

CV coefficient of variation, MIN minimal value, MAX maximal value

Fig. 8 Leioclema passitabulatum Duncan, 1939. a Longitudinal

section, SMF 21.411. b Longitudinal section, SMF 21.404.

c, d Tangential section, SMF 21.410. e–i Leptotrypella sophiae n. sp.

e Branch oblique section, SMF 21.415. f, g Branch transverse section,

SMF 21.419 (arrow cyst-like structure). h, i Tangential section, SMF

21.416. Vidronovella fastigiata Gorjunova, 2006. j, k Branch oblique

section, SMF 21.430. l Branch, longitudinal section, SMF 21.428

b

Facies (2012) 58:727–758 741

123

Description: Encrusting colonies, 0.55–0.70 mm thick.

Autozooecia growing from low vertical walls on epitheca,

bending sharply at their bases towards colony surface.

Vertical walls thick, arising directly from thin epitheca,

double-layered, with distinct boundaries. Autozooecial

apertures circular to oval, having laminated, thick-walled

peristomes. Lunaria large, triangular. Long hemiphragms

positioned in alternating pattern in autozooecia, often

overlapping each other, curved proximally to distally, orig-

inating in laminated skeleton of autozooecial walls. Basal

diaphragms rare, thin, horizontal, or inclined. Vesicles large,

separating autozooecia in 1–2 rows, 7–11 surrounding each

autozooecial aperture, polygonal in tangential section, box-

like to hemispheric, with plane or concave roofs, consisting

of granular skeleton. Vesicular roofs containing acantho-

styles, 0.018–0.025 mm in diameter. Autozooecial walls

granular, 0.005–0.010 mm thick. Maculae not observed.

Comparison: Fistuliphragma gracilis Ernst, 2008a differs

from F. eifelensis Ernst, 2008a in having smaller colonies,

and smaller autozooecia (average autozooecial aperture

width 0.17 mm vs. 0.28 mm in F. eifelensis).

Occurrence and geological age: Bohnert Member of the

Freilingen Formation (Upper Eifelian); Eifel (western

Rhenish Massif), Germany. Santa Lucıa Formation,

Lower—Middle Devonian (Upper Emsian—Lower Eif-

elian); Abelgas and Paradilla, Cantabrian Mountains, NW

Spain.

Genus Fistuliporella Simpson, 1897

Type species: Lichenalia constricta Hall, 1883. Silurian-

Devonian; USA.

Diagnosis: Encrusting colonies. Autozooecia tubular,

with walls partly made by superimposed vesicle walls.

Lunaria in endozones and exozones, consisting of hyaline

material. Autozooecial diaphragms common to abundant,

straight or inclined. Vesicles usually high in endozones

becoming low in exozones, usually completely isolating

autozooecia. Elevated monticules occurring, consisting of

vesicles or dense stereom in central part, surrounded by a

ring of larger autozooecia.

Comparison: Fistuliporella Simpson, 1897 differs from

Fistuliporidra Simpson, 1897 due to the presence of

abundant diaphragms and in possessing granular auto-

zooecial walls rather than laminated walls.

Stratigraphic and geographic range: Upper Silurian—

Middle Devonian; North America. Middle Devonian;

Germany.

Remarks: Several species assigned to Fistuliporella were

described from the Upper Silurian to Middle Devonian of

North America (Rominger 1866; Hall 1883; Hall and

Simpson 1887; Ulrich and Bassler 1913; Bassler 1923).

However, most of these species were described without the

use of thin-sections. Only illustrations of thin-sections

made from the type species F. constricta (Hall, 1883) in

Utgaard (1983: 395, fig. 184, 1-d) were available for

comparison of the internal morphology of this genus.

Fistuliporella kierspensis n. sp.

Fig. 7e–k; Table 2

Etymology: The species is named after the type locality

Kierspe.

Holotype: SMF 21.391

Paratypes: SMF 21.392–SMF 21.400 Type locality: Ki-

erspe, Germany.

Type horizon: Middle Devonian (Lower Eifelian).

Diagnosis: Encrusting colonies; autozooecia with com-

mon basal diaphragms; lunaria small, triangular, thickened

to a massive node near colony surface; vesicles medium in

size, 6–10 surrounding each autozooecial aperture, arran-

ged commonly in single row between autozooecia, locally

completely isolating autozooecia; maculae not observed.

Description: Encrusting colonies, 0.9–2.1 mm thick.

Autozooecia growing from thick epitheca, bending sharply

at their bases towards colony surface. Autozooecial aper-

tures circular to oval or slightly polygonal due to surrounding

vesicles. Basal diaphragms common, locally abundant, thin,

horizontal or inclined. Lunaria small, triangular, consisting

of hyaline material, near the colony surface thickened to a

massive node. Vesicles medium in size, moderately high,

polygonal in tangential section, box-like, with concave

roofs, 6–10 surrounding each autozooecial aperture, arran-

ged commonly in single row between autozooecia, locally

completely isolating autozooecia. Autozooecial walls

0.02–0.03 mm thin, granular. Maculae not observed.

Table 2 Descriptive statistics for Fistuliporella kierspensis n. sp

N X SD CV MIN MAX

Colony thickness (mm) 5 1.4 0.493 35.32 0.9 2.1

Aperture width (mm) 30 0.39 0.052 13.42 0.30 0.49

Autozooecial aperture

spacing (mm)

30 0.49 0.068 13.99 0.36 0.60

Vesicle width (mm) 30 0.15 0.036 23.48 0.09 0.23

Vesicles per aperture 30 7.7 1.317 17.10 6.0 10.0

Vesicle spacing (mm) 30 0.17 0.049 28.57 0.10 0.27

Autozooecial diaphragm

spacing (mm)

20 0.17 0.053 31.24 0.06 0.28

Abbreviations as for Table 1

742 Facies (2012) 58:727–758

123

Comparison: Fistuliporella kierspensis n. sp. differs from

F. constricta (Hall, 1883) from the Silurian-Devonian of

USA in having larger autozooecial apertures (average

autozooecia width 0.39 mm vs. 0.25 mm in F. constricta).

Order Trepostomata Ulrich, 1882

Suborder Halloporina Astrova, 1965

Family Heterotrypidae Ulrich, 1890

Genus Leioclema Ulrich, 1882

[= Lioclema Ulrich, 1882]

Type species: Callopora punctata Hall, 1858. Lower

Carboniferous; Iowa, USA.

Diagnosis: Encrusting, branched, less commonly massive

colonies. Autozooecia with polygonal to rounded-polygo-

nal, sometimes petaloid apertures. Autozooecial diaphragms

rare. Mesozooecia abundant, with abundant diaphragms,

often beaded. Acanthostyles abundant, commonly large.

Autozooecial walls thin in endozone; laminated, regularly

thickened in exozones (modified after Astrova 1978).

Comparison: Leioclema Ulrich, 1882 differs from Het-

erotrypa Nicholson, 1879 in having rare autozooecial

diaphragms and abundant acanthostyles and mesozooecia,

and from Stigmatella Ulrich and Bassler, 1904 in having

abundant mesozooecia.

Stratigraphic and geographic range: Lower Silurian to

Upper Carboniferous; worldwide.

Leioclema passitabulatum Duncan, 1939

Fig. 8a–d; Table 3

1939 Lioclema passitabulatum n. sp. Duncan: 251, pl.

16, figs. 8-10

1964b Lioclema passitabulatum Duncan 1939—Astrova:

33, pl. 10, fig. 2a, b

2007 Leioclema passitabulatum Duncan 1939—Ernst

and Schroeder: 210, figs. 2I-K, 3A-C

2009 Leioclema passitabulatum Duncan 1939—Ernst

and May, 2009: 779, figs. 7.1-7.4

Material: SMF 21.401–SMF 21.414.

Description: Thin encrusting colonies, 0.33–1.05 mm in

thickness. Autozooecia growing from a thin epitheca,

remaining parallel to substrate for a long distance, then

bending sharply and intersecting the colony surface at right

angles. Autozooecial apertures rounded-polygonal. Auto-

zooecial diaphragms common. Mesozooecia abundant, 5–8

surrounding each aperture, polygonal in transverse section,

often beaded, containing thin diaphragms, moderate in size.

Acanthostyles moderately large, abundant, 2–4 surrounding

each aperture, originating at the base of exozone, often

indenting autozooecia, having distinct calcite cores and dark

laminated sheaths. Walls granular, 0.020–0.025 mm thick in

the endozone; distinctly laminated, 0.03–0.04 mm thick in the

exozone. Maculae indistinct, consisting of larger zooecia.

Comparison: Leioclema passitabulatum Duncan, 1939 is

similar to L. alpenense Duncan, 1939, but differs from it in

containing more abundant acanthostyles (2–5 vs. 2

acanthostyles around each aperture, respectively).

Occurrence and geological age: Bortschovski Horizon

(Lochkovian, Lower Devonian), Podolia (Ukraine). Kone-

prusy Limestone (Pragian, Lower Devonian); Czech Repub-

lic. Traverse Group (Eifelian, Middle Devonian), Michigan

(USA). Curten Formation (Lower Givetian, Middle Devo-

nian); Dollendorf Syncline, Rhenish Slate Massif (Germany).

Suborder Amplexoporina Astrova, 1965

Family Atactotoechidae Duncan, 1939

Genus Leptotrypella Vinassa de Regny, 1921

Type species: Chaetetes barrandei Nicholson, 1874.

Middle Devonian, Ontario (Canada).

Diagnosis: Branched colonies. Autozooecia with polyg-

onal to rounded-polygonal apertures. Autozooecial dia-

phragms lacking in endozones; rare to common in

exozones. Exilazooecia rare. Acanthostyles long, common

to abundant. Autozooecial walls granular, thin in endoz-

ones; laminated, irregularly thickened in exozones (modi-

fied after Astrova 1978).

Comparison: Leptotrypella Vinassa de Regny, 1921 dif-

fers from Leptotrypa Ulrich, 1883 in having a branched

Table 3 Descriptive statistics for Leioclema passitabulatum Duncan,

1939

N X SD CV MIN MAX

Colony thickness (mm) 5 0.64 0.280 44.05 0.33 1.05

Aperture width (mm) 30 0.11 0.015 14.04 0.08 0.13

Autozooecial aperture

spacing (mm)

30 0.19 0.028 14.47 0.15 0.26

Aperture width (mm)

(macular)

10 0.15 0.013 8.51 0.13 0.17

Autozooecial aperture

spacing (mm) (macular)

10 0.31 0.034 11.18 0.26 0.35

Mesozooecia width (mm) 30 0.08 0.022 26.34 0.05 0.13

Acanthostyle diameter

(mm)

30 0.04 0.008 23.48 0.03 0.06

Mesozooecia per aperture 30 6.4 0.850 13.36 5.0 8.0

Acanthostyles per

aperture

30 2.9 0.759 26.17 2.0 4.0

Mesozooecial diaphragms

spacing (mm)

30 0.08 0.015 19.65 0.05 0.11

Abbreviations as for Table 1

Facies (2012) 58:727–758 743

123

colony, and from Anomalotoechus Duncan 1939 in having

branched colonies and no diaphragms in endozones.

