202
安安安安安安安安安安安安安安安安安安安 西 安安安安安安安安安安安安安安安安安安安 西 ( ( PENEC PENEC ) ) 安安 安安 PENEC 安安安安安安安 《》 安安安安 第 1 第 第第第第第第

《 电力电子技术 》 电子教案

Embed Size (px)

DESCRIPTION

《 电力电子技术 》 电子教案. 第 1 章 电力电子器件. 第 1 章 电力电子器件. 引言 1.1  电力电子器件概述 1.2  不可控器件 —— 电力二极管 1.3  半控型器件 —— 晶闸管 1.4 典型全控型器件 1.5 其他新型电力电子器件 1.6 电力电子器件的驱动 1.7 电力电子器件的保护 1.8 电力电子器件的串联和并联使用 小结. 引 言. 电子技术的基础 —— 电子器件:晶体管和 集成电路 - PowerPoint PPT Presentation

Citation preview

Page 1: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制作制作

PEN EC

《电力电子技术》电子教案

第 1章 电力电子器件

Page 2: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 2页PEN EC

第 1 章 电力电子器件 引言

1.1 电力电子器件概述

1.2 不可控器件——电力二极管

1.3 半控型器件——晶闸管

1.4 典型全控型器件

1.5 其他新型电力电子器件

1.6 电力电子器件的驱动

1.7 电力电子器件的保护

1.8 电力电子器件的串联和并联使用

小结

Page 3: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 3页PEN EC

引 言 电子技术的基础 —— 电子器件:晶体管和 集成电路 电力电子电路的基础 —— 电力电子器件

本章主要内容:简要概述电力电子器件的概念、特点和分类等 问

题介绍各种常用电力电子器件的工作原理、基本特

性 , 主要参数以及选择和使用中应注意的一些问题

Page 4: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 4页PEN EC

1.1  电力电子器件概述

1.1 电力电子器件概述

1.1.1 电力电子器件的概念和特征

1.1.2 应用电力电子器件的系统组成

1.1.3 电力电子器件的分类

1.1.4 本章内容和学习要点

Page 5: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 5页PEN EC

1.1  电力电子器件概述

1.1.1 电力电子器件的概念和特征

主电路( main power circuit )—— 电气设备或电力系统中,直接承担电能的变换或控制任务的电路

电 力 电 子 器 件 ( power electronic device )——可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件

Page 6: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 6页PEN EC

1.1.1 电力电子器件的概念和特征 广义上电力电子器件可分为电真空器件和半导体

器件两类。两类中,自 20 世纪 50 年代以来,真空管仅

在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器( Mercury Arc Rectifier )、闸流管( Thyratron )等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。

电力半导体器件所采用的主要材料仍然是硅。

Page 7: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 7页PEN EC

1.1.1 电力电子器件的概念和特征

同处理信息的电子器件相比,电力电子器件的一般特征:

(1) 能处理电功率的大小,即承受电压和电流 的能力,是最重要的参数

其处理电功率的能力小至毫瓦级,大至兆瓦级 , 大多都远大于处理信息的电子器件。

Page 8: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 8页PEN EC

1.1.1 电力电子器件的概念和特征 (2) 电力电子器件一般都工作在开关状态

导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定

阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定

电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。

作电路分析时,为简单起见往往用理想开关来代替

Page 9: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 9页PEN EC

1.1.1 电力电子器件的概念和特征 (3) 实用中,电力电子器件往往需要由信息电子电

路来控制。在主电路和控制电路之间,需要一定的中间电路

对控制电路的信号进行放大,这就是电力电子器件的驱动电路。

(4) 为保证不致于因损耗散发的热量导致器件温 度过高而损坏,不仅在器件封装上讲究散热设计,在其工作时一般都要安装散热器。

导通时器件上有一定的通态压降,形成通态损耗

Page 10: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 10页PEN EC

1.1.1 电力电子器件的概念和特征 阻断时器件上有微小的断态漏电流流过,形成断

态损耗 在器件开通或关断的转换过程中产生开通损耗和

关断损耗,总称开关损耗 对某些器件来讲,驱动电路向其注入的功率也是

造成器件发热的原因之一 通常电力电子器件的断态漏电流极小,因而通态

损耗是器件功率损耗的主要成因 器件开关频率较高时,开关损耗会随之增大而可

能成为器件功率损耗的主要因素

Page 11: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 11页PEN EC

1.1.2 应用电力电子器件的系统组成

1.1.2 应用电力电子器件的系统组成 电力电子系统:由控制电路、驱动电路和以电力电

子器件为核心的主电路组成

图1-1 电力电子器件在实际应用中的系统组成

控制电路按系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的通或断,来完成整个系统的功能

Page 12: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 12页PEN EC

1.1.2 应用电力电子器件的系统组成

有的电力电子系统中,还需要有检测电路。广义上往往其和驱动电路等主电路之外的电路都归为控制电路,从而粗略地说电力电子系统是由主电路和控制电路组成的。

主电路中的电压和电流一般都较大,而控制电路的元器件只能承受较小的电压和电流,因此在主电路和控制电路连接的路径上,如驱动电路与主电路的连接处,或者驱动电路与控制信号的连接处,以及主电路与检测电路的连接处,一般需要进行电气隔离,而通过其它手段如光、磁等来传递信号。

Page 13: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 13页PEN EC

1.1.2 应用电力电子器件的系统组成 由于主电路中往往有电压和电流的过冲,而电力电子器

件一般比主电路中普通的元器件要昂贵,但承受过电压和过电流的能力却要差一些,因此,在主电路和控制电路中附加一些保护电路,以保证电力电子器件和整个电力电子系统正常可靠运行,也往往是非常必要的。

器件一般有三个端子(或称极或管角),其中两个联结在主电路中,而第三端被称为控制端(或控制极)。器件通断是通过在其控制端和一个主电路端子之间加一定的信号来控制的,这个主电路端子是驱动电路和主电路的公共端,一般是主电路电流流出器件的端子。

Page 14: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 14页PEN EC

1.1.3 电力电子器件的分类

1.1.3 电力电子器件的分类 按照器件能够被控制电路信号所控制的程

度,分为以下三类:

(1)   半控型器件——通过控制信号可以控制其导通而不能控制其关断晶闸管( Thyristor )及其大部分派生器件器件的关断由其在主电路中承受的电压和电流

决定

Page 15: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 15页PEN EC

1.1.3 电力电子器件的分类

(2)  全控型器件——通过控制信号既可控制其导通又可控制其关断,又称自关断器件绝缘栅双极晶体管( Insulated-Gate Bipolar Tra

nsistor——IGBT )

电力场效应晶体管( Power MOSFET ,简称为电力 MOSFET )

门极可关断晶闸管( Gate-Turn-Off Thyristor — GTO )

Page 16: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 16页PEN EC

1.1.3 电力电子器件的分类(3)   不可控器件——不能用控制信号来控制其通断,

因此也就不需要驱动电路电力二极管( Power Diode ) 只有两个端子,器件的通和断是由其在主电路中

承受的电压和电流决定的 按照驱动电路加在器件控制端和公共端之间信号

的 性质,分为两类:电流驱动型——通过从控制端注入或者抽出电流

来实现导通或者关断的控制电压驱动型——仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制

Page 17: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 17页PEN EC

1.1.3 电力电子器件的分类 电压驱动型器件实际上是通过加在控制端上的电压

在器件的两个主电路端子之间产生可控的电场来改变流过器件的电流大小和通断状态,所以又称为场控器件,或场效应器件

按照器件内部电子和空穴两种载流子参与导电的情况分为三类:单极型器件——由一种载流子参与导电的器件双极型器件——由电子和空穴两种载流子参与

导电的器件复合型器件——由单极型器件和双极型器件集

成混合而成的器件

Page 18: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 18页PEN EC

1.1.4 本章内容和学习要点 介绍各种器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题,然后集中讲述电力电子器件的驱动、保护和串、并联使用这三个问题。

最重要的是掌握其基本特性 掌握电力电子器件的型号命名法,以及其参数和特

性曲线的使用方法,这是在实际中正确应用电力电子器件的两个基本要求

由于电力电子电路的工作特点和具体情况的不同,可能会对与电力电子器件用于同一主电路的其它电路元件,如变压器、电感、电容、电阻等,有不同于普通电路的要求

Page 19: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 19页PEN EC

1.2 不可控器件—电力二极管

1.2 不可控器件——电力二极管

1.2.1 PN结与电力二极管的工作原理

1.2.2 电力二极管的基本特性 1.2.3

电力二极管的主要参数 1.2.4

电力二极管的主要类型

Page 20: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 20页PEN EC

1.2  不可控器件——电力二极管

Power Diode 结构和原理简单,工作可靠,自 20 世纪 50 年代初期就获得应用

快恢复二极管和肖特基二极管,分别 在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位

Page 21: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 21页PEN EC

1.2.1 PN 结与电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管一样 以半导体 PN结为基础 由一个面积较大的 PN结和两端引线以及封装组成的 从外形上看,主要有螺栓型和平板型两种封装

