11
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY MA8151 ENGINEERING MATHEMATICS I Lagrange’s Method of Undetermined Multipliers Suppose we require to find the maximum and minimum values of (, ) where , , are subject to a constraint equation (, , ) = 0 We define a function (, , , ) = (, , ) + (, , ) … (1) Where is called Lagrange Multiplier which is independent of , , and . The necessary conditions for a maximum or minimum are = 0 … . (2) = 0 … . (3) = 0 … . (4) Solving the four equations for four unknowns Ξ» ,, , , we obtain the point (, , ). The point may be a maxima, minima or neither which is decided by the physical consideration. This method is also applicable when we have more than one constraint equation connecting the variables. Example: Find the minimum value of + + subject to the condition + + = Solution: Let the auxiliary function β€˜F’ be F(x,y,z,Ξ» ) =( 2 + 2 + 2 ) + ( 1 + 1 + 1 βˆ’ 1) Where is Lagrange Multiplier =2+ ( βˆ’1 2 ) = 2 βˆ’ 2 =2+ ( βˆ’1 2 ) = 2 βˆ’ 2 =2+ ( βˆ’1 2 ) = 2 βˆ’ 2 For a minimum at (, , ) we have =0 =0 =0 2 βˆ’ 2 =0 2 = 2 2 βˆ’ 2 =0 2 = 2 2 βˆ’ 2 =0 2 = 2

Lagrange's Method of Undetermined Multipliers - Rohini

Embed Size (px)

Citation preview

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

Lagrange’s Method of Undetermined Multipliers

Suppose we require to find the maximum and minimum values of 𝑓(π‘₯, 𝑦) where

π‘₯, 𝑦, 𝑧 are subject to a constraint equation

𝑔(π‘₯, 𝑦, 𝑧) = 0

We define a function

𝐹(π‘₯, 𝑦, 𝑧, πœ† ) = 𝑓(π‘₯, 𝑦, 𝑧) + πœ† 𝑔(π‘₯, 𝑦, 𝑧) … (1)

Where πœ† is called Lagrange Multiplier which is independent of π‘₯, 𝑦, and 𝑧.

The necessary conditions for a maximum or minimum are

πœ•πΉ

πœ•π‘₯= 0 … . (2)

πœ•πΉ

πœ•π‘¦= 0 … . (3)

πœ•πΉ

πœ•π‘§= 0 … . (4)

Solving the four equations for four unknowns Ξ» ,π‘₯, 𝑦, 𝑧, we obtain the point (π‘₯, 𝑦, 𝑧). The

point may be a maxima, minima or neither which is decided by the physical consideration.

This method is also applicable when we have more than one constraint equation

connecting the variables.

Example:

Find the minimum value of π’™πŸ + π’šπŸ + π’›πŸ subject to the condition 𝟏

𝒙+

𝟏

π’š+

𝟏

𝒛= 𝟏

Solution:

Let the auxiliary function β€˜F’ be

F(x,y,z,Ξ» ) =(π‘₯2 + 𝑦2 + 𝑧2) + πœ† (1

π‘₯+

1

𝑦+

1

π‘§βˆ’ 1)

Where πœ† is Lagrange Multiplier

πœ•πΉ

πœ•π‘₯= 2π‘₯ + πœ† (

βˆ’1

π‘₯2)

= 2π‘₯ βˆ’ πœ†

π‘₯2

πœ•πΉ

πœ•π‘¦= 2𝑦 + πœ† (

βˆ’1

𝑦2)

= 2𝑦 βˆ’ πœ†

𝑦2

πœ•πΉ

πœ•π‘§= 2𝑧 + πœ† (

βˆ’1

𝑧2)