Stratigraphic and geographic range: Middle Silurian to

Lower Carboniferous; worldwide.

Leptotrypella sophiae n. sp.

Fig. 8e–i; Table 4

Etymology: The species is named in honor of Sophia

May Contento, third daughter of Andreas May.

Holotype: SMF 21.419.

Paratypes: SMF 21.415–SMF 21.418.

Type locality: Kierspe, Germany.

Type horizon: Middle Devonian (Lower Eifelian).

Description: Branched colonies. Branches 0.95–1.38 mm

in diameter. Exozone 0.15–0.39 mm wide, endozone

0.60–0.65 mm wide. Autozooecia long in endozones,

bending sharply in exozones, polygonal in transverse sec-

tion of endozone. Autozooecial apertures polygonal with

rounded corners. Autozooecial diaphragms rare, thin,

straight, occurring in the transition between endozone and

exozone. Exilazooecia rare, short, restricted to exozones,

rounded-polygonal in transverse section. Acanthostyles

moderate in size, rare to common, growing from the base

of the exozone, having distinct cores and laminated

sheaths. Autozooecial walls granular, 0.003–0.005 mm

thick in endozones; laminated, merged, without distinct

zooecial boundaries, 0.025–0.050 mm thick in exozones.

Secondary cingulum poorly developed. Mural spines

absent. Cyst-like structures in walls of exozone present,

0.055–0.063 mm in diameter.

Comparison: Leptotrypella sophiae n. sp. is similar to

L. inesae Ernst and May, 2012, from the Lower Devonian

(Lochkovian) of Spain. Both species have similar branch

width, rare acanthostyles and exilazooecia as well as cyst-

like structures. However, the new species has larger, but

more closely spaced autozooecial apertures (average

aperture width 0.13 mm vs. 0.09 mm in L. inesae; average

aperture spacing 0.16 mm vs. 0.20 mm in L. inesae).

Occurrence and geological age: Middle Devonian (Lower

Eifelian); Kierspe, Germany.

Order Cryptostomata Vine, 1884

Suborder Rhabdomesina Astrova and Morozova,

1956

Family Rhabdomesidae Vine, 1884

Genus Vidronovella Gorjunova, 2006

Vidronovella: Gorjunova, 2006: 48; Ernst and Konigshof

2010: 17–18; Ernst 2011: 10

Type species: Vidronovella fastigiata Gorjunova, 2006.

Late Devonian (Famennian); Afghanistan.

Diagnosis: Branched colonies. Autozooecia tubular,

short, budding from indistinct medial axis or short mesot-

heca in spiral order around the branch, oriented at high

angles to the branch axis. Autozooecial diaphragms absent.

Proximal part of autozooecia thickened in the outermost

exozone (‘‘fastigia’’ sensu Gorjunova 2006). Both superior

and inferior hemisepta present, located in the distal part of

autozooecia. Superior hemiseptum moderately long, hook-

shaped, curved distally, positioned at the base of the

exozone (‘‘fastigium’’ sensu Gorjunova 2006); inferior

hemiseptum long, slender, occupying two-thirds of body

cavity of autozooecia, positioned beneath superior hemi-

septa, curved distally. Secondary blunt hemisepta may

occur, one proximally to the superior hemiseptum, and

another one distally to the inferior hemiseptum. Auto-

zooecial apertures oval to rounded-rhombic, arranged

regularly in alternating rows on the colony surface.

Acanthostyles large and blunt, with narrow hyaline cores

and wide laminated sheaths, embedded in the skeleton.

Single or two acanthostyles positioned between two lon-

gitudinally successive autozooecial apertures. Paurostyles

occur in one species, irregularly distributed between

acanthostyles. Heterozooecia absent. Walls granular in the

endozone; laminated in exozone, becoming structureless

near the colony surface. Mural spines may occur.

Comparison: Originally the genus Vidronovella Gorju-

nova, 2006 was placed in a family of its own, Vidrono-

vellidae (Gorjunova 2006). However, the main characters

of this genus (autozooecial shape and budding mode as

well as the presence of hemisepta and acanthostyles) sug-

gest that Vidronovella Gorjunova, 2006 belongs to the

family Rhabdomesidae Vine, 1884. Vidronovella is similar

to Orthopora Hall, 1886, but differs from it by the shape of

short autozooecia and the high budding angle of auto-

zooecia in the axial area.

Table 4 Descriptive statistics for Leptotrypella sophiae n. sp

N X SD CV MIN MAX

Aperture width (mm) 25 0.13 0.017 13.51 0.10 0.16

Autozooecial Aperture

Spacing (mm)

25 0.16 0.019 11.43 0.13 0.20

Acanthostyle diameter

(mm)

4 0.030 0.003 11.24 0.025 0.033

Exilazooecia width

(mm)

9 0.050 0.019 37.81 0.018 0.068

Autozooecial wall

thickness (mm)

5 0.037 0.010 28.16 0.025 0.050

Abbreviations as for Table 1

744 Facies (2012) 58:727–758

123

Stratigraphic and geographic range: Lower Devonian of

Spain, Middle Devonian of Western Sahara and Germany,

Upper Devonian of Afghanistan.

Vidronovella fastigiata Gorjunova, 2006

Figs. 8i, j, 9a–c; Table 5

2006 Vidronovella fastigiata n. sp. Gorjunova: 48, pl. 2,

fig. 2

2010 Vidronovella fastigiata Gorjunova, 2006—Ernst

and Konigshof: 18–19, pl. 11g-h, pl. 12a-c

2010 Vidronovella fastigiata Gorjunova, 2006—Ernst

and Rodrıguez: fig. 4d

Material: SMF 21.420–SMF 21.430.

Description: Branched colonies, 0.69–0.96 mm in

diameter, with 0.35–0.54 mm wide endozones and

0.09–0.26 mm wide exozones. Branching style unknown.

Transversal sections of branches circular to oval. Auto-

zooecia tubular, short, budding from indistinct medial axis

or short mesotheca in spiral order around the branch.

Autozooecial diaphragms absent. Proximal part of auto-

zooecia thickened in the outermost exozone. Both superior

and inferior hemisepta present, located in the distal part of

autozooecia. Superior hemiseptum moderately long, hook-

shaped, curved distally, positioned at the base of the

thickening; inferior hemiseptum long, slender, occupying

two-thirds of body cavity of autozooecia, positioned

beneath superior hemisepta, curved distally. Secondary

hemisepta absent. Autozooecial apertures oval to rounded-

rhombic, arranged regularly in alternating rows on the

colony surface. Acanthostyles large and blunt, with nar-

row hyaline cores and wide laminated sheaths, embedded

in the skeleton, 0.03–0.05 mm in diameter. Single

acanthostyle positioned between two longitudinally suc-

cessive autozooecial apertures. Paurostyles absent. Het-

erozooecia absent. Walls in the endozone granular,

0.010–0.015 mm thick; laminated in exozone. Mural

spines absent.

Comparison: Vidronovella fastigiata Gorjunova, 2006

differs from V. intricata Ernst, 2011 from the Lower

Devonian of Spain in having of combination of single

superior and inferior hemisepta instead of complex doubled

superior and inferior hemisepta that is developed in

V. intricata.

Occurrence and geological age: Middle Devonian (Eif-

elian); Germany. Middle Devonian (Late Givetian);

Sabkhat Lafayrina reef complex, Tindouf Basin, Western

Sahara. Late Devonian (Famennian); Afghanistan. ? Mid-

dle Devonian; Pajarejos near Campillo de Llerena, south-

western Spain.

Family Nikiforovellidae Gorjunova, 1975

Genus Acanthoclema Hall, 1886

[= Rozanovia Gorjunova, 1992]

Type species: Trematopora alternata Hall, 1883. Lower

Devonian (Emsian); New York (USA).

Diagnosis: Branched colonies. Autozooecia diverging at

high angles from distinct median axis. Hemisepta absent.

Shallow or terminal diaphragms occurring. Autozooecial

walls laminated, without visible boundaries, containing

mural spines. Generally, single metazooecium and few

paurostyles or acanthostyles concentrated between longi-

tudinally successive autozooecial apertures.

Comparison: Acanthoclema Hall, 1886 is similar to

Streblotrypella Nikiforova, 1948, but differs in having single

metazooecium between longitudinally successive auto-

zooecial apertures, whereas metazooecia in Streblotrypella

are distributed irregularly throughout the colony. Further-

more, Acanthoclema possesses mural spines in the skeleton,

which is unique within the family Nikiforovellidae.

Stratigraphic and geographic range: Silurian of North

America, Devonian and Carboniferous of North America

and Europe.

Acanthoclema parvula Ernst et al. 2011a

Fig. 9d–i; Table 6

2011a Acanthoclema parvula n. sp. Ernst et al.: 312,

figs. 6f-j,7a

Material: SMF 21.431–SMF 21.463.

Description: Branches 0.47–1.00 mm in diameter, with

0.30–0.60 mm wide endozone and 0.09–0.26 mm wide

exozone. Tubular autozooecia growing in spiral pattern

from the distinct median axis at angles of 57�–77� in en-

dozones, abruptly bending in exozones and intersecting

colony surface at angles of 51�–77�; with a triangular to

rhombic, tear-drop shape in transverse section of endozone.

Autozooecial apertures oval, arranged in regular diagonal

rows on branches. Basal diaphragms rare to common. Single

short metazooecium between longitudinally successive

autozooecial apertures. Acanthostyles small, 2–6 irregularly

distributed between autozooecial apertures. Autozooecial

walls finely laminated, with dividing hyaline layer,

0.005–0.013 mm thick in endozone; laminated, without

distinct boundaries, with abundant mural spines in exozone.

Mural spines common, 0.010–0.015 mm in diameter,

opening into autozooecial cavities and to the colony surface.

Comparison: Acanthoclema parvula Ernst et al., 2011a

differs from A. irregularis Ernst, 2011 from the Lower

Devonian (Emsian) of NW Spain in having smaller

Facies (2012) 58:727–758 745

123

746 Facies (2012) 58:727–758

123

apertures (average aperture width 0.059 mm vs. 0.080 mm

in A. irregularis) and smaller and more abundant

acanthostyles (average acanthostyle diameter 0.025 mm vs.

0.035 mm in A. irregularis).

Occurrence and geological age: Santa Lucıa Formation,

Early—Middle Devonian (Late Emsian—Early Eifelian).

Middle Devonian (Early Eifelian); Kierspe, Germany.