图1-2 电力二极管的外形、结构和电气图形符号 a) 外形 b) 结构 c) 电气图形符号

Page 22: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 22页PEN EC

1.2.1 PN 结与电力二极管的工作原理 N型半导体和 P型半导体结合后构成 PN结。交界处

电子和空穴的浓度差别,造成了各区的多子向另一区的扩散运动,到对方区内成为少子,在界面两侧分别留下了带正、负电荷但不能任意移动的杂质离子。这些不能移动的正、负电荷称为空间电荷。空间电荷建立的电场被称为内电场或自建电场,其方向是阻止扩散运动的,另一方面又吸引对方区内的少子(对本区而言则为多子)向本区运动,即漂移运动。扩散运动和漂移运动既相互联系又是一对矛盾,最终达到动态平衡,正、负空间电荷量达到稳定值,形成了一个稳定的由空间电荷构成的范围,被称为空间电荷区,按所强调的角度不同也被称为耗尽层、阻挡层或势垒区。

Page 23: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 23页PEN EC

1.2.1 PN 结与电力二极管的工作原理

PN 结的正向导通状态 电导调制效应使得 PN结在正向电流较大时压降仍

然很低,维持在 1V左右,所以正向偏置的 PN结表现为低阻态

图1-3 PN结的形成

-。 -。 -。

-。 -。 -。

-。 -。 -。

-。 -。 -。

-。 -。 -。

+· +· +·

+· +· +·+· +· +·

+· +· +·+· +· +·

+-

+-

+-

+-

+-

空间电荷区P型区 N型区

内电场

Page 24: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 24页PEN EC

1.2.1 PN 结与电力二极管的工作原理 PN 结的反向截止状态 PN结的单向导电性 二极管的基本原理就在于 PN结的单向导电性这一

主 要特征 PN 结的反向击穿 有雪崩击穿和齐纳击穿两种形式,可能导致热击穿

PN 结的电容效应: PN结的电荷量随外加电压而变化,呈现电容效应,称 为结电容 CJ ,又称为微分电容。结电容按其产生机制和作用的差别分为势垒电容 CB 和扩散电容 CD

Page 25: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 25页PEN EC

1.2.1 PN 结与电力二极管的工作原理 势垒电容只在外加电压变化时才起作用,外加电压

频率越高,势垒电容作用越明显。势垒电容的大小与 PN结截面积成正比,与阻挡层厚度成反比

而扩散电容仅在正向偏置时起作用。在正向偏置时,当正向电压较低时,势垒电容为主;正向电压较高时,扩散电容为结电容主要成分

结电容影响 PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作,应用时应加以注意。

Page 26: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 26页PEN EC

1.2.1 PN 结与电力二极管的工作原理 造成电力二极管和信息电子电路中的普通二

极管区别的一些因素:

正向导通时要流过很大的电流,其电流密度较大,因而额外载流子的注入水平较高,电导调制效应不能忽略

引线和焊接电阻的压降等都有明显的影响承受的电流变化率 di/dt 较大,因而其引线和器

件自身的电感效应也会有较大影响为了提高反向耐压,其掺杂浓度低也造成正向

压降较大

Page 27: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 27页PEN EC

1.2.2 电力二极管的基本特性

1.2.2 电力二极管的基本特性

图1-4 电力二极管的伏安特性

I

O

IF

U TO U F U

Page 28: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 28页PEN EC

1.2.2 电力二极管的基本特性 1. 静态特性(电力二极管伏安特性图)

主要指其伏安特性 当电力二极管承受的正向电压大到一定值(门槛电

压 UTO ),正向电流才开始明显增加,处于稳定导通状态。与正向电流 IF 对应的电力二极管两端的电压 UF

即为其正向电压降。当电力二极管承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。

2. 动态特性 动态特性——因结电容的存在,三种状态之间的转

换必然有一个过渡过程,此过程中的电压—电流特性是随时间变化的

Page 29: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 29页PEN EC

1.2.2 电力二极管的基本特性 开关特性——反映通态和断态之间的转换过程 关断过程:

须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态

在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲

图 1-5 电力二极管的动态过程波形 a) 正向偏置转换为反向偏置 b) 零偏置转换为正向偏置

b)

U F P

ui

iF

u F

t fr t0

2V

a)

IF

U F

tF t0

t rrtd t f

t1 t2 tU R

U R P

IR P

d iFd t

d iRd t

Page 30: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 30页PEN EC

1.2.2 电力二极管的基本特性

延迟时间: td= t1- t0, 电流下降时间: tf= t2- t1

反向恢复时间: trr= td+ tf

恢复特性的软度:下降时间与延迟时间

的比值 tf /td ,或称恢复系数,用 Sr表示

正向偏置转换为反向偏置 零偏置转换为正向偏置

Page 31: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 31页PEN EC

1.2.2 电力二极管的基本特性 开通过程:

电力二极管的正向压降先出现一个过冲 UFP ,经过一段时间才趋于接近稳态压降的某个值(如 2V )。这一动态过程时间被称为正向恢复时间 tfr 。

电导调制效应起作用需一定的时间来储存大量少子,达到稳态导通前管压降较大

正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越大, UFP越高

Page 32: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 32页PEN EC

1.2.3 电力二极管的主要参数

1. 正向平均电流 IF(AV)

额定电流——在指定的管壳温度(简称壳温,用 TC

表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值正向平均电流是按照电流的发热效应来定义的,

因此使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。

当用在频率较高的场合时,开关损耗造成的发热往往不能忽略

当采用反向漏电流较大的电力二极管时,其断态损耗造成的发热效应也不小

Page 33: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 33页PEN EC

1.2.3 电力二极管的主要参数 2. 正向压降 UF

指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降

有时参数表中也给出在指定温度下流过某一瞬态正向大电流时器件的最大瞬时正向压降

3. 反向重复峰值电压 URRM

指对电力二极管所能重复施加的反向最高峰值电压

通常是其雪崩击穿电压 UB 的 2/3

使用时,往往按照电路中电力二极管可能承受的反向最高峰值电压的两倍来选定

Page 34: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 34页PEN EC

1.2.3 电力二极管的主要参数 4. 最高工作结温 TJM

结温是指管芯 PN结的平均温度,用 TJ表示 最高工作结温是指在 PN结不致损坏的前提下所能承受的

最高平均温度 TJM 通常在 125~175C范围之内

5. 反向恢复时间 trr

trr= td+ tf ,关断过程中,电流降到 0 起到恢复反响阻断能力止的时间

6. 浪涌电流 IFSM

指电力二极管所能承受最大的连续一个或几个工频周期的过电流。

Page 35: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 35页PEN EC

1.2.4 电力二极管的主要类型

1.2.4 电力二极管的主要类型

按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同介绍

在应用时,应根据不同场合的不同要求选择不同类型的电力二极管

性能上的不同是由半导体物理结构和工艺上的差别造成的

Page 36: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 36页PEN EC

1.2.4 电力二极管的主要类型

1. 普通二极管( General Purpose Diode )

又称整流二极管( Rectifier Diode ) 多用于开关频率不高( 1kHz 以下)的整流电路中 其反向恢复时间较长,一般在 5s 以上,这在开关

频率不高时并不重要正向电流定额和反向电压定额可以达到很高,分别

可达数千安和数千伏以上 

Page 37: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 37页PEN EC

1.2.4 电力二极管的主要类型

2. 快恢复二极管( Fast Recovery Diode—— FRD )

恢复过程很短特别是反向恢复过程很短( 5s以下)的二极管,也简称快速二极管

工艺上多采用了掺金措施有的采用 PN结型结构有的采用改进的 PiN结构

Page 38: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 38页PEN EC

1.2.4 电力二极管的主要类型

采用外延型 PiN结构的的快恢复外延二极管( Fast Recovery Epitaxial Diodes——FRED ),其反向恢复时间更短(可低于 50ns ),正向压降也很低( 0.9V左右),但其反向耐压多在 400V 以下

从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在 1

00ns 以下,甚至达到 20~30ns 。

Page 39: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 39页PEN EC

1.2.4 电力二极管的主要类型 3. 肖特基二极管

以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管( Schottky Barrier Diode——SBD ),简称为肖特基二极管

20 世纪 80 年代以来,由于工艺的发展得以在电力电子电路中广泛应用

肖特基二极管的弱点当反向耐压提高时其正向压降也会高得不能满足

要求,因此多用于 200V 以下反向漏电流较大且对温度敏感,因此反向稳态损

耗不能忽略,而且必须更严格地限制其工作温度

Page 40: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 40页PEN EC

1.2.4 电力二极管的主要类型 肖特基二极管的优点

反向恢复时间很短( 10~40ns )正向恢复过程中也不会有明显的电压过冲在反向耐压较低的情况下其正向压降也很

小,明显低于快恢复二极管其开关损耗和正向导通损耗都比快速二极

管还要小,效率高

Page 41: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 41页PEN EC

1.3 半控器件—晶闸管

1.3  半控型器件——晶闸管

1.3.1 晶闸管的结构与工作原理

1.3.2 晶闸管的基本特性

1.3.3 晶闸管的主要参数

1.3.4 晶闸管的派生器件

Page 42: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 42页PEN EC

1.3  半控型器件——晶闸管 晶闸管( Thyristor ):晶体闸流管,可控硅整流器( Silic

on Controlled Rectifier——SCR ) 1956 年美国贝尔实验室( Bell Lab )发明了晶闸管 1957 年美国通用电气公司( GE )开发出第一只晶闸

管产品 1958 年商业化 开辟了电力电子技术迅速发展和广泛应用的崭新时代 20 世纪 80 年代以来,开始被性能更好的全控型器件取

代 能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位

晶闸管往往专指晶闸管的一种基本类型——普通晶闸管广义上讲,晶闸管还包括其许多类型的派生器件

Page 43: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 43页PEN EC

1.3.1 晶闸管的结构与工作原理 外形有螺栓型和平板型两种封装 引出阳极 A 、阴极 K 和门极(控制端) G三个联接端 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联