= 2𝑧 βˆ’ πœ†

𝑧2

For a minimum at (π‘₯, 𝑦, 𝑧) we have

πœ•πΉ

πœ•π‘₯= 0

πœ•πΉ

πœ•π‘¦= 0

πœ•πΉ

πœ•π‘§= 0

2π‘₯ βˆ’ πœ†

π‘₯2= 0

2π‘₯ = πœ†

π‘₯2

2𝑦 βˆ’ πœ†

𝑦2= 0

2𝑦 = πœ†

𝑦2

2𝑧 βˆ’ πœ†

𝑧2= 0

2𝑧 = πœ†

𝑧2

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

π‘₯3 = πœ†

2

π‘₯ = (πœ†

2)

1

3 ….(1)

𝑦3 = πœ†

2

𝑦 = (πœ†

2)

1

3 ….(2)

𝑧3 = πœ†

2

𝑧 = (πœ†

2)

1

3 ….(3)

From (1), (2) and (3), we get

π‘₯ = 𝑦 = 𝑧

Given: 1

π‘₯+

1

𝑦+

1

𝑧= 1

∴ 3 1

π‘₯= 1

∴ 3 = π‘₯

∴ β‡’ 𝑦 = 3 and 𝑧 = 3

∴ (3, 3, 3) is the point where minimum values occur.

The minimum value is 32 + 32 + 32 = 9+ 9 + 9 =27.

Example:

A rectangular box open at the top, is to have a volume of 32cc. find the dimensions

of the box that requires the least material for its construction.

Solution:

Let π‘₯, 𝑦, 𝑧 be the length, breadth and height of the box.

Surface area = π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯

Volume = π‘₯𝑦𝑧 = 32

Let the auxiliary function F be

F(π‘₯, 𝑦, 𝑧, Ξ» ) =(π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯ ) + πœ†(π‘₯𝑦𝑧 βˆ’ 32)

Where πœ† is Lagrange Multiplier

πœ•πΉ

πœ•π‘₯= 𝑦 + 2𝑧 + πœ†π‘¦π‘§

πœ•πΉ

πœ•π‘¦= π‘₯ + 2𝑧 + πœ†π‘₯𝑧

πœ•πΉ

πœ•π‘§= 2π‘₯ + 2𝑦 + πœ†π‘₯𝑦

When F is extremum

πœ•πΉ

πœ•π‘₯= 0

πœ•πΉ

πœ•π‘¦= 0

πœ•πΉ

πœ•π‘§= 0

𝑦 + 2𝑧 + πœ†π‘¦π‘§ = 0

β‡’ y + 2 z = βˆ’ πœ†π‘¦π‘§

π‘₯ + 2𝑧 + πœ†π‘§π‘₯ = 0

β‡’ x + 2 z = βˆ’ πœ†π‘¦π‘§

2π‘₯ + 2𝑦 + πœ†π‘₯𝑦 = 0

β‡’ 2x + 2 y = βˆ’ πœ†π‘₯𝑦

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

β‡’ 1

𝑧+

2

𝑦= βˆ’ πœ† …(1) β‡’

1

𝑧+

2

π‘₯= βˆ’ πœ† …(2) β‡’

2

𝑦+

2

π‘₯= βˆ’ πœ† …(3)

From (1) and (2), we get

1

𝑧+

2

𝑦=

1

𝑧+

2

π‘₯

2

𝑦 =

2

π‘₯

π‘₯ = 𝑦 … (4)

From (2) and (3), we get

1

𝑧+

2

π‘₯=

2

𝑦+

2

π‘₯

1

𝑧 =

2

𝑦

𝑦 = 2𝑧 … (5)

From (4) and (5), we get

π‘₯ = 𝑦 = 2𝑧

Volume = π‘₯𝑦𝑧 = 32 β‡’ (2z) (2z) z = 32 β‡’ 4 𝑧3 = 32

𝑧3 = 32

4 = 8 β‡’ 𝑧 = 2 𝑖. 𝑒. π‘₯ = 4, 𝑦 = 4, 𝑧 = 2

∴ Cost minimum when π‘₯ = 4, 𝑦 = 4, 𝑧 = 2

Example:

A rectangular box open at the top is to have a given capacity K. Find the

dimensions of the box requiring least material for its construction.

Solution:

Let π‘₯, 𝑦, 𝑧 be the dimensions of the box.