Order Fenestrata Astrova and Morozova, 1956

Suborder Fenestellina Astrova and Morozova, 1956

Family Septatoporidae Engel, 1975

Genus Dissotrypa Ernst and Konigshof, 2010

Type species: Dissotrypa sincera Ernst and Konigshof,

2010. Middle Devonian (Givetian); West Sahara.

Diagnosis: Reticulate colonies in form of fans, not com-

pletely closed to cones, composed of slender branches and

relatively thin dissepiments; autozooecia arranged in two

rows on the branches; branch bifurcation without insertion of

additional autozooecia; autozooecial chambers generally

pentagonal in mid tangential section, triangular in shallower

sections; axial wall between autozooecial rows zigzag in

tangential sections; stellate structures in autozooecial aper-

tures occurring; single exozonal tube in each autozooecium

present, situated laterally between longitudinally successive

autozooecial apertures; narrow median keel with single row

of closely spaced nodes; heterozooecia in form of spherical

chambers positioned between longitudinally successive

autozooecial apertures or on dissepiments; external lami-

nated skeleton well developed, coarsely laminated, with

microstyles and larger styles.

Comparison: Dissotrypa Ernst and Konigshof, 2010 differs

from Septatopora Engel, 1975, represented by several spe-

cies from the Carboniferous of Australia, in the bifurcation

mode of branches: there is insertion of additional autozooecia

at place of bifurcation, whereas the number of autozooecial

rows in Septatopora increased up to four and was retained for

long distances. Furthermore, Dissotrypa has a median keel,

which is absent in Septatopora. Both genera display similar

internal morphology such as autozooecial shape, presence of

single exozonal tube in each autozooecium and stellate

structures, as well as similar brood chambers.

Stratigraphic and geographic range: Middle Devonian;

West Sahara, Germany, Spain.

Dissotrypa sincera Ernst and Konigshof, 2010

Figs. 9j,10a–i; Table 7

2005 Rectifenestella sp.—Scholz et al.: fig. 7f

2010 Dissotrypa sincera n. sp. Ernst and Konigshof:

25–26, pl. 21d-f, pl. 22a-h, 23a-f

Material: SMF 21.464–SMF 21.467.

External description: Reticulate colonies composed of

slender straight branches and relatively thin dissepiments.

Table 5 Descriptive statistics for Vidronovella fastigiata Gorjunova,

2006

N X SD CV MIN MAX

Branch width (mm) 7 0.81 0.100 12.35 0.69 0.96

Endozone width (mm) 7 0.46 0.066 14.15 0.35 0.54

Exozone width (mm) 7 0.17 0.031 17.58 0.14 0.21

Aperture width (mm) 3 0.09 0.010 11.11 0.08 0.10

Acanthostyle diameter

(mm)

5 0.04 0.008 19.76 0.03 0.05

Abbreviations as for Table 1

Table 6 Descriptive statistics for Acanthoclema parvula Ernst,

Dorsch and Keller, 2011

N X SD CV MIN MAX

Branch width (mm) 20 0.77 0.142 18.37 0.47 1.0

Endozone width

(mm)

20 0.42 0.088 21.04 0.30 0.60

Exozone width

(mm)

20 0.18 0.042 23.47 0.09 0.26

Aperture width

(mm)

60 0.059 0.009 15.72 0.043 0.078

Aperture spacing

along branch

(mm)

40 0.30 0.031 10.32 0.22 0.36

Aperture spacing

across branch

(mm)

40 0.18 0.012 6.71 0.16 0.20

Acanthostyle

diameter (mm)

40 0.025 0.004 15.89 0.015 0.035

Metazooecia width

(mm)

40 0.03 0.007 26.35 0.02 0.05

Autozooecial

budding angle,

endozone

7 68.7 8.200 11.93 57.0 77.0

Autozooecial

budding angle,

exozone

7 64.3 8.902 13.85 51.0 77.0

Abbreviations as for Table 1

Fig. 9 a–c Vidronovella fastigiata Gorjunova, 2006, branch, oblique

section showing hemisepta, autozooecial apertures and acanthostyles,

SMF 21.423. Acanthoclema parvula Ernst, Dorsch and Keller, 2011.

d Tangential section, SMF 21.452. e Branch, transverse section, SMF

21.454. f, g Branch, longitudinal section, SMF 21.450. h, i Tangential

section showing autozooecial apertures, metazooecia (M), acantho-

styles (A), and mural spines (MS), SMF 21.432. j Dissotrypa sinceraErnst and Konigshof, 2010, tangential section, SMF 21.467

b

Facies (2012) 58:727–758 747

123

748 Facies (2012) 58:727–758

123

Autozooecia arranged in two rows on the branches, 2–3

spaced per length of a fenestrule; branch bifurcation

without insertion of additional autozooecia. Autozooecial

apertures circular with stellate structures composed of eight

septa. Narrow and low median keel with single row of

closely spaced nodes.

Internal description: Autozooecial chambers generally

pentagonal in mid-tangential section, triangular in shallower

sections; axial wall between autozooecial rows zigzag in

tangential sections. Single exozonal tube in each autozooe-

cium present, situated laterally between longitudinally suc-

cessive autozooecial apertures, 0.02–0.05 mm in diameter.

Heterozooecia in form of spherical chambers positioned

between longitudinally successive autozooecial apertures

or on dissepiments, 0.10–0.18 mm in diameter. Internal

granular skeleton thin, continuous with obverse keel,

nodes, microstyles, peristome and across dissepiments,

0.025–0.035 mm thick on the reverse wall. External lami-

nated skeleton well developed, 0.09–0.10 mm thick on the

reverse wall, coarsely laminated, protruded by microstyles

and larger styles. Microstyles 0.010–0.015 mm and styles

0.04–0.05 mm in diameter.

Comparison: The present material differs slightly from

the West Sahara specimens in having narrower branches

(average branch width 0.29 mm vs. 0.34 mm, respectively)

and thinner dissepiments (average dissepiment width

0.12 mm vs. 0.21 mm, respectively).

Occurrence: Middle Devonian (Late Givetian); Sabkhat

Lafayrina reef complex, Tindouf Basin, Western Sahara.

Middle Devonian (Eifelian); Germany. ? Middle Devonian;

Pajarejos near Campillo de Llerena, southwestern Spain.

Family Semicosciniidae Morozova, 1987

Genus Fenestrapora Hall, 1885

Type species: Fenestrapora biperforata Hall, 1885.

Middle Devonian; New York, USA.

Diagnosis: Reticulate funnel-shaped colonies consisting

of sinusoid, relatively wide and thick branches jointed by

wide and short dissepiments. Autozooecia arranged in two

rows on the branches, opening onto outer surface of the cone.

High median keel widening apically. Vesicular skeleton

(kenozooecia) often developed. Autozooecial chambers

rectangular in mid-tangential section, short and relatively

high, with moderately short vestibules. Axial wall straight to

slightly sinusoid, projecting in the median keel. Hemisepta

absent. Heterozooecia represented by brood chambers in

form of roughly rounded voids (?enlarged zooecia), situated

preferably near dissepiments, as well as special hetero-

zooecia called aviculomorphs (McKinney 1998).

Comparison: Fenestrapora Hall, 1885 differs from

Semicoscinium Prout, 1859 in possessing aviculomorphs,

and from Isotrypa Hall, 1885 in possessing aviculomorphs

and the absence of a reticulate protecting superstructure.

Stratigraphic and geographic range: Lower—Middle

Devonian (Emsian—Givetian); USA. Middle Devonian

(Eifelian—Givetian); Germany. Middle Devonian (Eif-

elian); Transcaucasia.

Fenestrapora caucasica Morozova and Lavrentjeva,

1998

Fig. 11a–h; Table 8

1998 Fenestrapora caucasica n. sp. Morozova and

Lavrentjeva: 56–57, text-figs. 1-2, pl. 4, figs. 4-5, pl. 5,

figs. 1-2

2008b Fenestrapora caucasica Morozova and Lavrentj-

eva, 1998—Ernst: fig. 3.8-9

Table 7 Descriptive statistics for Dissotrypa sincera Ernst and

Konigshof, 2010

N X SD CV MIN MAX

Branch width (mm) 17 0.29 0.023 8.05 0.24 0.34

Dissepiment width

(mm)

25 0.12 0.012 10.40 0.10 0.14

Fenestrule width (mm) 25 0.22 0.029 13.20 0.17 0.26

Fenestrule length (mm) 25 0.36 0.016 4.31 0.34 0.40

Distance between

branch centers (mm)

25 0.46 0.054 11.76 0.37 0.54

Distance between

dissepiment centers

(mm)

25 0.50 0.029 5.79 0.42 0.54

Aperture width (mm) 25 0.078 0.004 5.55 0.070 0.085

Aperture spacing along

branch (mm)

25 0.22 0.018 8.15 0.19 0.26

Aperture spacing across

branch (mm)

25 0.21 0.018 8.43 0.18 0.25

Node diameter (mm) 20 0.051 0.007 13.75 0.040 0.075

Node spacing (mm) 10 0.28 0.030 10.90 0.23 0.32

Maximal chamber

width (mm)

15 0.12 0.011 8.93 0.11 0.14

Apertures per fenestrule

length

20 2.2 0.366 17.04 2.0 3.0

Diameter of exozonal

tubes (mm)

10 0.027 0.009 35.14 0.020 0.050

Abbreviations as for Table 1

Fig. 10 Dissotrypa sincera Ernst and Konigshof, 2010. a–e Tangen-

tial section showing autozooecia, apertures, nodes, and exozonal

tubes (arrows), SMF 21.467. f–h Tangential section, showing branch

bifurcation (f), ovicell (g, arrow), and reverse side with nodes and

microstyles (h), SMF 21.465. i Branch, transverse section showing

autozooecial chambers and exozonal tube (arrow), SMF 21.466

b

Facies (2012) 58:727–758 749

123

750 Facies (2012) 58:727–758

123

Material: SMF 21.468–SMF 21.477.

Description: Reticulate colony composed of moderately

wide, sinusoid branches jointed by wide and short dissepi-

ments. Autozooecia arranged in two rows on the branches,

3–5 spaced on the length of a fenestrule. Fenestrules oval to

lens-shaped. Narrow, high median keel present. Vesicular

skeleton locally well developed, concentrated near the base

of colonies. Reverse side smooth, containing microstyles,

styles, and large nodes. Microstyles 0.002–0.005 mm,

styles 0.025–0.075 mm, and nodes 0.10–0.20 mm in

diameter.

Internal description: Autozooecial chambers rectangular

in mid-tangential section, short and relatively high, with

moderate vestibules. Axial wall straight to slightly

sinusoid, projecting in the median keel. Hemisepta absent.

Heterozooecia represented by aviculomorphs occurring

only on reverse side of branches, 0.11–0.22 mm wide and

0.24–0.36 mm long. Internal granular skeleton thin, con-

tinuous with obverse keel, nodes, microstyles, peristome

and across dissepiments, 0.020–0.045 mm thick on the

reverse wall. External laminated skeleton well developed,

0.065–0.260 mm thick on the reverse wall, coarsely lami-

nated, with microstyles, styles and nodes.