接且安装方便 平板型封装的晶闸管可由两个散热器将其夹在中间

图 1-6 晶闸管的外形、结构和电气图形符号a) 外形 b) 结构 c) 电气图形符号

AA

G

G K K

b) c)a)

A

G

K

KG

A

P 1

N 1

P 2

N 2

J 1

J 2

J 3

Page 44: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 44页PEN EC

1.3.1 晶闸管的结构与工作原理

图 1-7 晶闸管的双晶体管模型及其工作原理a) 双晶体管模型 b) 工作原理

Ic1=1 IA + ICBO1 ( 1-1 )

Ic2=2 IK + ICBO2 ( 1-2 )

Page 45: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 45页PEN EC

1.3.1 晶闸管的结构与工作原理

IK=IA+IG ( 1-3 ) IA=Ic1+Ic2 ( 1-4 ) 式中 1 和 2 分别是晶体管 V1 和 V2 的共基极电流增益; ICB

O1 和 ICBO2 分别是 V1 和 V2 的共基极漏电流。由以上式( 1-

1 ) ~ ( 1-4 )可得

( 1-5 )

晶体管的特性是:在低发射极电流下 是很小的,而当发射极电流建立起来之后, 迅速增大。

)(1 21

CBO2CBO1G2

A

IIII

Page 46: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 46页PEN EC

1.3.1 晶闸管的结构与工作原理

阻断状态: IG=0 , 1+2 很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和

开通(门极触发):注入触发电流使晶体管的发射极电流增大以致 1+2趋近于 1 的话,流过晶闸管的电流 IA (阳极电流)将趋近于无穷大,实现饱和导通。 IA 实际由外电路决定。

Page 47: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 47页PEN EC

1.3.1 晶闸管的结构与工作原理 其他几种可能导通的情况:

阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率 du/dt 过高结温较高光直接照射硅片,即光触发 光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中之外,其它都因不易控制而难以应用于实践,称为光控晶闸管( Light Triggered Thyristor——LTT )

只有门极触发(包括光触发)是最精确、迅速而可靠的控制手段

Page 48: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 48页PEN EC

1.3.2 晶闸管的基本特性 1. 静态特性

承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通

承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通

晶闸管一旦导通,门极就失去控制作用要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下

Page 49: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 49页PEN EC

1.3.2 晶闸管的基本特性 晶闸管的伏安特性 第 I象限的是正向特性 第 III象限的是反向特性

正向导通

雪崩击穿

O + U A- U A

- IA

IA

IH

IG2 IG1 IG=0

U boU DSM

U DRM

U RRMU RSM

图 1-8 晶闸管的伏安特性IG2>IG1>IG

Page 50: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 50页PEN EC

1.3.2 晶闸管的基本特性 IG=0 时,器件两端施加正向电压,正向阻断状态,只

有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压 Ubo ,则漏电流急剧增大,器件开通

随着门极电流幅值的增大,正向转折电压降低 导通后的晶闸管特性和二极管的正向特性相仿 晶闸管本身的压降很小,在 1V左右 导通期间,如果门极电流为零,并且阳极电流降至接近

于零的某一数值 IH 以下,则晶闸管又回到正向阻断状态。 IH 称为维持电流。(伏安特性图)

Page 51: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 51页PEN EC

1.3.2 晶闸管的基本特性 晶闸管上施加反向电压时,伏安特性类似二极管的反向特性

晶闸管的门极触发电流从门极流入晶闸管,从阴极流出

阴极是晶闸管主电路与控制电路的公共端 门极触发电流也往往是通过触发电路在门极和阴极

之间施加触发电压而产生的 晶闸管的门极和阴极之间是 PN结 J3 ,其伏安特性

称为门极伏安特性。为保证可靠、安全的触发,触发电路所提供的触发电压、电流和功率应限制在可靠触发区。(伏安特性图)

Page 52: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 52页PEN EC

1.3.2 晶闸管的基本特性2. 动态特性

图 1-9 晶闸管的开通和关断过程波形

100%90%

10%

u AK

t

tO

0 td t r

t rr tgrU RRM

IRM

iA

Page 53: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 53页PEN EC

1.3.2 晶闸管的基本特性 1) 开通过程(特性图 )

延迟时间 td :门极电流阶跃时刻开始,到阳极电流上升到稳态值的 10% 的时间

上升时间 tr :阳极电流从 10% 上升到稳态值的90% 所需的时间

开通时间 tgt 以上两者之和,

tgt=td+ tr ( 1-6 ) 普通晶闸管延迟时间为 0.5~1.5s ,上升时间为 0.

5~3s

Page 54: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 54页PEN EC

1.3.2 晶闸管的基本特性 2) 关断过程 反向阻断恢复时间 trr :正向电流降为零到反向恢复电流衰减至接近于零的时间

正向阻断恢复时间 tgr :晶闸管要恢复其对正向电压的阻断能力还需要一段时间 在正向阻断恢复时间内如果重新对晶闸管施加正向

电压,晶闸管会重新正向导通 实际应用中,应对晶闸管施加足够长时间的反向电

压,使晶闸管充分恢复其对正向电压的阻断能力,电路才能可靠工作

关断时间 tq : trr与 tgr 之和,即 tq=trr+tgr ( 1-7) ) 普通晶闸管的关断时间约几百微秒。

Page 55: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 55页PEN EC

1.3.3 晶闸管的主要参数1. 电压定额

1)  断态重复峰值电压 UDRM—— 在门极断路而结温为额定值时,允许重复加在器件上的 正向峰值电压。

2)  反向重复峰值电压 URRM—— 在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。

3)  通态(峰值)电压 UTM——晶闸管通以某一规定倍 数的额定通态平均电流时的瞬态峰值电压。

通常取晶闸管的 UDRM 和 URRM 中较小的标值作为该器件的额定电压。选用时,额定电压要留有一定裕量 , 一般取额定电压为正常工作时晶闸管所承受峰值电压 2~3倍

Page 56: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 56页PEN EC

1.3.3 晶闸管的主要参数 2. 电流定额 1)   通态平均电流 IT(AV)

额定电流 -----

晶闸管在环境温度为 40C 和规定的冷却状态 下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。

使用时应按实际电流与通态平均电流有效值相等的原则来选取晶闸管

应留一定的裕量,一般取 1.5~2倍

Page 57: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 57页PEN EC

1.3.3 晶闸管的主要参数 2)  维持电流 IH

—— 使晶闸管维持导通所必需的最小电流 一般为几十到几百毫安,与结温有关,结温越高,则

IH越小 3)  擎住电流 IL

—— 晶闸管刚从断态转入通态并移除触发信 号后, 能维持导通所需的最小电流

对同一晶闸管来说,通常 IL约为 IH 的 2~4倍 4) 浪涌电流 ITSM

—— 指由于电路异常情况引起的并使结温超过 额定结温的不重复性最大正向过载电流

Page 58: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 58页PEN EC

1.3.3 晶闸管的主要参数 3. 动态参数 除开通时间 tgt 和关断时间 tq 外,还有:

(1)     断态电压临界上升率 du/dt 指在额定结温和门极开路的情况下,不导致晶闸 管从断态到通态转换的外加电压最大上升率

在阻断的晶闸管两端施加的电压具有正向的上升率时,相当于一个电容的 J2结会有充电电流流过,被称为位移电流。此电流流经 J3结时,起到类似门极触发电流的作用。如果电压上升率过大,使充电电流足够大,就会使晶闸管误导通

Page 59: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 59页PEN EC

1.3.3 晶闸管的主要参数

(2)     通态电流临界上升率 di/dt

—— 指在规定条件下,晶闸管能承受而 无有害影响的最大通态电流上升率

如果电流上升太快,则晶闸管刚一开通,便会有很大的电流集中在门极附近的小区域内,从而造成局部过热而使晶闸管损坏

Page 60: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 60页PEN EC

1.3.4 晶闸管的派生器件1. 快速晶闸管( Fast Switching Thyristor——FST)

包括所有专为快速应用而设计的晶闸管,有快速晶闸管和高频晶闸管

管芯结构和制造工艺进行了改进,开关时间以及du/dt 和 di/dt耐量都有明显改善

普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管 10s左右

高频晶闸管的不足在于其电压和电流定额都不易做高

由于工作频率较高,选择通态平均电流时不能忽略其开关损耗的发热效应

Page 61: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 61页PEN EC

1.3.4 晶闸管的派生器件

2. 双向晶闸管( Triode AC Switch——TRIAC或 Bidirectional triode thyristor )

图 1-10 双向晶闸管的电气图形符号和伏安特性a) 电气图形符号 b) 伏安特性

Page 62: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 62页PEN EC

1.3.4 晶闸管的派生器件 可认为是一对反并联联接的普通晶闸管的集成 有两个主电极 T1 和 T2 ,一个门极 G 正反两方向均可触发导通,所以双向晶闸管在

第I和第 III象限有对称的伏安特性 与一对反并联晶闸管相比是经济的,且控制电

路简单,在交流调压电路、固态继电器( Solid State Relay——SSR )和交流电机调速等领域应用较多

通常用在交流电路中,因此不用平均值而用有效值来表示其额定电流值。

Page 63: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 63页PEN EC

1.3.4 晶闸管的派生器件3. 逆导晶闸管( Reverse Conducting Thyristor——RCT ) 将晶闸管反并联一个二极管制作在同一管芯上的功率集成器