Surface area = π‘₯ 𝑦 + 2𝑦𝑧 + 2𝑧π‘₯

Volume = π‘₯𝑦𝑧 = 𝐾

Let the auxiliary function F be

F(x, y, z, πœ† ) =(π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯ ) + πœ†(π‘₯𝑦𝑧 βˆ’ π‘˜)

Where πœ† is Lagrange Multiplier

πœ•πΉ

πœ•π‘₯= 𝑦 + 2𝑧 + πœ†π‘¦π‘§

πœ•πΉ

πœ•π‘¦= π‘₯ + 2𝑧 + πœ†π‘§π‘₯

πœ•πΉ

πœ•π‘§= 2π‘₯ + 2𝑦 + πœ†π‘₯𝑦

When F is extremum.

πœ•πΉ

πœ•π‘₯= 0

πœ•πΉ

πœ•π‘¦= 0

πœ•πΉ

πœ•π‘§= 0

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

𝑦 + 2𝑧 + πœ†π‘¦π‘§ = 0

β‡’y + 2 z = βˆ’ πœ†π‘¦π‘§

β‡’ 1

𝑧+

2

𝑦= βˆ’β€¦(1)

π‘₯ + 2𝑧 + πœ†π‘§π‘₯ = 0

β‡’ x + 2 z = βˆ’ πœ†π‘§π‘₯

β‡’ 1

𝑧+

2

π‘₯= βˆ’ πœ† ...(2)

2π‘₯ + 2𝑦 + πœ†π‘₯𝑦 = 0

β‡’2x + 2 y = βˆ’ πœ†π‘₯𝑦

β‡’ 2

𝑦+

2

π‘₯= βˆ’ πœ† ...(3)

From (1) and (2), we get

1

𝑧+

2

𝑦=

1

𝑧+

2

π‘₯

2

𝑦 =

2

π‘₯

π‘₯ = 𝑦 … . . (5)

From (2) and (3), we get

1

𝑧+

2

π‘₯=

2

𝑦+

2

π‘₯

1

𝑧 =

2

𝑦

𝑦 = 2𝑧 … . (6)

From (4) and (5), we get

π‘₯ = 𝑦 = 2𝑧

∴ Volume = π‘₯𝑦𝑧 = k β‡’ (2z) (2z) z = k β‡’ 4 𝑧3 = π‘˜

4 𝑧3 = π‘˜ β‡’ 𝑧3 =π‘˜

4

𝑧 = (π‘˜

4)

13

; π‘₯ = 2 (π‘˜

4)

13

; 𝑦 = 2 (π‘˜

4)

13

∴ Value of minimum = π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯

= 4 (π‘˜

4)

1

3 + 4 (

π‘˜

4)

1

3 + 4 (

π‘˜

4)

1

3

= 12 (π‘˜

4)

2

3

= 3 (2 π‘˜ )2 3⁄

Example:

Find the point on the plane a x + b y + c z =p at which 𝒇 = π’™πŸ + π’šπŸ + π’›πŸ has a

stationary value and find the stationary value of f , using Lagrange’s method of

multipliers

Solution:

Let the auxiliary function F be

F(x,y,z,Ξ» ) = π‘₯2 + 𝑦2 + 𝑧2 + πœ†(π‘Žπ‘₯ + 𝑏𝑦 + 𝑐𝑧 βˆ’ 𝑝)

Where πœ† is Lagrange Multiplier

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

πœ•πΉ

πœ•π‘₯= 2π‘₯ + πœ†π‘Ž

πœ•πΉ

πœ•π‘¦= 2𝑦 + πœ† 𝑏

πœ•πΉ

πœ•π‘§= 2𝑧 + πœ† 𝑐

When F is extremum.

