23
1 IEEE 802.3 – 10GBT Study Group Interim Meeting Portsmouth, NH – May 21-22, 2003 Phy Vendor’s Perspective Multi-vendor presentation: Broadcom Vativ Technologies Marvell

grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

  • Upload
    vodung

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

1IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

���������� ����������� ���������� �����������

Phy Vendor’s Perspective

Multi-vendor presentation:Broadcom

Vativ TechnologiesMarvell

Page 2: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

2IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

������������� ��������������������� ��������

Primary goal: Define necessary channel requirements formultiple vendors to agree to the feasibility of a 10G phy implementation

1. Compute theoretical capacity on standardized cable channels• Cat 5e, Cat 6, Cat 7 (classes D,E,F)

• Based on unscaled measured data

2. Channel requirements needed for 10G• “Fantasy” Cat 6

Page 3: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

3IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

�� �� ������� ����� ������� �� ������� ����� �����

Cat 5e, Cat 6, Cat 7

Page 4: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

4IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

�� ���������������� ��������������

• Standard 2 or 4** connector 100m terminated channel

– Differential measurements

– Channels pass cable tester

• Alien crosstalk measured as power sum from 7 cable bundle

. . .

6"

Cable Bundle

6x4 Outer Crosstalkers1x4 Inner Victim

LucentLucent PATCHM AX

3 6 1 2

M odular Jack

M odular Pane l

Cable (245 ft)

Patch Cord (9 ft/5 ft)

Equ ip ment Cord (9 ft/5 ft)

1 2

3 4

Luc entLuc ent PATCHM AX

M odular Pane l

CP Cab le (50 ft) M odular

Jack

3 6 1 2

Patch Cord (5 ft/9 ft)

LucentLucent PATCHM AXLucentLucent PATCHM AX

3 6 1 23 6 1 23 6 1 2

M odular Jack

M odular Pane l

Cable (245 ft)

Patch Cord (9 ft/5 ft)

Equ ip ment Cord (9 ft/5 ft)

1 2

3 4

Luc entLuc ent PATCHM AXLuc entLuc ent PATCHM AX

M odular Pane l

CP Cab le (50 ft) M odular

Jack

3 6 1 23 6 1 23 6 1 2

Patch Cord (5 ft/9 ft)

**Ref: Terry Cobb, Avaya, 2003

Page 5: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

5IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� ������� �!���"�!�� ������� �!���"�!�

Insertion Loss

PSNEXT

PSFEXT

Return Loss

• Limit lines extrapolated after 100MHz

Page 6: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

6IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� ����������!��� �#� ����������!��� �#

2 Connector PSANEXT 4 Connector* PSANEXT- exceeds proposed limit line

*2 near end connectors only

• Both channels pass Cat 5e cable tester

Page 7: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

7IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

����� ��� �"!���"�!�� "#$�!���%!���

����� ��� �"!���"�!�� "#$�!���%!���

• Cable terminated in 100 ohms

• Narrowband interferers have insignificant impact on theoretical capacity

• Broadband noise level below -155 dBm/Hz– Similar results for Cat 6

Hallway LAB Network Closet

Page 8: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

8IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� ���� � "���� ���� � "���

• Based on unscaled measured data from 100m - 2 connec tor channel – Background noise –155dBm/Hz

– Not representative of worst case channel

100 200 300 400 500 600 700 800 900 10004.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

One−sided BW (MHz)

Shan

non

Capa

city i

n GB

ps

Capacity with AWGN and ANEXT with 0dB of ANEXT cancellation

Capacity = 9.00 Gbps @ 720MHz

Page 9: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

9IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �&����'�!���"�!�� �&����'�!���"�!�

Insertion Loss

PSNEXT

PSFEXT

Return Loss

Page 10: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

10IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �&�������!��� �#� �&�������!��� �#

Insertion LossLimit Line

ProposedLimit Line fromNov ’02 Tutorial

• 4 Connector channel exceeds proposed ANEXT limit li ne

Page 11: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

11IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �&� � "���� �&� � "���

• Based on unscaled measured data from 100m - 4 connec tor channel – Background noise –155dBm/Hz

100 200 300 400 500 600 700 800 900 10005

5.5

6

6.5

7

7.5

8

8.5

9

9.5

One−sided BW (MHz)

Shan

non

Capa

city

in G

Bps

Capacity with AWGN and ANEXT with 0dB of ANEXT cancellation

Capacity = 9.39Gbps @ 800MHz

Page 12: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

12IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �('�!���"�!�)� �('�!���"�!�)

Insertion Loss

PSNEXT

PSFEXT

Return Loss

* Cable: Siemon Co. Cat 7 TERA Channel

Page 13: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

13IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �( �!���"�!��%�*� �( �!���"�!��%�*

*

*Data supplied by Nexans

Page 14: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

14IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �(� "#$�!���%!���� �(� "#$�!���%!���

• Narrowband interferers suppressed

• Broadband noise level well below –155 dBm/Hz

Page 15: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

15IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �(� � "���� �(� � "���

• Based on unscaled measured data from 100m - 4 connec tor channel– Background noise at –160dBm/Hz– ANEXT = measured Cat 6 reduced by 40 dB