件 具有正向压降小、关断时间短、高温特性好、额定结温高等优点

逆导晶闸管的额定电流有两个,一个是晶闸管电流,一个是反并联二极管的电流

图 1-11 逆导晶闸管的电气图形符号和伏安特性a) 电气图形符号 b) 伏安特性

b)a)

UO

I

KG

A

IG=0

Page 64: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 64页PEN EC

1.3.4 晶闸管的派生器件

4. 光控晶闸管( Light Triggered Thyristor——LTT )

图 1-12 光控晶闸管的电气图形符号和伏安特性a) 电气图形符号 b) 伏安特性

光强度强 弱

b)

A

G

K

a)

O U AK

IA

Page 65: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 65页PEN EC

1.3.4 晶闸管的派生器件

又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管

小功率光控晶闸管只有阳极和阴极两个端子 大功率光控晶闸管则还带有光缆,光缆上装有作

为触发光源的发光二极管或半导体激光器 光触发保证了主电路与控制电路之间的绝缘,且

可避免电磁干扰的影响,因此目前在高压大功率的场合,如高压直流输电和高压核聚变装置中,占据重要的地位

Page 66: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 66页PEN EC

1.4 典型全控型器件

1.4 典型全控型器件 1.4.1 门极可关断晶闸管 1.4.2 电力晶体管 1.4.3 电力场效应晶体管 1.4.4 绝缘栅双极晶体管

Page 67: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 67页PEN EC

1.4 典型全控型器件

门极可关断晶闸管——在晶闸管问世后不久出现

20 世纪 80 年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合——高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入了一个崭新时代

典型代表——门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管

Page 68: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 68页PEN EC

1.4.1 门极可关断晶闸管

门极可关断晶闸管( Gate-Turn-Off Thyristor —

GTO )晶闸管的一种派生器件可以通过在门极施加负的脉冲电流使其关断GTO 的电压、电流容量较大,与普通晶闸管接

近,因而在兆瓦级以上的大功率场合仍有较多的应用

Page 69: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 69页PEN EC

1.4.1 门极可关断晶闸管 1. GTO 的结构和工作原理

结构:与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门极

和普通晶闸管的不同: GTO 是一种多元的功率集成器件,内部包含数十个甚至数百个共阳极的小 GTO 元,这些 GTO 元的阴极和门极则在器件内部并联在一起

图 1-13 GTO 的内部结构和电气图形符号 a) 各单元的阴极、门极间隔排列的图形 b) 并联单元结构断面示意图 c) 电气图形符号

Page 70: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 70页PEN EC

1.4.1 门极可关断晶闸管 工作原理:

与普通晶闸管一样,可以用图 1-7 所示的双晶体管模型来分析

1+2=1 是器件临界导通的条件。当 1+2>1 时,两个等效晶体管过饱和而使器件导通;当 1+2<1时,不能维持饱和导通而关断

图 1-7 晶闸管的双晶体管模型及其工作原理

Page 71: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 71页PEN EC

1.4.1 门极可关断晶闸管 GTO 能够通过门极关断的原因是其与普通晶闸管有如下区别: ( 1 )设计 2 较大,使晶体管 V2 控制灵敏,易于

GTO 关断 ( 2 )导通时 1+2更接近 1 ( 1.05 ,普通晶闸管

1+21.15 ) 导通时饱和不深,接近临界饱和,有利门极 控制

关断,但导通时管压降增大 ( 3 )多元集成结构使 GTO 元阴极面积很小,门、阴极间距大为缩短,使得 P2基区横向电阻很小,能从门极抽出较大电流

Page 72: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 72页PEN EC

1.4.1 门极可关断晶闸管 导通过程与普通晶闸管一样,只是导通时饱和程 度较浅   关断过程:强烈正反馈——门极加负脉冲即从门 极抽出电流,则 Ib2减小,使 IK 和 Ic2减小, Ic2 的减

小又使 IA 和 Ic1减小,又进一步减小 V2 的基极电流

当 IA 和 IK 的减小使 1+2<1 时,器件退出饱和而关断

多元集成结构还使 GTO 比普通晶闸管开通过程快,承受 di/dt 能力强

Page 73: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 73页PEN EC

1.4.1 门极可关断晶闸管 2. GTO 的动态特性

开通过程:与普通晶闸管类似,需经过延迟时间 t

d 和上升时间 tr

      

图 1-14 GTO 的开通和关断过程电流波形

Page 74: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 74页PEN EC

1.4.1 门极可关断晶闸管 关断过程:与普通晶闸管有所不同

抽取饱和导通时储存的大量载流子——储存时间 ts ,使等效晶体管退出饱和

等效晶体管从饱和区退至放大区,阳极电流逐渐减小——下降时间 tf

残存载流子复合——尾部时间 tt

通常 tf 比 ts 小得多,而 tt 比 ts 要长 门极负脉冲电流幅值越大,前沿越陡,抽走储存载

流子的速度越快, ts越短 门极负脉冲的后沿缓慢衰减,在 tt阶段仍保持适当负

电压,则可缩短尾部时间

Page 75: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 75页PEN EC

1.4.1 门极可关断晶闸管 3. GTO 的主要参数 (显示图) 许多参数和普通晶闸管相应的参数意义相同,

以下只介绍意义不同的参数1) 开通时间 ton 延迟时间与上升时间之和。延迟时间一般约 1~2s ,上升时间则随通态阳极电流值的增大而增大

2) 关断时间 toff 一般指储存时间和下降时间之和,不包括尾部时间。 GTO 的储存时间随阳极电流的增大而增大,下降时间一般小于 2s

不少 GTO 都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联

Page 76: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 76页PEN EC

1.4.1 门极可关断晶闸管 3)   最大可关断阳极电流 IATO GTO额定电流 4)  电流关断增益 off 最大可关断阳极电流与门极负脉 冲电流最大值 IGM 之比称为电流关断增益

( 1-8 )

off 一般很小,只有 5左右,这是 GTO 的一个主要缺点。1000A 的 GTO 关断时门极负脉冲电流峰值要 200A

GM

ATOoff I

I

Page 77: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 77页PEN EC

1.4.2 电力晶体管 术语用法:

电力晶体管( Giant Transistor——GTR ,直译为巨型晶体管)

耐高电压、大电流的双极结型晶体管( Bipolar Junction Transistor——BJT ),英文有时候也称为 Power BJT

在电力电子技术的范围内, GTR与 BJT 这两个名称等效

   应用 20 世纪 80 年代以来,在中、小功率范围内取代晶

闸管,但目前又大多被 IGBT 和电力 MOSFET 取代

Page 78: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 78页PEN EC

1.4.2 电力晶体管

1. GTR 的结构和工作原理 ( 图 -15 )与普通的双极结型晶体管基本原理是一样的主要特性是耐压高、电流大、开关特性好通常采用至少由两个晶体管按达林顿接法组成

的单元结构采用集成电路工艺将许多这种单元并联而成

Page 79: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 79页PEN EC

1.4.2 电力晶体管

图 1-15 GTR 的结构、电气图形符号和内部载流子的流动 a) 内部结构断面示意图 b) 电气图形符号 c) 内部载流子的流动

一般采用共发射极接法,集电极电流 ic与基极电流 ib

之比为 ( 1-9 )

——GTR 的电流放大系数,反映了基极电流对集电极电流的控制能力

b

c

i

i

Page 80: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 80页PEN EC

1.4.2 电力晶体管

当考虑到集电极和发射极间的漏电流 Iceo 时,ic 和 ib 的关系为

ic= ib +Iceo ( 1-10 ) 产品说明书中通常给直流电流增益 hFE—— 在直流工作情况下集电极电流与基极电流之比。一般可认为 hF

E

单管 GTR 的 值比小功率的晶体管小得多,通常为 10左右,采用达林顿接法可有效增大电流增益

Page 81: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 81页PEN EC

1.4.2 电力晶体管 2. GTR 的基本特性 (1)  静态特性

共发射极接法时的典型输出特性:截止区、放大区和饱和区

在电力电子电路中 GTR 工作在开关状态,即工作在截止区或饱和区

在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区

图 1-16 共发射极接法时 GTR 的输出特性

Page 82: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 82页PEN EC

1.4.2 电力晶体管

(1)  动态特性

图 1-17 GTR 的开通和关断过程电流波形

开通过程 延迟时间 td 和上升时间 tr ,二者之和为开通时间 ton

td 主要是由发射结势垒电容和集电结势垒电容充电产生的。增大 ib 的幅值并增大 dib/dt ,可缩短延迟时间,同时可缩短上升时间,从而加快开通过程

Page 83: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 83页PEN EC

1.4.2 电力晶体管 关断过程(显示图)

储存时间 ts 和下降时间 tf ,二者之和为关断时间 toff

ts 是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分

减小导通时的饱和深度以减小储存的载流子,或者增大基极抽取负电流 Ib2 的幅值和负偏压,可缩短储存时间,从而加快关断速度

负面作用是会使集电极和发射极间的饱和导通压降 U

ces 增加,从而增大通态损耗 GTR 的开关时间在几微秒以内,比晶闸管和 GTO 都

短很多

Page 84: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 84页PEN EC

1.4.2 电力晶体管 3. GTR 的主要参数 前已述及:电流放大倍数、直流电流增益 hFE 、

集射极间漏电流 Iceo 、集射极间饱和压降 Uces 、 开通时间 ton 和关断时间 toff ( 此外还有 ) :