πœ•πΉ

πœ•π‘₯= 0

πœ•πΉ

πœ•π‘¦= 0

πœ•πΉ

πœ•π‘§= 0

2π‘₯ + πœ† π‘Ž = 0

β‡’ 2 π‘₯ = βˆ’ πœ† π‘Ž

β‡’ π‘₯

π‘Ž =

βˆ’ πœ†

2 … (1)

2𝑦 + πœ† 𝑏 = 0

β‡’2 𝑦 = βˆ’ πœ† 𝑏

β‡’ 𝑦

𝑏 =

βˆ’ πœ†

2… (2)

2𝑧 + πœ† π‘Ž = 0

β‡’2𝑧 = βˆ’ πœ† π‘Ž

⇒𝑧

𝑐 =

βˆ’ πœ†

2…. (3)

From (1), (2) & (3), we get

π‘₯

π‘Ž =

𝑦

𝑏 =

𝑧

𝑐

π‘Ž π‘₯

π‘Ž2 =

𝑏 𝑦

𝑏2 =

𝑐 𝑧

𝑐2

β‡’ π‘Ž π‘₯

π‘Ž2 =

𝑏 𝑦

𝑏2 =

𝑐 𝑧

𝑐2 β‡’

π‘Ž π‘₯ + 𝑏𝑦 + 𝑐𝑧

π‘Ž2 + 𝑏2 + 𝑐2 =

𝑝

π‘Ž2 + 𝑏2 + 𝑐2

π‘₯ = π‘Žπ‘

π‘Ž2 + 𝑏2 + 𝑐2 ; 𝑦 =

𝑏𝑝

π‘Ž2 + 𝑏2 + 𝑐2 ; 𝑧 =

𝑐𝑝

π‘Ž2 + 𝑏2 + 𝑐2

Stationary value of 𝑓 = π‘₯2 + 𝑦2 + 𝑧2

= ( π‘Ž 𝑝

π‘Ž2 + 𝑏2 + 𝑐2 )

2+ (

𝑏 𝑝

π‘Ž2 + 𝑏2 + 𝑐2 )

2+ (

𝑐 𝑝

π‘Ž2 + 𝑏2 + 𝑐2 )

2

= π‘Ž2 𝑝2 + 𝑏 2 𝑝2+𝑐2 𝑝2

( π‘Ž2 + 𝑏2+ 𝑐2)2

=(π‘Ž2+𝑏2+𝑐2)𝑝2

(π‘Ž2+𝑏2+𝑐2)2 =

𝑝2

π‘Ž2 + 𝑏2 + 𝑐2

Example:

Find the dimensions of the rectangular box without top of maximum capacity with

surface area 432 square metre

Solution:

Let π‘₯, 𝑦, 𝑧 be the length, breadth and height of the box.

Surface area = π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯ = 432

Volume = π‘₯𝑦𝑧

Let the auxiliary function F be

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

F( , 𝑦, 𝑧 ,Ξ» )= π‘₯𝑦𝑧 + πœ† (π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯ βˆ’ 432 )

πœ•πΉ

πœ•π‘₯= 𝑦𝑧 + πœ† (𝑦 + 2𝑧)

πœ•πΉ

πœ•π‘¦= π‘₯𝑧 + πœ† (π‘₯ + 2𝑧)

πœ•πΉ

πœ•π‘§= π‘₯𝑦 + πœ† (2𝑦 + 2π‘₯)

To find the stationary value.

𝐹π‘₯ = 0 𝐹𝑦 = 0 𝐹𝑧 = 0

𝑦𝑧 + πœ† (𝑦 + 2𝑧) = 0

β‡’ 𝑦𝑧 = βˆ’πœ† (𝑦 + 2𝑧)

β‡’ 𝑦 + 2𝑧

𝑦𝑧=

βˆ’1

πœ†

β‡’ 1

𝑧+

2

𝑦= βˆ’

1

πœ† … (1)

π‘₯𝑧 + πœ† (π‘₯ + 2𝑧) = 0

β‡’ π‘₯𝑧 = βˆ’πœ† (π‘₯ + 2𝑧)

β‡’ π‘₯ + 2𝑧

π‘₯𝑧=

βˆ’1

πœ†

β‡’ 1

𝑧+

2

π‘₯= βˆ’

1

πœ† … (2)