Comparison: Fenestrapora caucasica Morozova and

Lavrentjeva, 1998 is similar to F. occidentalis Ulrich, 1890

from the Hamilton Group (Middle Devonian, Givetian) of

USA. Fenestrapora caucasica has shorter fenestrules

(average fenestrule length 0.58 mm vs. 0.70 mm in

F. occidentalis). Fenestrapora caucasica differs from

F. biperforata Hall, 1885 from the Lower-Middle Devonian

of USA in having wider branches (branch width 0.35–0.50

mm vs. 0.20–0.30 mm in F. biperforata).

Occurrence and geological age: Middle Devonian, Upper

Eifelian Mucrospirifer diluvianoides—Radiomena irregu-

laris brachiopod zone; Transcaucasia. Middle Devonian

(Eifelian—Lower Givetian); Eifel (western Rhenish Mas-

sif), Germany (unpublished data). Middle Devonian

(Lower Eifelian); Kierspe, Germany.

Discussion

Reef-building potential is generally considered to have

peaked during the Devonian (e.g., Copper 2002). Stroma-

toporoids, corals, and increasingly algae and calcimicrobes,

are considered to be the major framebuilders of that time

(e.g., Tsien 1984b; Fagerstrom 1987; Machel and Hunter

1994). Reefs in shallow areas of the Rheic Ocean were

predominantly produced by stromatoporoids and corals

(Krebs 1974; Tsien 1974; Burchette 1981; May 1987,

1988, 1991, 2003; Machel 1990; Malmsheimer et al. 1991).

These reefs show a high diversity of interactions between

organisms that were involved in their construction. Their

growth and development were controlled by different fac-

tors such as sea level fluctuations, climatic changes, and

sedimentation regimes (May 1996, 1997a, b, 2003).

A paleontological and sedimentological study of

deposits of the Meinerzhagener Korallenkalk (upper Cul-

trijugatus Beds, Lower Eifelian) at Kierspe reconstructs a

shallow marine environment just above the storm wave

base. From various literature sources (Embry and Klovan

1972; Flugel 1982: 467; Fagerstrom 1987: 42; Struve

1982a: 248–249; May 1988: 187, 1992a: 110, 1993d: 53)

the water depth can be estimated to have been about 20 m.

A large proportion of micrite in floatstones and bafflestones

(Fig. 5a, b) is indicative for quiet water conditions. The

Table 8 Descriptive statistics for Fenestrapora caucasica Morozova

and Lavrentjeva, 1998

N X SD CV MIN MAX

Branch width (mm) 25 0.40 0.038 9.49 0.35 0.50

Branch thickness (mm) 16 0.85 0.088 10.46 0.72 1.05

Dissepiment width

(mm)

25 0.40 0.053 13.33 0.29 0.52

Fenestrule width (mm) 30 0.33 0.037 11.05 0.27 0.41

Fenestrule length (mm) 30 0.58 0.086 14.71 0.45 0.78

Distance between

branch centers (mm)

30 0.70 0.099 14.15 0.52 0.90

Distance between

dissepiment centers

(mm)

25 1.02 0.068 6.63 0.90 1.15

Aperture width (mm) 30 0.10 0.007 7.07 0.09 0.12

Aperture spacing along

branch (mm)

30 0.25 0.026 10.37 0.20 0.30

Aperture spacing across

branch (mm)

20 0.25 0.025 10.02 0.20 0.28

Maximal chamber

width (mm)

25 0.156 0.020 13.13 0.125 0.200

Apertures per fenestrule

length

10 4.1 0.738 18.00 3.0 5.0

Thickness of reverse

wall laminated layer

(mm)

15 0.172 0.064 36.86 0.065 0.260

Thickness of reverse

wall granular layer

(mm)

15 0.032 0.009 28.41 0.020 0.045

Abbreviations as for Table 1

Fig. 11 Fenestrapora caucasica Morozova and Lavrentjeva, 1998.

a–c Tangential section, SMF 21.470. d Mid-tangential section

showing autozooecial chambers, SMF 21.468. e Tangential section

of the reverse side showing aviculomorh (arrow), SMF 21.473.

f, g Branch, longitudinal section showing autozooecial chambers and

aviculomorphs, SMF 21.477. h Branch, transverse section, SMF

21.47

b

Facies (2012) 58:727–758 751

123

presence of algae and spines of regular sea urchins identify

a position in the photic zone, whereas abundant bryozoans,

brachiopods, corals, and crinoids show it was at least

mesotrophic conditions.

Of worthy mention are ‘‘ragged’’ margins which occur

frequently in the coralla of Pachyfavosites vilvaensis

(Sokolov 1952) (fig. 3b). May (1992a: 112; 1993d: 56)

observed the same phenomenon commonly developed in

laminar to hemispherical stromatoporoids and alveolitids.

This feature must have been caused by episodic sedimen-

tation (Kershaw and Riding 1978; Kershaw 1984; Kershaw

1998; Tsien 1974; Tsien 1984a, b). In these skeletons a

portion of the colony died due to increasing sedimentation.

Later a reduction of the sedimentation rate allowed the

colony to grow laterally to recover the lost area. Conse-

quently the new growth phases of the skeleton detached

themselves at the margin of the colony from the lower part

of the skeleton and lie on the sediment surface.

The baffling of sediment was caused by meadows of

tabulate and rugose corals inhabited mainly by erect bry-

ozoans. Sediment was stabilized by encrusting cystoporate

and trepostome bryozoans as well as tabulate corals.

Binding by calcimicrobes was minor to moderate. Con-

trarily, there are examples of the extensive involvement of

calcimicrobes and algae in the development of Devonian

reefs (e.g., Wray 1972; Adachi et al. 2006, 2007;

Antoshkina and Konigshof 2008). Poncet (1995) showed

various complex interactions between algae and reef

organisms (stromatopores, tabulate and rugose corals) in the

Early to Middle Devonian reefs of the Armorican Massif.

It should be noted that bryozoans are usually very rare in

the Givetian to Frasnian reef complexes, but they are

important contributors in a reef complex of Pragian age in

Bohemia (May 1988; May 2005: 234; Ernst 2008c; Ernst and

May 2009). The importance of the bryozoans in the devel-

opment of the Meinerzhagener Korallenkalk lies somewhat

intermediate between both situations. Furthermore, the

Meinerzhagener Korallenkalk contains more bryozoans and

fewer stromatoporoids than what is in other aspects very

similar but younger (lowermost Givetian) limestones of the

Grunewiese Member of the Ihmert Formation (May 1992a,

1993d). One possible explanation for these differences is a

continuous increase of the water temperature from the Pra-

gian to the Upper Devonian. In fact, different observations,

amongst others the global sea-level rise (Boucot 1988;

Johnson et al. 1985, 1996; May 1996, 1997a, b), suggest a

significant increase of the global temperature from the Lower

Devonian to the Givetian-Frasnian. For a more detailed

discussion of this topic see May (2005: 234).

At the upper boundary of the Cultrijugatus Beds the

Chotec-Event is recorded. The Chotec-Event was caused by

a strong sea-level rise (May 1996; May 1997b). In the

Hercynian facies it is characterized by the deposition of

black shales (or dark limestones) and the appearance of the

ammonoid Pinacites jugleri (Roemer, 1843) (May 1997b).

In the Rhenish facies, the Chotec-Event can be recognized by

the extinction of Alatiformia alatiformis (Drevermann,

1907), all European species of Paraspirifer and some other

brachiopods (May and Avlar 1996; Avlar and May 1997;

May 1997a; May 1997b). This disappearance of Paraspirifer

(and Alatiformia alatiformis) indicates on the map sheet

Meinerzhagen the upper boundary of the Cultrijugatus Beds.

In contrast to these brachiopods, the corals found in

Kierspe show a remarkable continuity between the Lower

Eifelian and the younger Middle Devonian. This confirms

the observation of Avlar and May (1997) and May (1997a;

1997b), that in Sauerland, the rugose and tabulate corals

where not affected by the Chotec-Event. There is no evi-

dence that bryozoans were affected by the Chotec-Event

either. Fistuliphragma gracilis Ernst, 2008a, Leioclema

passitabulatum Duncan, 1939, Vidronovella fastigiata

Gorjunova, 2006, Dissotrypa sincera Ernst and Konigshof,

2010, and Fenestrapora caucasica Morozova and Lav-

rentjeva, 1998 occur also in the younger formations of the

Eifel, Morocco and Spain (Eifelian—Givetian).

The bryozoan fauna from the Meinerzhagener Koral-

lenkalk shows distinct similarities to the Lower—Middle

Devonian of Spain (Santa Lucıa Formation, Emsian—

Eifelian) and to the Middle Devonian (Eifelian) of Cau-

casus. Fistuliphragma gracilis and Acanthoclema parvula

were described from the Santa Lucıa Formation (Emsian—

Eifelian) of Abelgas and Paradilla, NW Spain (Ernst et al.

2011a, b). Fenestrapora caucasica was originally descri-

bed from the Middle Devonian of Transcaucasia (Upper

Eifelian Mucrospirifer diluvianoides—Radiomena irregu-

laris brachiopod zone). Fistuliphragma gracilis, Leioclema

passitabulatum, and Fenestrapora caucasica are known

from the Middle Devonian (Eifelian—Lower Givetian) of

the Rhenish Massif (Ernst 2008a, b). Leioclema passita-

bulatum is also known from the Lower Devonian of

Ukraine (Bortschovski Horizon, Lochkovian), Lower

Devonian of Bohemia (Koneprusy Limestone, Pragian) and

Middle Devonian (Traverse Group, Eifelian) of Michigan,

USA. Vidronovella fastigiata and Dissotrypa sincera are

known from the Givetian of Morocco.

The distribution of the corals is similar to the bryozoan

distribution. All coral genera found in the Meinerzhagener

Korallenkalk are typical representatives of the Old-World-

Realm. Except for Pachyfavosites vilvaensis (Sokolov,

1952), all coral species are known from other parts of

Central Europe. Pachyfavosites vilvaensis (Sokolov, 1952),

Thamnopora angusta Lecompte, 1939 and Platyaxum

(Roseoporella) gradatum (Lecompte, 1939) are known

from Siberia, thus documenting close paleobiogeographic

links between Central and Eastern Europe and Central

Asia. May (1993b) observed the same biogeographic

752 Facies (2012) 58:727–758

123

relationships in Lower Givetian corals from the north-

western Sauerland.

Conclusions

• The Lower Eifelian Meinerzhagener Korallenkalk

(= upper Cultrijugatus Beds) at Kierspe in the south-

western part of the Ebbe saddle (Sauerland) contains a

rich fauna of bryozoans, tabulate and rugose corals,

brachiopods, and echinoderms.

• The bryozoan fauna includes eight species as well as a

number of unidentified taxa. They show paleobiogeo-

graphic relations with the Lower-Middle Devonian of

Spain and Middle Devonian of Transcaucasia. The

majority of identified species occur also in the Middle

Devonian of the Rhenish Massif.