1)   最高工作电压 GTR 上电压超过规定值时会发生击穿击穿电压不仅和晶体管本身特性有关,还与外电

路接法有关 BUcbo> BUcex> BUces> BUcer> Buceo

实际使用时,为确保安全,最高工作电压要比 BU

ceo低得多

Page 85: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 85页PEN EC

1.4.2 电力晶体管 2)  集电极最大允许电流 IcM

通常规定为 hFE下降到规定值的 1/2~1/3 时所对应的 Ic

实际使用时要留有裕量,只能用到 IcM 的一半或稍多一点

3) 集电极最大耗散功率 PcM

最高工作温度下允许的耗散功率

产品说明书中给 PcM 时同时给出壳温 TC ,间接表示了最高工作温度

Page 86: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 86页PEN EC

1.4.2 电力晶体管 4. GTR 的二次击穿现象与安全工作区 一次击穿

集电极电压升高至击穿电压时, Ic迅速增大,出现雪崩击穿

只要 Ic 不超过限度, GTR 一般不会损坏,工作特性也不变

二次击穿 一次击穿发生时 Ic 增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降

常常立即导致器件的永久损坏,或者工作特性明显衰变

Page 87: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 87页PEN EC

1.4.2 电力晶体管

安全工作区( Safe Operating Area——SOA ) 最高电压 UceM 、集电极最大电流 IcM 、最大耗散功率 Pc

M 、二次击穿临界线限定

图 1-18 GTR 的安全工作区

SOA

O

Ic

IcMP SB

P cM

U ceU ceM

Page 88: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 88页PEN EC

1.4.3 电力场效应晶体管 也分为结型和绝缘栅型(类似小功率 Field Effect Transistor——FET ) 但通常主要指绝缘栅型中的 MOS 型( Metal Oxide

Semiconductor FET ) 简称电力 MOSFET ( Power MOSFET ) 结型电力场效应晶体管一般称作静电感应晶体管

( Static Induction Transistor——SIT )   特点——用栅极电压来控制漏极电流

驱动电路简单,需要的驱动功率小 开关速度快,工作频率高 热稳定性优于 GTR 电流容量小,耐压低,一般只适用于功率不超过 10kW 的

电力电子装置

Page 89: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 89页PEN EC

1.4.3 电力场效应晶体管

1. 电力 MOSFET 的结构和工作原理 电力 MOSFET 的种类

  按导电沟道可分为 P 沟道和 N 沟道 耗尽型——当栅极电压为零时漏源极之间就存

在导电沟道增强型——对于 N ( P )沟道器件,栅极电压

大于(小于)零时才存在导电沟道   电力 MOSFET 主要是 N 沟道增强型

Page 90: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 90页PEN EC

1.4.3 电力场效应晶体管 电力 MOSFET 的结构(显示图)

导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管

导电机理与小功率 MOS 管相同,但结构上有较大区别

电力 MOSFET 的多元集成结构国际整流器公司( International Rectifier )的 H

EXFET 采用了六边形单元西门子公司( Siemens )的 SIPMOSFET 采用了正方形单元

摩托罗拉公司( Motorola )的 TMOS 采用了矩形单元按“品”字形排列

Page 91: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 91页PEN EC

1.4.3 电力场效应晶体管 小功率 MOS 管是横向导电器件 电力 MOSFET 大都采用垂直导电结构,又称为 VMOSFET ( Vertical MOSFET )——大大提高了 MOSFET 器件的耐压和耐电流能力 按垂直导电结构的差异,又分为利用 V型槽实现垂 直导电的 VVMOSFET 和具有垂直导电双扩散 MO

结构的 VDMOSFET ( Vertical Double-diffused

MOSFET ) 这里主要以 VDMOS 器件为例进行讨论

Page 92: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 92页PEN EC

1.4.3 电力场效应晶体管 电力 MOSFET 的工作原理

图 1-19 电力 MOSFET 的结构和电气图形符号a) 内部结构断面示意图 b) 电气图形符号

截止:漏源极间加正电源,栅源极间电压为零 P基区与 N漂移区之间形成的 PN结 J1反偏,漏

源极之间无电流流过

Page 93: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 93页PEN EC

1.4.3 电力场效应晶体管

导电:在栅源极间加正电压 UGS

栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面 P区中的空穴推开,而将 P区中的少子——电子吸引到栅极下面的 P区表面

当 UGS 大于 UT (开启电压或阈值电压)时,栅极下 P区表面的电子浓度将超过空穴浓度,使 P型半导体反型成 N型而成为反型层,该反型层形成N沟道而使 PN结 J1消失,漏极和源极导电

Page 94: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 94页PEN EC

1.4.3 电力场效应晶体管2. 电力 MOSFET 的基本特性 1)    静态特性

图 1-20 电力 MOSFET 的转移特性和输出特性 a) 转移特性 b) 输出特性

漏极电流 ID 和栅源间电压 UGS 的关系称为 MOSFET的转移特性

ID 较大时, ID 与 UGS 的关系近似线性,曲线的斜率定义为跨导 Gfs

Page 95: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 95页PEN EC

1.4.3 电力场效应晶体管 MOSFET 的漏极伏安特性(输出特性):

截止区(对应于 GTR 的截止区)饱和区(对应于 GTR 的放大区)非饱和区(对应于 GTR 的饱和区)电力 MOSFET 工作在开关状态,即在截止区和非饱和区之间来回转换

电力 MOSFET 漏源极之间有寄生二极管,漏源极间加反向电压时器件导通

电力 MOSFET 的通态电阻具有正温度系数,对器件并联时的均流有利

Page 96: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 96页PEN EC

1.4.3 电力场效应晶体管 2)    动态特性

图 1-21 电力 MOSFET 的开关过程a) 测试电路 b) 开关过程波形

up—脉冲信号源, Rs— 信号源内阻, RG—栅极电阻,RL—负载电阻, RF— 检测漏极电流

      

Page 97: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 97页PEN EC

1.4.3 电力场效应晶体管 开通过程(开关过程图) 开通延迟时间 td(on) —— up 前沿时刻到 uGS=UT并开始出现 iD

的时刻间的时间段 上升时间 tr—— uGS 从 uT 上升到MOSFET 进入非饱和区的栅压 UGSP 的时间段 iD稳态值由漏极电源电压 UE 和漏极负载电阻决定 UGSP 的大小和 iD 的稳态值有关 UGS达到 UGSP后,在 up 作用下继续升高直至达到稳态,但 iD 已不变

  开通时间 ton—— 开通延迟时间与上升时间之和

Page 98: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 98页PEN EC

1.4.3 电力场效应晶体管     开通过程   

关断延迟时间 td(off) ——up下降到零起, Cin 通过 Rs

和 RG 放电, uGS 按指数曲线下降到 UGSP 时, iD 开始减小止的时间段

下降时间 tf—— uGS 从 UGSP继续下降起, iD减小,到 uGS<UT 时沟道消失, iD下降到零为止的时间段

关断时间 toff—— 关断延迟时间和下降时间之和

图 1-21 电力 MOSFET 的开关过程a) 测试电路 b) 开关过程波形

up—脉冲信号源, Rs— 信号源内阻,RG—栅极电阻, RL—负载电阻,

RF— 检测漏极电流

Page 99: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 99页PEN EC

1.4.3 电力场效应晶体管 MOSFET 的开关速度

MOSFET 的开关速度和 Cin充放电有很大关系使用者无法降低 Cin ,但可降低驱动电路内阻 Rs

减小时间常数,加快开关速度MOSFET 只靠多子导电,不存在少子储存效应,

因而关断过程非常迅速开关时间在 10~100ns 之间,工作频率可达 100k

Hz 以上,是主要电力电子器件中最高的场控器件,静态时几乎不需输入电流。但在开关

过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。

Page 100: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 100页PEN EC

1.4.3 电力场效应晶体管 3. 电力 MOSFET 的主要参数 跨导 Gfs 、开启电压 UT 以及 td(on) 、 tr 、 td(off) 和 tf 之还有

1)   漏极电压 UDS 电力 MOSFET 电压定额 2)  漏极直流电流 ID 和漏极脉冲电流幅值 IDM 电力 MOSFET 电流定额 3) 栅源电压 UGS 栅源之间的绝缘层很薄, UGS>20V将导致绝缘层击穿 4)  极间电容

    极间电容 CGS 、 CGD 和 CDS

  厂家提供:漏源极短路时的输入电容 Ciss 、共 源极输出电容 Coss 和反向转移电容 Crss

Page 101: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 101页PEN EC

1.4.3 电力场效应晶体管Ciss= CGS+ CGD ( 1-14 )

Crss= CGD ( 1-15 )Coss= CDS+ CGD ( 1-16 )

输入电容可近似用 Ciss 代替 这些电容都是非线性的      漏源间的耐压、漏极最大允许电流和最大耗散功 率决定了电力 MOSFET 的安全工作区      一般来说,电力 MOSFET 不存在二次击穿问题,

这是它的一大优点       实际使用中仍应注意留适当的裕量

Page 102: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 102页PEN EC

1.4.4 绝缘栅双极晶体管

   GTR 和 GTO 的特点——双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱 动功率大,驱动电路复杂