π‘₯𝑦 + πœ† (2𝑦 + 2π‘₯) = 0

β‡’ π‘₯𝑦 = βˆ’πœ† (2𝑦 + 2π‘₯)

β‡’ 2𝑦 + 2π‘₯

π‘₯𝑦=

βˆ’1

πœ†

β‡’ 2

π‘₯+

2

𝑦= βˆ’

1

πœ† … (3)

πΉπ‘Ÿπ‘œπ‘š (1) & (2), 𝑀𝑒 𝑔𝑒𝑑

1

𝑧+

2

𝑦=

1

𝑧+

2

π‘₯

β‡’ 2

𝑦=

2

π‘₯

β‡’ π‘₯ = 𝑦 … ( 4 )

πΉπ‘Ÿπ‘œπ‘š (2) & (3), 𝑀𝑒 𝑔𝑒𝑑

1

𝑧+

2

π‘₯=

2

𝑦+

2

π‘₯

β‡’1

𝑧=

2

𝑦

β‡’ 𝑦 = 2𝑧 … ( 5 )

From (4) & (5), we get π‘₯ = 𝑦 = 2𝑧

Surface area = π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯ = 432

(2𝑧)(2𝑧) + 2 (2𝑧)𝑧 + 2𝑧 (2𝑧) = 432

4𝑧2 + 4𝑧2 + 4𝑧2 = 432

12𝑧2 = 432

𝑧2 = 36 ∴ 𝑧 = 6

∴ π‘₯ = 12 , 𝑦 = 12, 𝑧 = 6 𝑏𝑦 (6)

Thus, the dimension of the box is 12, 12, 6.

Maximum volume = 12 x 12 x 6 = 864 cubic metres.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

Example:

The temperature 𝒖( 𝒙, π’š, 𝒛 ) at any point in space is 𝒖 = πŸ’πŸŽπŸŽπ’™π’šπ’›πŸ .Find the highest

temperature on surface of the sphere π’™πŸ + π’šπŸ + π’›πŸ = 𝟏 .

Solution:

𝑒 = 𝑓 = 400π‘₯𝑦𝑧2 … (𝐴)

βˆ… = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 1 = 0 … (𝐡)

Let the auxiliary function F be

F( π‘₯, 𝑦, 𝑧 , πœ† ) = 400π‘₯𝑦𝑧2 + πœ† (π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 1)

To

find the stationary value.

𝐹π‘₯ = 0 𝐹𝑦 = 0 𝐹𝑧 = 0

400𝑦𝑧2 + πœ† (2π‘₯) = 0

400𝑦𝑧2 = βˆ’πœ† (2π‘₯)

200𝑦𝑧2

π‘₯ = βˆ’πœ† … (1)

400π‘₯𝑧2 + πœ† (2𝑦) = 0

400π‘₯𝑧2 = βˆ’πœ† (2𝑦)

200π‘₯𝑧2

𝑦 = βˆ’πœ† … (2)

800π‘₯𝑦𝑧 + πœ†(2𝑧) = 0

800π‘₯𝑦𝑧 = βˆ’ πœ†(2𝑧)

400π‘₯𝑦 = βˆ’ πœ† … (3)

From (1) & (2) , we get 𝑦2 = π‘₯2 … . (4)

From (2) & (3) , we get 𝑧2 = 2𝑦2 … . (5)

From (4) & (5), we get

π‘₯2 = 𝑦2 =1

2 𝑧2 … (6)

(𝐡) β‡’ 1

2𝑧2 +

1

2𝑧2 + 𝑧2 βˆ’ 1 = 0

β‡’ 2𝑧2 = 1

β‡’ 𝑧2 =1

2β‡’ 𝑧 = Β±

1

2

(6) β‡’ π‘₯2 =1

2(

1

2) =

1

4 β‡’ π‘₯ = Β±

1

2

(6) β‡’ 𝑦2 =1

2(

1

2) =

1

4 β‡’ 𝑦 = Β±

1

2

∴ 𝑒 = 400π‘₯𝑦𝑧2 , we select π‘₯, 𝑦, 𝑧 to be positive

β‡’ 𝑒 = 400 (1

2) (

1

2) (

1

2)