• The coral fauna contains five tabulate corals and one

rugose coral. Corals document paleobiogeographic rela-

tions between Central and Eastern Europe and Central

Asia.

• The accompanying fauna is represented by two bra-

chiopod species (Alatiformia alatiformis and Xystostro-

phia sp.). Furthermore, ostracods and various

fragmentary echinoderm remains were found.

• The flora is represented by three calcimicrobes. One

species (Girvanella wetheredii) is very common,

whereas two others are rare (Girvanella problematica,

Rothpletzella munthei).

• Faunal and microfacial characteristics suggest a depo-

sitional setting in shallow marine environment just

above the storm wave base, with a suggested depth of

20 m, within the photic zone and with at least a

mesotrophic conditions.

• At the top of the Cultrijugatus Beds the Chotec-Event

occurred, which strongly affected brachiopods, but not

corals and bryozoans.

Acknowledgments The authors are grateful to Wolfgang Reimers,

Kiel, Prof. Dr. Sergio Rodrıguez, Madrid, and Isabel Dıaz, Madrid, for

their help in the preparation of thin-sections used in this study.

Caroline Buttler, Cardiff, and an anonymous reviewer are thanked for

their reviews of the manuscript. Mark Wilson, Wooster, and Patrick

Wyse Jackson, Dublin, are thanked for valuable comments to the

manuscript. The present study was completed during project ER

278/4-1 and 2 supported by the Deutsche Forschungsgemeinschaft

(DFG). This paper is a contribution to UNESCO/IUGS IGCP Project

596 (Climate Change and biodiversity patterns in the Mid Palaeozoic).

References

Adachi M, Ezaki Y, Pickett JW (2006) Marked accumulation patterns

characteristic of Lower Devonian stromatoporoid bindstone:

palaeoecological interactions between skeletal organisms and

microbes. Palaeogeogr Palaeoclimatol Palaeoecol 231:331–346

Adachi M, Ezaki Y, Pickett JW (2007) Interrelations between

framework-building and encrusting skeletal organisms and

microbes: more-refined growth history of Lower Devonian

bindstones. Sedimentology 54:89–105

Anstey RL, Perry TG (1970) Biometric procedures in taxonomic

studies of Paleozoic bryozoans. J Paleont 44:383–398

Antoshkina A, Konigshof P (2008) Lower Devonian reef structures in

Russia: an example from the Urals. Facies 54:233–351

Astrova GG (1964a) New order of the Paleozoic Bryozoa. Paleont

Zhurnal 1:22–31 [in Russian]

Astrova GG (1964b) Mshanki borschovskogo i chortkovskogo

gorizontov Podolii [Bryozoa of the Borschov and Chortkov

horizons of Podolia]. Trudy Paleont Inst Akad Nauk SSSR

98:1–52 [in Russian]

Astrova GG (1965) Morphology, history of development and system

of the Ordovician and Silurian Bryozoa. Trudy Paleont Inst Akad

Nauk SSSR 106:1–432 [in Russian]

Astrova GG (1978) The history of development, system, and

phylogeny of the Bryozoa: Order Trepostomata. Trudy Paleont

Inst Akad Nauk SSSR 169:1–240 [in Russian]

Astrova GG, Morozova IP (1956) About systematics of the order

Cryptostomata. Dokl Akad Nauk SSSR 110(4):661–664 [in

Russian]

Avlar H, May A (1997) Zur Fauna und Stratigraphie der cultrijug-atus-Schichten (Wende Unter-/Mittel-Devon) im West-Sauer-

land (Rheinisches Schiefergebirge). Coral Res Bull 5:103–119

Basse M (1998) Trilobiten aus mittlerem Devon des Rhenohercynik-

ums: III. Proetida (3), Phacopida (2), Lichida (Lichoidea, Odon-

topleuroidea) und erganzende Daten. Palaeontogr A 249:1–162

Basse M (2002) Eifel-Trilobiten. 1. Proetida. Goldschneck-Verlag,

Korb, p 152

Basse M (2003) Eifel-Trilobiten. 2. Phacopida (1): Cheiruriden/

Acasten/Asteropygen. Goldschneck-Verlag, Korb, p 200

Basse M (2006) Eifel-Trilobiten. 4. Proetida (3), Phacopida (3).

Quelle and Meyer, Wiebelsheim, p 305

Basse M (2010) Neue und wenig bekannte Taxa der Scutelluinae,

Proetinae und Otarioninae (Trilobita) aus dem Mitteldevon der

Blankenheim-, Hillesheim- und Prum-Mulde (Eifel). Dortm

Beitr Landeskd Naturwiss Mitt 42:75–119

Basse M, Lemke U (1996) Trilobiten aus mittlerem Givetium (Mittel-

Devon) des nordlichen Rechtsrheinischen Schiefergebirges. Geol

Palaont Westfal 46:1–65

Bassler RS (1923) Systematic paleontology of Silurian deposits.

Bryozoa. Maryland Geological Survey, Silurian, pp 405–412

Bassler RS (1929) The Permian Bryozoa of Timor. Palaont von Timor

16:37–90

Bassler RS (1934) Notes on fossil and Recent Bryozoa. J Wash Acad

Sci 24:404–408

Bigey FP (1985) Biogeography of Devonian Bryozoa. In: Nielsen C,

Larwood GP (eds) Bryozoa: Ordovician to recent. Olsen and

Olsen, Fredensborg, pp 9–23

Birenheide R (1962) Revision der koloniebildenden Spongophyllidae

und Stringophyllidae aus dem Devon. Senckenberg leth 43:

41–99

Birenheide R (1979) Xystriphyllum- und Sociophyllum-Arten (Rug-

osa) aus dem Eifelium der Eifel. Senckenberg leth 60:189–221

Birenheide R (1985) Chaetetida und tabulate Korallen des Devon.

Leitfossilien 3:1–249

Blake PR (2010) Devonian corals of the Yarrol Province, eastern-

central Queensland. Mem Assoc Australas Palaeont 38:1–191

Borg F (1926) Studies on recent cyclostomatous Bryozoa. Zool

Bidrag Uppsala 10:181–507

Boucot AJ (1988) Devonian biogeography: an update. In: McMillan

NJ, Embry AF, Glass DJ (eds) Devonian of the world, Volume

III: Paleontology, paleoecology and biostratigraphy. Can Soc

Petrol Geol Mem, vol 14, pp 211–227

Facies (2012) 58:727–758 753

123

Brownlaw RLS, Jell JS (2008) Middle and Upper Devonian rugose

corals from the Canning Basin, Western Australia. Mem Assoc

Australas Palaeont 35:1–126

Bruhl D (1999) Stratigraphie, Fazies und Tabulaten-Fauna des oberen

Eifelium (Mittel-Devon) der Dollendorfer Mulde/Eifel (Rheinis-

ches Schiefergebirge. Kolner Forum Geol Palaont 4:1–155

Burchette TP (1981) European Devonian reefs: a review of current

concepts and models. In: Toomey DF (ed) European fossil reef

models. SEPM Special Publications, vol 30, pp 85–142

Byra H (1983) Revision der von C. L. Schluter (1880–1889)

beschriebenen Chaetetida und Tabulata aus dem Rheinischen

Devon. Cour Forsch-Inst Senckenb 59:1–127

Chapman F (1908) On the relationship of the genus Girvanella and its

occurrence in the Silurian limestones of Victoria. Rep Australas

Assoc Advanc Sci 2:377–386

Coen-Aubert M (1989) Representants des genres SociophyllumBirenheide, 1962 et Beugniesastraea n. gen. a la base du

Calcaire de Givet de Pondrome et de Resteigne (bord sud du

Bassin de Dinant, Belgique).). Bull Inst R Soc Nat Belg Sci

Terre 58:5–31

Coen-Aubert M (1990) Description de quelques Rugueux coloniaux

du Couvinien superieur de Wellin (bord sud du Bassin de Dinant,

Belgique). Bull Inst R Soc Nat Belg Sci Terre 59:15–35

Coen-Aubert M (1999) Description de quelques Rugueux coloniaux

de la Formation givetienne du Mont d’Haurs en Ardenne. Bull

Inst R Soc Nat Belg Sci Terre 69:27–46

Coen-Aubert M, Lutte B-P (1990) Massive rugose corals from the

Middle Devonian of the North Eifel Hills (Rheinisches Schi-

efergebirge, West Germany). Geol Palaeont 24:17–39

Copper P (2002) Silurian and Devonian reefs: 80 million years of

global greenhouse between two ice ages. In: Kiessling W, Flugel

E, Golonka J (eds) Phanerozoic reef patterns. SEPM Special

Publications, vol 72, pp 181–238

Cuffey RJ, McKinney FK (1979) Devonian Bryozoa. Palaeontol Spec

Pap 23:307–311

d’ Orbigny A (1849) Prodrome de paleontologie stratigraphique

universelle des animaux mollusques rayonnes, faisant suite ou

cours elementaire de paleontologie et geologie stratigraphique.

Volume 1. Victor Masson, Paris, p 392

Dana JD (1846–1849) Structure and classification of zoophytes. In:

United States exploring expedition during the years 1838, 1839,

1840, 1841, 1842 under the command of Charles Wilkes, U.S.N.,

7, Philadelphia, p x ? 740

Davis WJ (1887) Kentucky fossil corals. A monograph of the fossil

corals of the Silurian and Devonian Rocks of Kentucky. Part II.

Kentucky Geological Survey, Frankfort/Kentucky, p i–xiii ?

1-4, pls 1–139

de Blainville HMD (1830) Zoophytes. Dictionnaire des Sciences

Naturelles 60:1–546

Drevermann F (1907) Palaozoische Notizen. Ber Senckenberg

naturforsch Ges Frankfurt 1907:125–136

Dubatolov VN (1959) Tabuljaty, geliolitidy i chetetidy silura i devona

Kuzneckogo bassejna. Trudy VNIGRI 139:1–472

Dubatolov VN (1963) Pozdnesilurijskie i devonskie tabuljaty, geli-

olitidy i chetetidy Kuzneckogo bassejna. Akad Nauk SSSR,

Moscow, p 286 [in Russian]

Duncan PM (1872) Third report on the British fossil corals. In: Rep

41st Meet British Assoc Advanc Sci, vol 1871, pp 116–137

Duncan H (1939) Trepostomatous Bryozoa from the traverse group of

Michigan. Univ Mich Paleont Contrib 5:171–270

Ehrenberg CG (1831) Symbolae Physicae, seu Icones et descptiones

Corporum Naturalium novorum aut minus cognitorum, quae ex

itineribus per Libyam, Aegiptum, Nubiam, Dongalaam, Syriam,

Arabiam et Habessiniam, studia annis 1820-25, redirent. Pars

Zoologica, 4, Animalia Evertebrata exclusis Insectis. Berolini,

10 pls

Ehrenberg CG (1834) Beitrage zur physiologischen Kenntniß der

Corallenthiere im allgemeinen, und besonders des rothen

Meeres, nebst einem Versuche zur physiologischen Systematik

derselben. Abh Konigl Akad Wiss Berlin 1832:225–380

Embry AF, Klovan JE (1972) Absolute water depth limits of Late

Devonian paleoecological zones. Geol Rundsch 61:672–686

Engel B (1975) A new? Bryozoan from the Carboniferous of Eastern

Australia. Palaeontology 18:571–605

Erben H (1962) Zur Analyse und Interpretation der rheinischen und

hercynischen Magnafazies des Devons. In: Erben HK (ed) 2.