     MOSFET 的优点——单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单

两类器件取长补短结合而成的复合器件— Bi-M

OS 器件

Page 103: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 103页PEN EC

1.4.4 绝缘栅双极晶体管

    绝缘栅双极晶体管( Insulated-gate Bipolar

Transistor— —IGBT 或 IGT )  GTR 和 MOSFET复合,结合二者的优点,

具有好的特性  1986 年投入市场后,取代了 GTR 和一部分 MOSF

ET 的市场 , 中小功率电力电子设备的主导器件  继续提高电压和电流容量,以期再取代 GTO 的地

Page 104: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 104页PEN EC

1.4.4 绝缘栅双极晶体管

1. IGBT 的结构和工作原理三端器件:栅极 G 、集电极 C 和发射极 E

图 1-22 IGBT 的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号

Page 105: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 105页PEN EC

1.4.4 绝缘栅双极晶体管 IGBT 的结构(显示图)

图 1-22a—N沟道 VDMOSFET与 GTR 组合—— N沟道 IGBT ( N-IGBT )

  IGBT 比 VDMOSFET 多一层 P+ 注入区,形成了一个大面积的 P+N结 J1

—— 使 IGBT 导通时由 P+ 注入区向 N基区发射少子,从而对漂移区电导率进行调制,使得 IGBT具有很强的通流能力

简化等效电路表明, IGBT 是 GTR与MOSFET 组成的达林顿结构,一个由 MOSFET 驱动的厚基区 PNP晶体管

  RN 为晶体管基区内的调制电阻

Page 106: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 106页PEN EC

1.4.4 绝缘栅双极晶体管

IGBT 的原理  驱动原理与电力 MOSFET基本相同,场控器

件,通断由栅射极电压 uGE 决定   导通:, uGE 大于开启电压 UGE(th) 时, MOSFET内形成沟道,为晶体管提供基极电流, IGBT 导通

  导通压降:电导调制效应使电阻 RN减小,使通态压降小

  关断:栅射极间施加反压或不加信号时, MOSFET内的沟道消失,晶体管的基极电流被切断, IGBT 关断

Page 107: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 107页PEN EC

1.4.4 绝缘栅双极晶体管

2. IGBT 的基本特性 1) IGBT 的静态特性

图 1-23 IGBT 的转移特性和输出特性a) 转移特性 b) 输出特性

Page 108: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 108页PEN EC

1.4.4 绝缘栅双极晶体管 转移特性—— IC与 UGE 间的关系,与 MOSFET 转移特

性类似 开启电压 UGE(th)——IGBT 能实现电导调制而导通的

最低栅射电压 UGE(th) 随温度升高而略有下降,在 +25C 时, UGE(th)

的值一般为 2~6V

输出特性(伏安特性)——以 UGE 为参考变量时, IC与UCE 间的关系 分为三个区域:正向阻断区、有源区和饱和区。分别与 GTR 的截止区、放大区和饱和区相对应

uCE<0 时, IGBT 为反向阻断工作状态

Page 109: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 109页PEN EC

1.4.4 绝缘栅双极晶体管

2)   IGBT 的动态特性

图 1-24 IGBT 的开关过程

Page 110: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 110页PEN EC

1.4.4 绝缘栅双极晶体管   IGBT 的开通过程       与MOSFET 的相似,因为开通

过程中 IGBT 在大部分时间作为 MOSFET运行 开通延迟时间 td(on) —— 从 uGE 上升至其幅值 10% 的

时刻,到 iC 上升至 10% ICM²      

电流上升时间 tr ——iC 从 10%ICM 上升至 90%ICM 所需时间

  开通时间 ton—— 开通延迟时间与电流上升时间之和 uCE 的下降过程分为 tfv1 和 tfv2 两段。 tfv1——IGBT 中

MOSFET 单独工作的电压下降过程; tfv2——MOSFE

T 和 PNP晶体管同时工作的电压下降过程 (开关过程图)

Page 111: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 111页PEN EC

1.4.4 绝缘栅双极晶体管

IGBT 的关断过程(开关过程图)

关断延迟时间 td(off) —— 从 uGE后沿下降到其幅

值 90% 的时刻起,到 iC下降至 90%ICM

  电流下降时间—— iC 从 90%ICM下降至 10%ICM

关断时间 toff—— 关断延迟时间与电流下降之和

电流下降时间又可分为 tfi1 和 tfi2 两段。 tfi1——IGBT内部的 MOSFET 的关断过程, iC下降较快; tfi2——IGB

T内部的 PNP晶体管的关断过程, iC下降较慢   

Page 112: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 112页PEN EC

1.4.4 绝缘栅双极晶体管 IGBT 中双极型 PNP晶体管的存在,虽然带来了

电导调制效应的好处,但也引入了少子储存现象,因而 IGBT 的开关速度低于电力 MOSFET

IGBT 的击穿电压、通态压降和关断时间也是需要折衷的参数

3. IGBT 的主要参数 1) 最大集射极间电压 UCES 由内部 PNP晶体管

的击穿电压确定 2)  最大集电极电流 包括额定直流电流 IC 和 1ms脉宽最大电流 ICP

3) 最大集电极功耗 PCM 正常工作温度下允许的最大功耗

Page 113: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 113页PEN EC

1.4.4 绝缘栅双极晶体管 IGBT 的特性和参数特点

(1)   开关速度高,开关损耗小。在电压 1000V 以上 时,开关损耗只有 GTR 的 1/10 ,与电力 MOSFET 相当(2)  相同电压和电流定额时,安全工作区比 GTR 大,且具有耐脉冲电流冲击能力(3)   通态压降比 VDMOSFET低,特别是在电流较 大的区域(4)   输入阻抗高,输入特性与MOSFET 类似(5) 与MOSFET 和 GTR 相比,耐压和通流能力还可 以进一步提高,同时保持开关频率高的特点

Page 114: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 114页PEN EC

1.4.4 绝缘栅双极晶体管

4. IGBT 的擎住效应和安全工作区     

寄生晶闸管——由一个 N-PN+晶体管和作为主开关器件的P+N-P晶体管组成 正偏安全工作区( FBSOA )——最大集电极电流、最

大集射极间电压和最大集电极功耗确定 反向偏置安全工作区( RBSOA )——最大集电极电流、

最大集射极间电压和最大允许电压上升率 duCE/dt确定

图 1-22 IGBT 的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号

Page 115: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 115页PEN EC

1.4.4 绝缘栅双极晶体管 擎住效应或自锁效应: NPN晶体管基极与发射极

之间存在体区短路电阻, P 形体区的横向空穴电流会在该电阻上产生压降,相当于对 J3结施加正偏压,一旦 J3 开通,栅极就会失去对集电极电流的控制作用,电流失控 动态擎住效应比静态擎住效应所允许的集电极电

流小擎住效应曾限制 IGBT 电流容量提高, 20 世纪 9

0 年代中后期开始逐渐解决 IGBT 往往与反并联的快速二极管封装在一起,制

成模块,成为逆导器件

Page 116: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 116页PEN EC

1.5 其他新型电力电子器件

1.5 其他新型电力电子器件 1.5.1 MOS 控制晶闸管 MCT

1.5.2 静电感应晶体管 SIT

1.5.3 静电感应晶闸管 SITH

1.5.4 集成门极换流晶闸管 IGCT

1.5.5 功率模块与功率集成电路

Page 117: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 117页PEN EC

1.5.1 MOS 控制晶闸管 MCT MCT ( MOS Controlled Thyristor )—— MOSFET与晶闸管的复合

MCT结合了二者的优点: MOSFET 的高输入阻抗、低驱动功率、快速的开关过程 晶闸管的高电压大电流、低导通压降 一个 MCT 器件由数以万计的 MCT 元组成,每个元的组

成为:一个 PNPN晶闸管,一个控制该晶闸管开通的 MOSFET ,和一个控制该晶闸管关断的 MOSFET

MCT曾一度被认为是一种最有发展前途的电力电子器件。因此, 20 世纪 80 年代以来一度成为研究的热点。但经过十多年的努力,其关键技术问题没有大的突破,电压和电流容量都远未达到预期的数值,未能投入实际应用

Page 118: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 118页PEN EC

1.5.2 静电感应晶体管 SIT SIT ( Static Induction Transistor )—— 1970 年,结型场效应晶体管

小功率 SIT 器件的横向导电结构改为垂直导电结构,即可制成大功率的 SIT 器件

多子导电的器件,工作频率与电力 MOSFET 相当,甚至更高,功率容量更大,因而适用于高频大功率场合

在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用

缺点:栅极不加信号时导通,加负偏压时关断,称为正常导通

型器件,使用不太方便 通态电阻较大,通态损耗也大,因而还未在大多数电力

电子设备中得到广泛应用

Page 119: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 119页PEN EC

1.5.3 静电感应晶闸管 SITH SITH ( Static Induction Thyristor )—— 1972 年,在

SIT 的漏极层上附加一层与漏极层导电类型不同的发射极层而得到,因其工作原理与 SIT 类似,门极和阳极电压均能通过电场控制阳极电流,因此 SITH又被称为场控晶闸管( Field Controlled Thyristor——FCT )

  比 SIT 多了一个具有少子注入功能的 PN结, SITH 是两种载流子导电的双极型器件,具有电导调制效应,通态压降低、通流能力强。其很多特性与 GTO 类似,但开关速度比 GTO 高得多,是大容量的快速器件