β‡’ 𝑒 = 50

πœ•πΉ

πœ•π‘₯= 400𝑦𝑧2 + πœ† (2π‘₯)

πœ•πΉ

πœ•π‘¦= 400π‘₯𝑧2 + πœ† (2𝑦)

πœ•πΉ

πœ•π‘§= 800π‘₯𝑦𝑧 + πœ†(2𝑧)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

∴ Maximum temperature is 50

Example:

Find the maximum volume of the largest rectangular parallelepiped that can be

inscribed in an ellipsoid π’™πŸ

π’‚πŸ + π’šπŸ

π’ƒπŸ + π’›πŸ

π’„πŸ = 𝟏

Solution:

Let a vertex of such parallelepiped be (x, y, z)

Then all the vertices will be ( Β±π‘₯ , ±𝑦, ±𝑧 )

Then, the sides of the solid be 2π‘₯, 2𝑦, 2𝑧 (lengths)

Hence, the volume 𝑉 = (2π‘₯) (2𝑦) (2𝑧) = 8π‘₯𝑦𝑧

Let 𝑓 = 8π‘₯𝑦𝑧

βˆ… =π‘₯2

π‘Ž2 + 𝑦2

𝑏2 + 𝑧2

𝑐2 βˆ’ 1 = 0

Let the auxiliary function F be

F( π‘₯, 𝑦, 𝑧 , πœ† ) = 8π‘₯𝑦𝑧 + πœ† (π‘₯2

π‘Ž2 + 𝑦2

𝑏2 + 𝑧2

𝑐2 βˆ’ 1)

πœ•πΉ

πœ•π‘₯= 8𝑦𝑧 + πœ†

2π‘₯

π‘Ž2

πœ•πΉ

πœ•π‘¦= 8π‘₯𝑧 + πœ†

2𝑦

𝑏2

πœ•πΉ

πœ•π‘§= 8π‘₯𝑦 + πœ†

2𝑧

𝑐2

To find the stationary value.

𝐹π‘₯ = 0 𝐹𝑦 = 0 𝐹𝑧 = 0

8𝑦𝑧 + πœ†2π‘₯

π‘Ž2= 0

β‡’ 8𝑦𝑧 = βˆ’πœ†2π‘₯

π‘Ž2

Xly π‘₯

2 β‡’

4π‘₯𝑦𝑧

βˆ’πœ† = π‘₯2

π‘Ž2 … (1)

8π‘₯𝑧 + πœ†2𝑦

𝑏2= 0

β‡’ 8π‘₯𝑧 = βˆ’πœ†2𝑦

𝑏2

Xly 𝑦

2 β‡’

4π‘₯𝑦𝑧

βˆ’πœ† = 𝑦2

𝑏2 … (2)

8π‘₯𝑦 + πœ†2𝑧

𝑐2= 0

β‡’ 8π‘₯𝑦 = βˆ’πœ†2𝑧

𝑐2

Xly 𝑧

2 β‡’

4xyz

βˆ’Ξ» = z2

c2 … (3)

From (1), (2) & (3), we get

x2

a2 = y2

b2 = z2

c2 … (4)

Given x2

a2 + y2

b2 + z2

c2 = 1

β‡’ 3x2

a2 = 1 by (4)

β‡’ x2 =a2

3 β‡’ x =

a

√3

Similarly, =b

√3 ; 𝑧 =

c

√3

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

The extremum point is (a

√3,

b

√3,

c

√3 )

Maximum volume V= 8(a bc

3√3 )

Example:

Find the minimum values of π±πŸπ²π³πŸ‘ subject to the condition πŸπ’™ + π’š + πŸ‘π’› = 𝒂.