Internationale Arbeitstagung uber die Silur/Devon-Grenze und

die Stratigraphie von Silur und Devon, Bonn-Bruxelles 1960.

Symposiums-Band. Schweizerbart’sche Verlagsbuchhandlung,

Stuttgart, pp 42–61

Ernst A (2008a) Non-fenestrate bryozoans from the Middle Devonian

of the Eifel (western Rhenish Massif, Germany). N Jb Geol

Palaont Abh 250:313–379

Ernst A (2008b) Trepostome and cryptostome bryozoans from the

Koneprusy Limestone (Lower Devonian, Pragian) of Zlaty Kun

(Czech Republic). Riv Ital Paleontol Stratigr 114:329–348

Ernst A (2008b) New data on the Middle Devonian Bryozoa of

Germany. In: Hageman SJ, Key MM, Jr., Winston JE (eds)

Bryozoan Studies 2007: Proc 14th Int Bryozoology Conference,

Boone, North Carolina, July 1–8, 2007. Virginia Museum of

Natural History Spec Publ, vol 15, pp 29–36

Ernst A (2011) Cryptostome (ptilodictyine and rhabdomesine)

Bryozoa from the Lower Devonian of NW Spain. Paleontogr

A 293:147–183

Ernst A, Bohaty J (2009) Schischcatella (Fenestrata, Bryozoa) from

the Devonian of the Rhenish Massif, Germany. Palaeontology

52:1291–1310

Ernst A, Konigshof P (2010) Bryozoan fauna and microfacies from a

Middle Devonian reef complex (Western Sahara, Morocco). Abh

Senckenberg Naturforsch Ges 568:1–91

Ernst A, May A (2009) Bryozoan fauna from the Koneprusy

Limestone (Pragian, Lower Devonian) of Zlaty Kun near

Koneprusy (Czech Republic). J Paleont 83:767–782

Ernst A, May A (2012) Bryozoan fauna from the Lower Devonian

(Middle Lochkovian) of Sierra de Guadarrama, Spain. J Paleont

86:60–80

Ernst A, Rodrıguez S (2010) Bryozoan fauna from the oolitic limestone

near Pajarejos, SW Spain. Rev Espan Paleont 25:83–88

Ernst A, Schroeder S (2007) Stenolaemate bryozoans from the Middle

Devonian of the Rhenish Slate Massif (Eifel, Germany). N Jb

Geol Palaont 246:205–233

Ernst A, Dorsch T, Keller M (2011a) A bryozoan fauna from the

Santa Lucıa Formation (Lower–Middle Devonian) of Abelgas,

Cantabrian Mountains, NW-Spain. Facies 57:301–329

Ernst A, Konigshof P, Taylor P, Bohaty J (2011b) Microhabitat

complexity—an example from Middle Devonian bryozoan-rich

sediments. Palaeobiodiv Palaeoenv 91:257–284

Fagerstrom JA (1987) The evolution of reef communities. Wiley,

New York, p 618

Flugel E (1982) Microfacies analysis of limestones. Springer, Berlin,

p 633

Fuchs A (1923) Erlauterungen zur geologischen Karte von Preußen

und benachbarten Bundesstaaten. Lfg. 220, Blatt Meinerzhagen.

Geol Landesanstalt, Berlin

Gad J (1995) Neue Fossilfunde von Paraspirifer sandbergeri Solle,

1971 aus dem Unterdevon des Rheinischen Schiefergebirges und

ihre systematische und stratigraphische Bedeutung. Mainz

geowiss Mitt 24:27–46

Gad J (1997) Neue Informationen uber die Morphologie von

Alatiformia alatiformis und Alatiformia jaekeli (Brachiopoda,

Spinocyrtiidae) aus dem Ober-Emsium des Rheinischen Schi-

efergebirges. Geol Jahrb A 150:3–13

754 Facies (2012) 58:727–758

123

Goldfuss GA (1826–1833) Petrefacta Germaniae. Erster Theil. Arnz,

Dusseldorf

Gorjunova RV (1975) Permskie mshanki Pamira [Permian bryozoans

of the Pamir]. Trudy Paleont Inst Akad Nauk SSSR 148:1–127

[in Russian]

Gorjunova RV (1992) Morphology and system of the Paleozoic

bryozoans. Trudy Paleont Inst Akad Nauk SSSR 251:1–168 [in

Russian]

Gorjunova RV (2006) New bryozoans from the Devonian of

Afghanistan and the Carboniferous of Iran. Paleont J 40:626–635

Grabert H (1980) Oberbergisches Land. Zwischen Wupper und Sieg.

Samml Geol Fuhrer 68:1–178

Hageman SJ (1993) Effects of nonnormality on studies of the

morphological variation of a rhabdomesine bryozoan, Streblo-trypa (Streblascopora) prisca (Gabb and Horn). Univ Kansas

Paleont Contrib 4:1–13

Hahn HD (1990) Fazies grobklastischer Gesteine des Unterdevons

(Graue Phyllite bis Taunusquarzit) im Taunus (Rheinisches

Schiefergebirge). Thesis Univ Marburg, p 173

Hahn HD, Zankl H (1991) Sedimentation in the Lower Devonian of

the Taunus area (Graue Phyllite to Taunusquarzit). Zbl Geol

Palaont Teil I 1990:1509–1520

Hall J (1858) Report on the Geological Survey of Iowa, embracing the

results of investigations made during portions of the years 1855,

1856, 1857. Geol Surv Iowa, 1, Pt. 2, Paleontology, pp 1–724

Hall J (1883) Bryozoans of the Upper Heldelberg and Hamilton

groups. Trans Albany Inst 10:145–197

Hall J (1885) Bryozoans of the Hamilton group. Report of the State

geologist for the year 1883. Weeds, Parsons and Co., Albany,

pp 5–61

Hall J (1886) Bryozoa of the Upper Heldelberg groups; plates and

explanations. State Geologist of New York, 5th Annual Report

for 1885, pp 25–53

Hall J, Simpson GB (1887) Corals and Bryozoa from the Lower

Heldelberg, Upper Heldelberg and Hamilton groups. Geol Surv

State NY 6(98):265–288

Hatschek B (1888) Lehrbuch der Zoologie, eine morphologische

Uebersicht des Thierreiches zur Einfuhrung in das Studium

dieser Wissenschaft. Gustav Fischer, Jena, p 304

Heidelberger D (2003) Gastropoden aus dem Mittel-Eifelium der

Sotenicher Mulde (Eifel). Geol Palaeont 37:1–8

Heidelberger D (2008) Revision devonischer Gastropoden aus dem

Frettertal (Givetium; Sauerland). Geologie und Palaontologie in

Westfalen 71:5–45

Heidelberger D, Koch L (2005) Gastropoda from the Givetian

‘‘Massenkalk’’ of Schwelm and Hohenlimburg (Sauerland,

Rheinisches Schiefergebirge, Germany). Geol Palaeont Sb 4:

1–107

Hill D (1981) Rugosa and Tabulata. In: Teichert C (ed) Treatise on

invertebrate paleontology, Part F [Coelenterata] Suppl. 1.

Boulder, Colorado and Lawrence, Kansas, p xl ? 672

Hubmann B, Gaetani M (2007) Devonian calcareous algae, tabulate

corals and bioclaustrations from the Karakorum Mountains

(Northern Pakistan). Riv Ital Paleont Stratigr 113:307–328

Johnson JG, Klapper G, Sandberg CA (1985) Devonian eustatic

fluctuations in Euramerica. Geol Soc Am Bull 96:567–587

Johnson JG, Klapper G, Elrick M (1996) Devonian transgressive-

regressive cycles and biostratigraphy, northern Antelope Range,

Nevada; establishment of reference horizons for global cycles.

Palaios 11:3–14

Kershaw S (1984) Patterns of stromatoporoid growth in level-bottom

environments. Palaeontology 27:113–130

Kershaw S (1998) The applications of stromatoporoid paleobiology in

paleoenvironmental analysis. Palaeontology 41:509–544

Kershaw S, Riding R (1978) Parameterization of stromatoporoid

shape. Lethaia 11:233–242

Koch L, Lemke U, Brauckmann C (1990) Vom Ordovizium bis zum

Devon: die fossile Welt des Ebbe-Gebirges. Linnepe, Hagen, p 198

Krausel W (1953) Cyclopelta winteri (Bryozoa) aus dem Mittel-

Devon der Eifel. Senckenbergiana 34:43–52

Krausel W (1957) Loculipora Hall aus dem Mittel-Devon der Eifel.

Senckenbergiana 38:335–343

Krausel W (1981) Wuchsformen der Fenestelliden (Bryozoen) aus

dem Mitteldevon der Eifel. Aufschluß 32:29–36

Krebedunkel J (1995) Stromatoporen aus dem Givet und Frasne des

Bergischen Landes. Sonderveroff Geol Inst Univ Koln 106:

1–182

Krebs W (1974) Devonian carbonate complexes of Central Europe.