100 200 300 400 500 600 700 800 900 100010

15

20

25

30

35

40

45

50

One−sided BW (MHz)

Shan

non

Capa

city

in G

Bps

Capacity with AWGN and ANEXT with 0dB of ANEXT cancellation

Capacity = 49.36Gbps @ 1000MHz

Using limit lines reduces max capacity to37.71Gbps @ 985MHz

Page 16: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

16IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

���!+���,�����$� ����-����������

���!+���,�����$� ����-����������

• Capacity calculations with measured data indicate t hat 10 Gigabit data transmission over 100m Cat 5 or Cat 6 UTP cabl es is not feasible

– Many basic implementation impairments neglected in this simplified analysis

• Actual capacity will be worse

• Alien crosstalk is a fundamental limit– Must be reduced by some means – suggestions are welc ome

– Is disallowing cable bundles, adjacent patch panel locations, or multi-connector

channels an acceptable marketplace solution ?

• Capacity calculations with measured data indicate 1 0 Gigabit data transmission over 100m Cat 7 may be possible

– Further investigation with actual line codes and mo re accurate models warranted

Page 17: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

17IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

�� ����.�/���������0!����

�� ����.�/���������0!����

Fantasy Cat 6

Page 18: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

18IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

1���������$ ��%�*���"1���������$ ��%�*���"

• 10GBASE-T may be possible on newly specified improved UTP cable with sufficiently low alien cros s talk

– “Fantasy Cat 6”

• ANEXT is only one part of the overall noise budget– ANEXT must be sufficiently small to permit realizable levels for other

impairments

• ADC quantization noise and sample clock jitter are t he next largest impairments

– Residual NEXT/FEXT/echo/ISI, round off noise, transmit distortion, adaptation noise, background noise, etc. also contribute

Page 19: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

19IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

�1�.�/����������1�.�/���������

• Assuming a cable with sufficiently low ANEXT, analog-to-digital conversion is the next dominant noise source

– Determined by the resolution and timing jitter of th e ADC

– Reduces noise budget available for ANEXT

• Assume:– Quantization noise is AWGN

– Background noise is AWGN

– ANEXT is the only other uncancelled noise source

– 416 MHz baseband PAM

Page 20: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

20IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

�$���%.� �"�� ��!�� �$���%.� �"�� ��!��

• Slicer symbol SNR* = the average PAM-modulated symbo l SNR to achieve SER=10-12

• PAM10 SNR* = 32.21 dB

• MMSE−DFE SNRMMSE = exp{�ln(1+SNR(f))df/B} −1 and the corresponding channel capacity C= �log2(1+SNR(f))df

– Channel SNR(f) is determined by insertion loss, ali en crosstalk, quantization noise (Vpp=2V) and background noise (-155dBm/Hz)

– Target SNRMMSE=SNR*−coding gain+design margin

– Coding gain = 6dB (TCM),

– Design margin should cover the impact of all real-w orld system defects, including:

ü <6dB coding gainü Clock jitterü Uncancelled echo/NEXT/FEXT/ISI

ü Analog non-linearitiesü Analog noiseü Arithmetic noiseü “Other” – system margin

Page 21: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

21IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� � "�������������� � "�������������

12

9

6

12

9

6

Design Margin

(dB)

Limit lineMeasured data

NANA21.130.738.21

19.540.819.523.535.21

17.829.117.818.932.21

11

NANANANA38.21

NANANANA35.21

NANA17.824.132.21

10

Channel Capacity (Gbps)

ANEXT reduction

(dB)

Channel Capacity (Gbps)

ANEXT reduction

(dB)

Target SNRMMSE

(dB)

ADC ENOB (bits)

Page 22: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

22IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

� �� ��� �&� � "���� �� ��� �&� � "���

• Based on unscaled measured data from 100m- 4 connect or Cat 6 channel with

– 30dB ANEXT reduction– −155dBm/Hz background noise

100 200 300 400 500 600 700 800 900 10005

10

15

20

25

30

One−sided BW (MHz)

Shan

non

Capa

city

in G

Bps

Capacity with AWGN and ANEXT with 30dB of ANEXT cancellation

Capacity = 28.80 Gbps @ 800MHz

Page 23: grouper.ieee.orggrouper.ieee.org/groups/802/3/10GBT/public/may03/sallaway_1_0503.pdf · 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 One−sided BW (MHz) Shannon Capacity

23IEEE 802.3 – 10GBT Study Group Interim Meeting

Portsmouth, NH – May 21-22, 2003

�!�"����!���!�"����!��

• 10GBASE-T is not feasible over a large portion of e xisting Cat 5e and Cat 6 cable plants

– ANEXT is the fundamental limit

• A new cable matching Cat 6 performance with suffici ently reducedANEXT could support 10GBASE-T

– 30-35dB ANEXT reduction necessary

– Requires characterization beyond current 250MHz Cat 6 spec

– ENOB > 10 bits for PAM10

• Existing standard Class F cable could support 10GBA SE-T– No further characterization necessary

– ENOB >10 bits for PAM10

• Once the appropriate channel medium is selected, a coded modulation scheme needs to be chosen to optimize pe rformance