Solution:

Let 𝑓 = π‘₯2𝑦𝑧3

βˆ… = 2π‘₯ + 𝑦 + 3𝑧 βˆ’ π‘Ž = 0

Let the auxiliary function F be

F( π‘₯, 𝑦, 𝑧 , πœ† ) = π‘₯2𝑦𝑧3 + Ξ» (2x + y + 3z βˆ’ a)

βˆ‚F

βˆ‚x= 2π‘₯yz3 + Ξ»2

βˆ‚F

βˆ‚y= x2z3 + Ξ»

βˆ‚F

βˆ‚z= 3 x2yz2 + 3Ξ»

To find the stationary value.

Fx = 0 Fy = 0 Fz = 0

2xyz3 + Ξ»2 = 0

xyz3 = βˆ’ Ξ» … (1)

x2z3 + Ξ» = 0

x2z3 = βˆ’ Ξ» … (2)

3 x2yz2 + 3Ξ» = 0

x2yz2 = βˆ’Ξ» … (3)

From (1) & (2), we get

xyz3 = x2z3

π‘₯ = 𝑦 … (4)

From (2) & (3), we get

x2z3 = x2yz2

𝑧 = 𝑦 … (5)

From (4) & (5), we get

π‘₯ = 𝑦 = 𝑧 … (6)

Given: 2x + y + 3z = a

β‡’ 2z + z + 3z = a

β‡’ 6𝑧 = π‘Ž

β‡’ z =a

6 (6) β‡’ x = y = z =

a

6

∴ The stationary point is (a

6,

a

6,

a

6 )

Hence, Minimum value of f = x2yz3

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

= (a

6)

2(

a

6) (

a

6)

3 = (

a

6)

6

Example:

Find the maximum value of𝐱𝐦𝐲𝐧𝐳𝐩, when 𝐱 + 𝐲 + 𝐳 = 𝐚.

Solution:

Let 𝑓 = π‘₯π‘šπ‘¦π‘›π‘§π‘

βˆ… = π‘₯ + 𝑦 + 𝑧 βˆ’ π‘Ž = 0

Let the auxiliary function F be

F( x, y, z , Ξ» ) = xmynzp + Ξ» (x + y + z βˆ’ a)

βˆ‚F

βˆ‚x= mxmβˆ’1ynzp + Ξ»

βˆ‚F

βˆ‚y= nxmynβˆ’1zp + Ξ»

βˆ‚F

βˆ‚z= pxmynzpβˆ’1 + Ξ»

To find the stationary value.

Fx = 0 Fy = 0 Fz = 0

mxmβˆ’1ynzp + Ξ» = 0

β‡’ π‘šxmβˆ’1ynzp = βˆ’ Ξ»

mxmynzp

x= βˆ’ Ξ» … (1)

nxmynβˆ’1zp + Ξ» = 0

β‡’ 𝑛xmynβˆ’1zp = βˆ’ Ξ»

nxmynzp

y= βˆ’ Ξ» … (2)

pxmynzpβˆ’1 + Ξ» = 0

β‡’ 𝑝xmynzpβˆ’1 = βˆ’ Ξ»

pxmynzp

z= βˆ’ Ξ» … (3)

From (1), (2) & (3), we get

mxmynzp

x=

nxmynzp

y=

pxmynzp

z

Γ· xmynzp β‡’ m

x=

n

y=

p

z… (4)

x =m

pz … (5) y =

n

pz … (6)

Given: π‘₯ + 𝑦 + 𝑧 = π‘Ž

β‡’ m

pz +

n

pz + z = a (5) β‡’ x =

m

p

ap

m+n+p

β‡’ [m

p+

n

p+ 1] z = a =

am

m+n+p

β‡’ [m+n+p

p] z = a (5) β‡’ y =

n

p

ap

m+n+p

β‡’ z =ap

m+n+p =

an

m+n+p

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA8151 ENGINEERING MATHEMATICS I

∴ The stationary point is ( am

m+n+p,

an

m+n+p ,

ap

m+n+p )

∴ The Maximum value of f = (am

m+n+p)

m

(an

m+n+p)

n

(ap

m+n+p)

p

Max. Value of f =am+n+p mmnnpp

(m+n+p)m+n+p