In: Laporte LF (ed) Reefs in time and space. SEPM Special

Publications, vol 18, pp 155–208

Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan

orogeny in the Saxo-Thuringian zone-heterogenous overprint of

Cadomian/Palaeozoic peri-Gondwana crust. In: Linnemann U,

Nance R D, Kraft P, Zulauf G (eds) The evolution of the Rheic

Ocean: From Avalonian-Cadomian active margin to Alleghe-

nian-Variscan collision. Geological Society of American Special

Papers, vol 423, pp 153–172

Langenstrassen F (1982) Sedimentologische und biofazielle Unter-

suchungen an Proben aus der Bohrung Schwarzbachtal 1

(Rheinisches Schiefergebirge, Velberter Sattel). Senckenberg

leth 63:315–333

Langenstrassen F (1983) Neritic sedimentation of the Lower and

Middle Devonian in the Rheinische Schiefergebirge East of the

River Rhine. In: Martin H, Eder FW (eds) Intracontinental Fold

Belts. Springer, Berlin, pp 43–76

Lecompte M (1939) Les tabules du Devonien moyen et superieur du

bord du bassin de Dinant. Mem Mus roy Hist natur Belg 90:1–229

Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The

Cadomian Orogeny and the opening of the Rheic Ocean: The

diachrony of geotectonic processes constrained by LA-ICP-MS

U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones,

Iberian and Bohemian Massifs). Tectonophysics 461:21–43

Lutte B-P (1987) Glossophyllum-Arten aus dem Mittel-Devon der

Eifel (Rugosa; Rheinisches Schiefergebirge). Senckenberg leth

67:433–457

Lutte B-P (1990) Horn- und kegelformige rugose Korallen aus dem

Mittel-Devon der Eifel. Senckenberg leth 70:297–395

Lutte B-P (1993) Zur stratigraphischen Verteilung tabulater Korallen

im Mittel-Devon der Sotenicher Mulde (Rheinisches Schi-

efergebirge, Nord-Eifel). Geol Palaeont 27:55–71

M‘Coy F (1850) On some new genera and species of Silurian Radiata

in the collection of the University of Cambridge. Ann Mag Nat

Hist 2:270–290

Machel H-G (1990) Faziesinterpretation des Briloner Riffs mit Hilfe

eines Faziesmodells fur devonische Riffkarbonate. Geol Jahrb D

95:43–83

Machel H-G, Hunter IG (1994) Facies models for middle to late

Devonian shallow-marine carbonates, with comparisons to

modern reefs: a guide for facies analysis. Facies 30:155–176

Malmsheimer KW, Mensink H, Stritzke R (1991) Gesteinsvielfalt im

Riffgebiet um Brilon. Geol Palaont Westf 18:67–83

Marks SJ (2010) Wiedereroffnung des Kiersper Hulloches bei

Kierspe/Meinerzhagen, Sauerland. Spelaol Jahrb 2008–2009:

45–48

May A (1987) Der Massenkalk (Devon) nordlich von Brilon

(Sauerland). Geol Palaont Westf 10:51–84

May A (1988) Fossilfuhrung und Palokologie des lagunaren Mas-

senkalkes (Devon) im Sauerland (Rheinisches Schiefergebirge).

Palaont Z 62:175–192

May A (1989) Uber Vandercammenina (Brachiopoda: Spiriferacea)

aus dem Mittel-Devon des Sauerlandes (Rheinisches Schi-

efergebirge). Hercynica 4(for 1988):15–23

Facies (2012) 58:727–758 755

123

May A (1991) Die Fossilfuhrung des westsauerlandischen Givetiums

(Devon; Rheinisches Schiefergebirge) in der Sammlung des

Stadtischen Museums Menden. Geol Palaont Westf 17:7–42

May A (1992a) Paleoecology of Upper Eifelian and Lower Givetian

coral limestones in the northwestern Sauerland (Devonian;

Rhenish Massif). Facies 26:103–116

May A (1992b) Die Kalkalgen-Flora des Ober-Eifeliums und Unter-

Givetiums (Devon) des nordwestlichen Sauerlandes (Rheinis-

ches Schiefergebirge). Palaeontogr B 228:1–28

May A (1993a) Korallen aus dem hoheren Eifelium und unteren

Givetium (Devon) des nordwestlichen Sauerlandes (Rheinisches

Schiefergebirge). Teil I: Tabulate Korallen. Palaeontogr A 227:

87–224

May A (1993b) Korallen aus dem hoheren Eifelium und unteren

Givetium (Devon) des nordwestlichen Sauerlandes (Rheinisches

Schiefergebirge). Teil II: Rugose Korallen, Chaetetiden und

spezielle Themen. Palaeontogr A 228:1–103

May A (1993c) Thamnopora und verwandte astige tabulate Korallen

aus dem Emsium bis Unter-Eifelium von Asturien (Devon;

Nord-Spanien). Geol Palaeont 27:73–101

May A (1993d) Stratigraphie, Stromatoporen-Fauna und Palokologie

von Korallenkalken aus dem Ober-Eifelium und Unter-Givetium

(Devon) des nordwestlichen Sauerlandes (Rheinisches Schi-

efergebirge). Geol Palaont Westf 24:3–93

May A (1996) Relationship among sea-level fluctuation, biogeogra-

phy, and bioevents of the Devonian: an attempt to approach

a powerful, but simple model for complex long-range control

of biotic crises. Geolines 3:38-49 (http://geolines.gli.cas.cz/

fileadmin/volumes/volume03/G3-038.pdf)

May A (1997a) Gedanken uber Zusammenhange zwischen Meeress-

piegel, Biogeographie und Bio-Events im Devon. Coral Res Bull

5:291–318

May A (1997b) Ein Modell zur Erklarung der Bio-Events und der

biogeographischen Entwicklung im Devon durch den Meeress-

piegel. Dortm Beitr Landeskd Naturwiss Mitt 31:137–174

May A (1998) Statistische Untersuchungen an der tabulaten Koralle

Thamnopora (Anthozoa; Devon). Geol Palaeont 32:141–159

May A (2003) Die Fossilfuhrung des Mitteldevons im Raum

Attendorn–Olpe (West-Sauerland; Rechtsrheinisches Schi-

efergebirge). Geol Palaont Westf 60:47–79

May A (2005) Die Stromatoporen des Devons und Silurs von Zentral-

Bohmen (Tschechische Republik) und ihre Kommensalen.

Zitteliana B25:117–250 (http://epub.ub.uni-muenchen.de/12135/)

May A (2008) Corals (Anthozoa, Tabulata and Rugosa) and chaetetids

(Porifera) from the Devonian of the Semara area (Morocco) at the

Museo Geominero (Madrid, Spain), and their biogeographic

significance. Bull Inst Sci Rabat Sect Sci terre 30:1–12

May A, Avlar H (1996) Evolution of Rhenish faunal communities during

the Late Emsian and Early Eifelian: three reviews on sedimentation,

brachiopods and bioevents. Geolines 3:50–52 (http://geolines.

gli.cas.cz/fileadmin/volumes/volume03/G3-050.pdf)

McKinney FK (1998) Avicularia-like structures in a Paleozoic

fenestrate bryozoan. J Paleont 72:819–826

Meyer W (1986) Geologie der Eifel. Schweizerbart’sche Verlags-

buchandlung, Stuttgart, p 614

Meyer W, Stets J (1980) Zur Palaogeographie von Unter- und

Mitteldevon im westlichen und zentralen Rheinischen Schi-

efergebirge. Z Dt Geol Ges 131:725–751

Meyer W, Stets J (1996) Das Rheintal zwischen Bingen und Bonn.

Samml Geol Fuhrer 89:1–386

Miller SA (1889) North American geology and paleontology.

Western Methodist Book concern, Cincinnati, p 664

Milne-Edwards H, Haime J (1850) A monograph of the British fossil

corals. First part. Introduction; corals from the Tertiary and

Cretaceous Formations. Monogr Palaeontogr Soc Lond 3(2)7:

i–lxxxv ? 1–72

Mittmeyer HG (1982) Rhenish Lower Devonian biostratigraphy. Cour

Forsch-Inst Senckenberg 55:257–270

Morozova IP (1987) Morphogenesis, system and colonial integration

in Bryozoa of the order Fenestrida. Trudy Paleont Inst Akad

Nauk SSSR 222:70–88 [in Russian]

Morozova IP, Lavrentjeva VD (1998) Novyye mshanki semeystva

Semicosciniidae [New bryozoans of the family Semicoscinii-

dae.]. Paleont Zhurnal 2:53–59 [in Russian]

Nance RD, Gutierrez-Alonso G, Keppie JD, Linnemann U, Brendan

Murphy J, Quesada C, Strachan RA, Woodcock N (2010)

Evolution of the Rheic Ocean. Gondwana Res 17:194–222

Nicholson HA (1874) Descriptions of new fossils from the Devonian

Formation of Canada West. Geol Mag 1:51–96

Nicholson HA (1879) On the structure and affinities of the ‘‘Tabulate

Corals’’ of the Paleozoic period, with critical descriptions of

illustrative species. William Blackwood and Sons, Edinburgh,

p 342

Nicholson HA, Etheridge R Jr (1878) A Monograph of the Silurian

fossils of the Girvan district, Ayrshire, with special reference to

those contained in the ‘‘Gray Collection’’. Volume 1, Pt. 1.

William Blackwood and Sons, London, pp 1–341

Nikiforova AI (1948) Lower Carboniferous bryozoans of Karatau.

Izdatelstvo Akad Nauk Kazakhskoi SSR, Alma-Ata, p 53 [in

Russian]

Niko S (2005) Devonian pachyporoidean tabulate corals from the

Fukuji Formation, Gifu Prefecture. Bull Natn Sci Mus Tokyo Ser

C 31:13–29

Niko S (2007) Stratigraphy of the Devonian Fukuji Formation in Gifu

Prefecture and its favositid coral fauna. Bull Natn Sci Mus

Tokyo Ser C 33:57–79

Niko S, Senzai Y (2010) Stratigraphy of the Devonian Kamianama

Formation in the Kuzuryu Lake-Ise River area, Fukui Prefecture

and its favositid coral fauna. Bull Natn Sci Mus Tokyo Ser C

36:31–59

Oncken O, Plesch A, Weber K, Ricken W, Schrader S (2000) Passive

margin detachment during arc-continent collision (Central

European Variscides). In: Franke W, Haak V, Oncken O, Tanner

D (eds) Orogenic processes: quantification and modelling in the

Variscan Belt. Geol Soc Lond Spec Publ 179:199–216

Poncet J (1995) Interaction organismes constructeurs, algues calcaires

et sediments dans les paleomilieux recifaux au devonien

inferieur et moyen. Rev Micropaleont 38:79–87

Prout HA (1859) Third series of descriptions of Bryozoa from the

Paleozoic rocks of western states and territories. Trans St Louis

Acad Sci Ser 3:443–452

Ribbert K-H (1998) Anmerkungen zur Devon-Korrelationstabelle,

R001dm97–R017dm97: Devon, Nordrhein-Westfalen. Sencken-

berg leth 77:308–309

Richter D (1971) Ruhrgebiet und Bergisches Land. Zwischen Ruhr

und Wupper. Samml Geol Fuhrer 55:1–166

Roemer CF (1844) Das rheinische Uebergangsgebirge. Eine palaeon-

tologisch-geologische Darstellung. Hahn0sche Verlagsbuchhand-

lung, Hannover, p 96

Romer RL, Hahne K (2010) Life of the Rheic Ocean: scrolling

through the shale record. Gondwana Res 17:408–421

Rominger C (1866) Observations on Chaetetes and some related

genera, in regard to their systematic position; with an appended

description of some new species. Proc Acad Nat Sci Philadelph

18:113–123

Rothpletz A (1913) Uber die Kalkalgen, Spongiostromen und einige

andere Fossilien aus dem Obersilur Gotlands. Sver geol Unders

Uppsala, ser C 10:1–54

Salerno C (2008) Stromatoporen-Fauna, Fazies und Palaookologie

von Plattformkarbonaten aus dem Unter-Givetium der Eifel

(Devon, Rheinisches Schiefergebirge). Zitteliana B27:1–129

(http://epub.ub.uni-muenchen.de/12002/)

756 Facies (2012) 58:727–758

123

Schlotheim EF (1820) Die Petrefactenkunde auf ihren jetzigen

Standpunkte durch die Beschreibung seiner Sammlung verstein-

erter und fossiler Uberreste des Thier- und Pflanzen-Reichs der

Vorwelt erlautert. Beckersche Buchhandlung, Gotha, p 437

Schluter C (1881) Uber einige Anthozoen des Devon. Verh Nat Ver

Preuss Rheinl Westf 38(4, 2):189–232

Schluter C (1885) Uber einige neue Anthozoen aus dem Devon. Verh

Nat Ver Preuss Rheinl Westf (Sitzungsber) 42:144–152

Schluter C (1889) Anthozoen des rheinischen Mittel-Devon. Abh geol

Spec Preuss Thuring Staaten 8:I–X, 259–465

Scholz J, Ernst A, Batson P, Konigshof P (2005) Bryozoenriffe.

Denisia 16:247–262

Schone BR, Basse M, May A (1998) Korrelationen des Eifelium/

Givetium Grenzbereichs im Rheinischen Schiefergebirge. Senc-

kenberg leth 77:233–242

Schroder S (1998) Rugose Korallen und Stratigraphie des oberen

Eifelium und unteren Givetium der Dollendorfer Mulde/Eifel

(Mittel-Devon; Rheinisches Schiefergebirge). Cour Forsch-Inst

Senckenberg 208:1–135

Schroder S, Salerno C (2001) Korallenfauna und Fazies givetischer

Kalksteinabfolgen (Curten-/Dreimuhlen-Formation) der Dollen-

dorfer Mulde (Devon, Rheinisches Schiefergebirge/Eifel). Senc-

kenberg leth 81:111–133

Simpson, GB (1897) A handbook of the genera of the North

American Paleozoic Bryozoa. 14th Annual Report of the State

Geologist (of New York) for the year 1894, pp 407–608.

Sokolov BS (1947) Novye syringoporidy Tajmyra. Bjull moskov

Obsc ispyt Prirody (Otd geol) 22(6):19–28

Sokolov BS (1952) Tabuljaty paleozoja evropejskoj casti SSSR. Cast

IV: Devon russkoj platformy i zapadnogo Urala. Trudy

vsesojuznogo neftjanogo naucno-issledovatel’skogo geologo-

razvedocnogo instituta (VNIGRI) n S 62:1–291

Solle G (1937) Hederella, eine amerikanische Bryozoen-Gattung im

rheinischen Unter-Devon. Senckenberg leth 19:15–21

Solle G (1952) Neue Untersuchungen und Arten der Bryozoen-

Gattung Hederella und eine Hernodia im rheinischen Unterdev-

on. Notzbl hess LA Bodenforsch 6:35–55

Solle G (1953) Die Spiriferen der Gruppe arduennensis-intermediusim rheinischen Devon. Abh hess LA Bodenforsch 5:1–15

Solle G (1968) Hederelloidea (Cyclostomata) und einige ctenostome

Bryozoen aus dem Rheinischen Devon. Abh hess LA Bode-

nforsch 54:1–40

Solle G (1971) Brachyspirifer und Paraspirifer im rheinischen

Devon. Abh hess LA Bodenforsch 59:1–163

Spriestersbach J (1935) Beitrag zur Kenntnis der Fauna des rheinis-

chen Devon. Jahrb preuss geol Landesanst 55[f. 1934]:475–525

Stadelmaier M, Nose M, May A, Salerno C, Schroder S, Leinfelder RR

(2005) Astige tabulate Korallen-Gemeinschaften aus dem Mittel-

devon der Sotenicher Mulde (Eifel): Faunenzusammensetzung

und fazielles Umfeld. Zitteliana B25:5–38 (http://epub.ub.uni-

muenchen.de/12133/)

Stasinska A, Nowinski A (1978) Frasnian Tabulata of the south-

eastern Poland. Acta Palaeont Polon 23:199–218

Steininger J (1831) Bemerkungen uber die Versteinerungen, welche in

dem Ubergangskalkgebirge der Eifel gefunden werden. Beilage

zum Gymnasial-Programmschrift zu Trier. Lints, Trier, p 44

Stets J, Schafer A (2002) Depositional environments in the Lower

Devonian siliciclastics of the Rhenohercynian Basin (Rheinis-

ches Schiefergebirge, W-Germany)—case studies and a model.

Contrib Sediment Geol 22:1–78

Struve W (1964) Beitrage zur Kenntnis devonischer Brachiopoden, 4:

Uber Alatiformia-Arten und andere, außerlich ahnliche Spirifer-

acea. Senckenberg leth 45:325–346

Struve W (1982a) Beitrage zur Kenntnis devonischer Brachiopoden,

23: Schaltier-Faunen aus dem Devon des Schwarzbach-Tales bei

Ratingen, Rheinland. Senckenberg leth 63:183–283

Struve W (1982b) The Eifelian within the Devonian frame, history,

boundaries, definitions. In: Ziegler W, Werner R (eds) On

Devonian stratigraphy and palaeontology of the Ardenno-

Rhenish Mountains and related Devonian matters. Cour For-

sch-Inst Senckenberg 55:401–432

Struve W (1992) Neues zur Stratigraphie und Fauna des rhenotypen

Mittel-Devon. Senckenberg leth 71:503–624

Struve W (1996) Trilobiten, Rheinisches Schiefergebirge; Mitteldev-

on. In Weddige K (ed) Devon-Korrelationstabelle. Senckenberg

leth 76:280, tab. B100dm96

Tait JA, Schatz M, Bachtadse V, Soffel H (2000) Palaeomagnetism

and Palaeozoic paleogeography of Gondwana and European

terranes. In Franke W, Haak V, Oncken O, Tanner D (eds)

Orogenic processes: quantification and modelling in the Variscan

Belt. Geol Soc London Spec Publ 179:21–34

Thormann F, Weddige K (2001) Addendum zu Struve W (1992) Neues

zur Stratigraphie und Fauna des rhenotypen Mittel-Devon:

Abbildungen der Holotypen. Senckenberg leth 81:307–327

Toots H (1951) Uber einige cryptostome Bryozoen aus dem

Mitteldevon des Rheinischen Schiefergebirges. N Jb Geol

Palaont Abh 93:233–246

Tsien HH (1974) Paleoecology of Middle Devonian and Frasnian in

Belgium. In: International symposium on Belgian micropaleon-

tological limits, Namur 1974, vol 12. Geol Survey Belgium,

Brussels, pp 1–53

Tsien HH (1984a) Organisms: their ecology and function in carbonate

construction. Palaeontogr Am 54:415–420

Tsien HH (1984b) Constructeurs de recifs devoniens: Stromatoporo-

ides, coraux tabuleux et rugueux et microorganisms. In: Geister

J, Herb R (eds) Geologie et paleoecologie des recifs. Inst Geol

Univ Berne, Bern, pp 26.1–26.21

Ulrich EO (1882) American Paleozoic Bryozoa. J Cincinnati Soc Nat

Hist 5(121–175):233–257

Ulrich EO (1883) American Paleozoic Bryozoa. J Cincinnati Soc Nat

Hist 6:245–279

Ulrich EO (1890) Paleozoic Bryozoa: III. Illinois Geol Surv 8:283–688

Ulrich EO (1896) Bryozoa. In: Eastman C (ed) Zittel’s textbook of

paleontology, vol 1. Macmillan, London, pp 257–291

Ulrich EO, Bassler RS (1904) A revision of the Paleozoic Bryozoa.

Part II: On genera and species of Trepostomata. Bull US Geol

Surv 173:15–55

Utgaard J (1983) Paleobiology and taxonomy of the Order Cystopo-

rata. In: Robison RA (ed) Treatise on Invertebrate Paleontology,

Part G (1) Bryozoa (revised). Geol Soc America and Univ

Kansas Press, Lawrence, pp G327–G439

Verrill AE (1865) Classification of polyps (Extract condensed from a

synopsis of the polypi of the North Pacific Exploring Expedition,

under captains Rinngold and Rodgers, U.S.N.). Essex Inst Proc

4:145–149

Vinassa de Regny P (1921) Sulla classificazione dei trepostomidi. Soc

Ital Sci Nat Atti 59:212–231

Vine GR (1884) Fourth report of the Committee consisting of Dr.

H. R. Sorby and Mr. G. R. Vine, appointed for the purpose of

reporting on fossil Polyzoa. Reports 53rd Mtg British Assoc

Advanc Sci, pp 161–209

von Eichwald CE (1829) Zoologia specialis quam expositis animal-

ibus tum vivis, tum fossilibus potissimum Rossiae in universum,

et Poloniae in specie, in usum, lectionum, 1. Joseph Zawadzki,

Vilna, p vi ? 314

Weddige K (ed) (2006) Devonian correlation table, Supplements

2006. Part 2. Senckenberg leth 86:327–347

Weddige K, Ziegler W (2000) Das bibliographische Lebenswerk von

Dr. Wolfgang Struve. Senckenberg leth 79:603–636

Wedekind R (1922) Zur Kenntnis der Stringophyllen des oberen

Mitteldevon. Sitzungsber Ges Beford gesamt Naturwiss Marburg

1921:1–16

Facies (2012) 58:727–758 757

123

Wedekind R (1937) Einfuhrung in die Grundlagen der historischen

Geologie. II. Mikrobiostratigraphie, Die Korallen- und Fora-

miniferenzeit. Enke, Stuttgart, p 136

Wehrmann A, Blieck A, Brocke R, Hertweck G, Jansen U, Konigshof

P, Plodowski G, Schindler E, Schultka S, Wilde V (2005)

Palaeoenvironment and palaeoecology of intertidal deposits in a

Lower Devonian siliciclastic sequence of the Mosel Region,

Germany. Palaios 20:101–120

Wierich F (1999) Orogene Prozesse im Spiegel synorogener

Sedimente; korngefugekundliche Liefergebietsanalyse siliziklas-

tischer Sedimente im Devon des Rheinischen Schiefergebirges.

Marburger Geowiss 1:1–264

Wood A (1948) ‘‘Sphaerocodium’’, a misinterpreted fossil from the

Wenlock Limestone. Proc Geol Assoc 59:9–22

Wray JL (1972) Environmental distribution of calcareous algae in

Upper Devonian reef complexes. Geol Rundsch 61:578–584

Yang J, Lu L (1983) Upper Carboniferous and Lower Permian

bryozoans from Kalpin of western Xinjiang. Paleont Cathayana

1:259–317 [In Chinese]

Yolkin EA, Izokh NG, Bakharev NK (2006) Annotations to the

Devonian correlation tables, R 175–184, H 110–111, R 608–612

di-ds 06: Devonian of West Siberia (Salair, Kuznetsk Basin,

Gorny [High] and Rudny [Ore] Altai). Senckenberg leth 86:

323–325

758 Facies (2012) 58:727–758

123