 SITH 一般也是正常导通型,但也有正常关断型。此外,其制造工艺比 GTO复杂得多,电流关断增益较小,因而其应用范围还有待拓展

Page 120: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 120页PEN EC

1.5.4 集成门极换流晶闸管 IGCT

IGCT ( Integrated Gate-Commutated Thyristor ),也称 GCT ( Gate-Commutated Thyristor ), 20 世纪 90 年代后期出现,结合了 IGBT与 GTO 的优点,容量与 GTO 相当,开关速度快 10倍,且可省去 GTO庞大而复杂的缓冲电路,只不过所需的驱动功率仍很大

目前正在与 IGBT 等新型器件激烈竞争,试图最终取代 GTO 在大功率场合的位置

Page 121: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 121页PEN EC

1.5.5 功率模块与功率集成电路

20 世纪 80 年代中后期开始,模块化趋势,将多个器件封装在一个模块中,称为功率模块

可缩小装置体积,降低成本,提高可靠性

对工作频率高的电路,可大大减小线路电感,从而简化对保护和缓冲电路的要求

将器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上,称为功率 集成电路( Power Integrated Circuit——PIC )

Page 122: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 122页PEN EC

1.5.5 功率模块与功率集成电路

类似功率集成电路的还有许多名称,但实际上各有侧重 高压集成电路( High Voltage IC——HVIC )一般

指横向高压器件与逻辑或模拟控制电路的单片集成智能功率集成电路( Smart Power IC——SPIC )一

般指纵向功率器件与逻辑或模拟控制电路的单片集成

智能 功 率 模块( Intelligent Power Module——IPM )则专指 IGBT及其辅助器件与其保护和驱动电路的单片集成,也称智能 IGBT ( Intelligent IGBT )

Page 123: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 123页PEN EC

1.5.5 功率模块与功率集成电路

功率集成电路的主要技术难点:高低压电路之间的绝缘问题以及温升和散热的处理

以前功率集成电路的开发和研究主要在中小功率应用场合

智能功率模块在一定程度上回避了上述两个难点 ,最近几年获得了迅速发展

功率集成电路实现了电能和信息的集成,成为机电 一体化的理想接口

Page 124: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 124页PEN EC

1.6 电力电子器件器件的驱动

1.6 电力电子器件器件的驱动

1.6.1 电力电子器件驱动电路概述

1.6.2 晶闸管的触发电路

1.6.3 典型全控型器件的驱动电路

Page 125: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 125页PEN EC

1.6.1 电力电子器件驱动电路概述 驱动电路——主电路与控制电路之间的接口

使电力电子器件工作在较理想的开关状态,缩短开关时间,减小开关损耗,对装置的运行效率、可靠性和安全性都有重要的意义

对器件或整个装置的一些保护措施也往往设在驱动电路中,或通过驱动电路实现

驱动电路的基本任务: 将信息电子电路传来的信号按控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号

  对半控型器件只需提供开通控制信号 对全控型器件则既要提供开通控制信号,又要提供关断

控制信号

Page 126: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 126页PEN EC

1.6.1 电力电子器件驱动电路概述 驱动电路还要提供控制电路与主电路之间的电

气隔离环节,一般采用光隔离或磁隔离  光隔离一般采用光耦合器   磁隔离的元件通常是脉冲变压器

图 1-25 光耦合器的类型及接法a) 普通型 b) 高速型 c) 高传输比型

E

R

E

R

E

R

a) b ) c)

U in

U o u t

R 1

ICID

R 1R 1

Page 127: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 127页PEN EC

1.6.1 电力电子器件驱动电路概述

电流驱动型和电压驱动型     具体形式可为分立元件的,但目前的趋势是采用 专用集成驱动电路

双列直插式集成电路及将光耦隔离电路也集成在内的混合集成电路

为达到参数最佳配合,首选所用器件生产厂家专门开发的集成驱动电路

Page 128: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 128页PEN EC

1.6.2 晶闸管的触发电路 作用:产生符合要求的门极触发脉冲,保证晶闸管

在需要的时刻由阻断转为导通 广义上讲,还包括对其触发时刻进行控制的相位控

制电路 晶闸管触发电路应满足下列要求:

触发脉冲的宽度应保证晶闸管可靠导通(结合擎住电流的概念)

触发脉冲应有足够的幅度不超过门极电压、电流和功率定额,且在可靠

触发区域之内应有良好的抗干扰性能、温度稳定性及与主电

路的电气隔离

Page 129: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 129页PEN EC

1.6.2 晶闸管的触发电路

      

V1 、 V2构成脉冲放大环节脉冲变压器 TM 和附属电路构成脉冲输出环节  V1 、 V2 导通时,通过脉冲变压器向晶闸管的门极和阴极之间输出触发脉冲

VD1 和 R3 是为了 V1 、 V2 由导通变为截止时脉冲变压器 TM释放其储存的能量而设

图 1-26 理想的晶闸管触发脉冲电流波形t1~t2脉冲前沿上升时间( <1s )  t1~t3强脉宽度IM强脉冲幅值( 3IGT~5IGT )t1~t4脉冲宽度   I脉冲平顶幅值( 1.5IGT~2IGT )

图 1-27 常见的晶闸管触发电路

I

t

IM

t1 t2 t3 t4

T M

R 1

R 2

R 3

V 1

V 2

VD

1

VD

3

V D 2 R 4+ E 1 + E 2

Page 130: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 130页PEN EC

1.6.3 典型全控型器件的驱动电路

1. 电流驱动型器件的驱动电路 GTO

GTO 的开通控制与普通晶闸管相似,但对脉冲前沿的幅值和陡度要求高,且一般需在整个导通期间施加正门极电流

  使 GTO 关断需施加负门极电流,对其幅值和陡度的要求更高,关断后还应在门阴极施加约 5V 的负偏压以提高抗干扰能力

O t

tO

u G

iG

图 1-28 推荐的 GTO门极电压电流波形

Page 131: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 131页PEN EC

1.6.3 典型全控型器件的驱动电路

驱动电路通常包括开通驱动电路、关断驱动电路和门极反偏电路三部分,可分为脉冲变压器耦合式和直接耦合式两种类型

直接耦合式驱动电路可避免电路内部的相互干扰和寄生振荡,可得到较陡的脉冲前沿,因此目前应用较广,但其功耗大,效率较低

典型的直接耦合式 GTO 驱动电路:

Page 132: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 132页PEN EC

1.6.3 典型全控型器件的驱动电路 二极管 VD1 和电容 C1提供 +5V 电压

VD2 、 VD3 、 C2 、 C3构成倍压整 流电路提供 +15V 电压

VD4 和电容 C4提供 -15V 电压

V1 开通时,输出正强脉冲

V2 开通时输出正脉冲平顶部分

V2 关断而 V3 开通时输出负脉冲

V3 关断后 R3 和 R4提供门极负偏压

50kH z50V

G TO

N 1

N 2

N 3

C 1 C 3

C 4

C 2 R 1

R 2

R 3

R 4

V 1

V 3

V 2

LV D 1

VD2

V D 3

V D 4

图 1-29 典型的直接耦合式 GTO 驱动电路

Page 133: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 133页PEN EC

1.6.3 典型全控型器件的驱动电路

GTR 开通驱动电流应使 GTR 处于准饱和导通状态,使之

不进入放大区和深饱和区 关断 GTR 时,施加一定的负基极电流有利于减小关

断时间和关断损耗,关断后同样应在基射极之间施加一定幅值( 6V左右)的负偏压

图 1-30 理想的 GTR基极驱动电流波形

tO

ib

Page 134: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 134页PEN EC

1.6.3 典型全控型器件的驱动电路 GTR 的一种驱动电路,包括电气隔离和晶体管放大电路两部分

二极管 VD2 和电位补偿二极管 VD3构成贝克箝位电路,也即一种抗饱和电路,负载较轻时,如 V5 发射极电流全注入 V ,会使 V 过饱和。有了贝克箝位电路,当V 过饱和使得集电极电位低于基极电位时, VD2 会自动导通,使多余的驱动电流流入集电极,维持 Ubc≈0 。

C2 为加速开通过程的电容。开通时, R5被 C2 短路。可实现驱动电流的过冲,并增加前沿的陡度,加快开通

图 1-31 GTR 的一种驱动电路

 VD 1

A

V

VS0V

+10V+15V

V 1

VD 2

VD 3

VD 4

V 3

V 2

V 4

V 5

V 6

R 1

R 2

R 3R 4

R 5

C 1

C 2

驱动 GTR 的集成驱动电路: THOMSON公司的UAA4002 和三菱公司的M57215BL

Page 135: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 135页PEN EC

1.6.3 典型全控型器件的驱动电路 2. 电压驱动型器件的驱动电路

栅源间、栅射间有数千皮法的电容,为快速建立驱动电压,要求驱动电路输出电阻小

使 MOSFET 开通的驱动电压一般 10~15V ,使IGBT 开通的驱动电压一般 15 ~ 20V

关断时施加一定幅值的负驱动电压(一般取 -5 ~ -15V )有利于减小关断时间和关断损耗

在栅极串入一只低值电阻(数十欧左右)可以减小寄生振荡,该电阻阻值应随被驱动器件电流额定值的增大而减小

Page 136: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 136页PEN EC

1.6.3 典型全控型器件的驱动电路 电力 MOSFET 的一种驱动电路:

电气隔离和晶体管放大电路两部分无输入信号时高速放大器 A输出负电平 ,V3 导通输出负驱动电压

当有输入信号时 A输出正电平,V2 导通输出正驱动电压

专为驱动电力 MOSFET 而设计的混合集成电路有三菱公司的 M57918L ,其输入信号电流幅值为 16mA ,输出最大脉冲电流为 +2A 和 -3A ,输出驱动电压 +15V 和 -10V 。

A+-

MOSFET

20V

20V

u i

R 1 R 3R 5

R 4R 2

R G

V 1V 2

V 3C 1

- V CC

+ V CC

图 1-32 电力 MOSFET 的

一种驱动电路

Page 137: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 137页PEN EC

1.6.3 典型全控型器件的驱动电路

IGBT 的驱动        多采用专用的混合集成驱动器      

图 1-33 M57962L型 IGBT 驱动器的原理和接线图

13故障指示

检测端

V CC

接口电路

门极关断电路

定时及复位电路

检测电路

4

1

5

8

6

14

13

u o

V EE

81

5

4

6- 10 V

+ 15 V

30 V+5 V

M 57962 L

14

u i1

快恢复t rr ¡Ü0.2 s

4.7k

3.1

100 F

100 F

Page 138: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 138页PEN EC

1.6.3 典型全控型器件的驱动电路 常用的有三菱公司的 M579 系列(如 M57962L 和 M57

959L )和富士公司的 EXB 系列(如 EXB840 、 EXB841 、 EXB850 和 EXB851 )

内部具有退饱和检测和保护环节,当发生过电流时能快速响应但慢速关断 IGBT ,并向外部电路给出故障信号

M57962L输出的正驱动电压均为 +15V左右,负驱动电压为 -10V 。

13故障指示

检测端

V CC

接口电路

门极关断电路

定时及复位电路

检测电路

4

1

5

8

6

14

13

u o

V EE

81

5

4

6- 10 V

+ 15 V

30 V+5 V

M 57962 L

14

u i1

快恢复t rr ¡Ü0.2 s

4.7k

3.1

100 F

100 F

图 1-33 M57962L 型 IGBT 驱动器的原理和接线图

Page 139: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 139页PEN EC

1.7 电力电子器件器件的保护

1.7 电力电子器件器件的保护

1.7.1 过电压的产生及过电压保护

1.7.2 过电流保护

1.7.3 缓冲电路( Snubber Circuit )

Page 140: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 140页PEN EC

1.7 电力电子器件器件的保护1.7.1 过电压的产生及过电压保护 电力电子装置可能的过电压—外因过电压和内因过电压

外因过电压主要来自雷击和系统中的操作过程等外因 (1)   操作过电压:由分闸、合闸等开关操作引起 (2)   雷击过电压:由雷击引起 内因过电压主要来自电力电子装置内部器件的开关过程 (1)   换相过电压:晶闸管或与全控型器件反并联的二极

管在换相结束后不能立刻恢复阻断,因而有较大的反向电流流过,当恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压

(2)   关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器件两端感应出的过电压

Page 141: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 141页PEN EC

1.7.1 过电压的产生及过电压保护 过电压保护措施

图 1-34 过电压抑制措施及配置位置

F避雷器 D 变压器静电屏蔽层  C静电感应过电压抑制电容RC1阀侧浪涌过电压抑制用 RC 电路  RC2阀侧浪涌过电压抑制用反向阻断式 RC 电路

RV 压敏电阻过电压抑制器  RC3阀器件换相过电压抑制用 RC 电路RC4 直流侧 RC抑制电路  RCD阀器件关断过电压抑制用 RCD 电路

电力电子装置可视具体情况只采用其中的几种 其中 RC3 和 RCD 为抑制内因过电压的措施,属于缓冲电 路范畴

Page 142: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 142页PEN EC

1.7.1 过电压的产生及过电压保护 外因过电压抑制措施中, RC 过电压抑制电路最为常见,典型联结方式见图 1-35

RC 过电压抑制电路可接于供电变压器的两侧(供电网一侧称网侧,电力电子电路一侧称阀侧),或电力电子电路的直流侧

图 1-35 RC 过电压抑制电路联结方式a) 单相  b) 三相

      

Page 143: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 143页PEN EC

1.7.1 过电压的产生及过电压保护 大容量电力电子装置可采用图 1-36 所示的反向阻

断式 RC 电路

图 1-36 反向阻断式过电压抑制用 RC 电路 保护电路参数计算可参考相关工程手册 其他措施:用雪崩二极管、金属氧化物压敏电阻、硒堆和转折二极管( BOD )等非线性元器件限制或吸收过电压

Page 144: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 144页PEN EC

1.7.2 过电流保护   过电流——过载和短路两种情况 常用措施(图 1-37 ) 快速熔断器、直流快速断路器和过电流继电器 同时采用几种过电流保护措施,提高可靠性和合理性 电子电路作为第一保护措施,快熔仅作为短路时的部分区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作

图 1-37 过电流保护措施及配置位置

Page 145: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 145页PEN EC

1.7.2 过电流保护 快速熔断器 电力电子装置中最有效、应用最广的一种过电流保护措施

选择快熔时应考虑:

(1) 电压等级根据熔断后快熔实际承受的电压确定

(2) 电流容量按其在主电路中的接入方式和主电路联结形式确定

(3)快熔的 I 2t值应小于被保护器件的允许 I 2t值

Page 146: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 146页PEN EC

1.7.2 过电流保护(4) 为保证熔体在正常过载情况下不熔化,应考虑其时间

电流特性 快熔对器件的保护方式:全保护和短路保护两种

全保护:过载、短路均由快熔进行保护,适用于小功率装置或器件裕度较大的场合

短路保护方式:快熔只在短路电流较大的区域起保护作用

对重要的且易发生短路的晶闸管设备,或全控型器件(很难用快熔保护),需采用电子电路进行过电流保护

常在全控型器件的驱动电路中设置过电流保护环节,响应最快

Page 147: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 147页PEN EC

1.7.3 缓冲电路( Snubber Circuit )   缓冲电路(吸收电路):抑制器件的内因过电压、

du/dt 、过电流和 di/dt ,减小器件的开关损耗关断缓冲电路( du/dt抑制电路)——吸收器件的

关断过电压和换相过电压,抑制 du/dt ,减小关断损耗

开通缓冲电路( di/dt抑制电路)——抑制器件开通时的电流过冲和 di/dt ,减小器件的开通损耗

将关断缓冲电路和开通缓冲电路结合在一起——复合缓冲电路

其他分类法:耗能式缓冲电路和馈能式缓冲电路(无损吸收电路)

通常将缓冲电路专指关断缓冲电路,将开通缓冲电路叫做 di/dt抑制电路

Page 148: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 148页PEN EC

1.7.3 缓冲电路( Snubber Circuit ) 缓冲电路作用分析 无缓冲电路: V 开通时电流迅速上升, di/dt

很大 关断时 du/dt 很大,并出现很

高的过电压 有缓冲电路 V 开通时: Cs 通过 Rs 向 V 放

电,使 iC先上一个台阶,以后因有 Li , iC 上升速度减慢

V 关断时:负载电流通过 VDs

向 Cs 分流,减轻了 V 的负担,抑制了 du/dt 和过电压

图 1-38  di/dt抑制电路和充放电型 RCD缓冲电路及波形a) 电路 b) 波形

Page 149: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 149页PEN EC

1.7.3 缓冲电路( Snubber Circuit ) 关断时的负载曲线 无缓冲电路时: uCE迅速升, L感应电压使 VD 通,负载线从

A移到B ,之后 iC才下降到漏电流的大小,负载线随之移到C 有缓冲电路时: Cs 分流使 iC 在 uCE 开始上升时就下降,负载线经过 D到达C

负载线ADC 安全,且经过的都是小电流或小电压区域,关断损耗大大降低

图 1-39 关断时的负载线

Page 150: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 150页PEN EC

1.7.3 缓冲电路( Snubber Circuit ) 充放电型 RCD缓冲电路(图 1-38 ),适用于中等容量

的场合 图 1-40示出另两种,其中 RC缓冲电路主要用于小容量

器件,而放电阻止型 RCD缓冲电路用于中或大容量器件

图 1-40 另外两种常用的缓冲电路a)  RC吸收电路  b) 放电阻止型 RCD吸收电路

Page 151: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 151页PEN EC

1.7.3 缓冲电路( Snubber Circuit )   缓冲电路中的元件选取及其他注意事项

Cs 和 Rs 的取值可实验确定或参考工程手册VDs必须选用快恢复二极管,额定电流不小于主电

路器件的 1/10尽量减小线路电感,且选用内部电感小的吸收电容中小容量场合,若线路电感较小,可只在直流侧设

一个 du/dt抑制电路   对 IGBT 甚至可以仅并联一个吸收电容晶闸管在实用中一般只承受换相过电压,没有关断

过电压,关断时也没有较大的 du/dt ,一般采用 RC吸收电路即可

Page 152: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 152页PEN EC

1.8 电力电子器件器件的串联和并联使用

1.8.1 晶闸管的串联

1.8.2 晶闸管的并联

1.8.3 电力 MOSFET 和 IGBT 并联运行的特

Page 153: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 153页PEN EC

1.8.1 晶闸管的串联 目的:当晶闸管额定电压小于要求时,可以串联 问题:理想串联希望器件分压相等,但因特性差异,使

器件电压分配不均匀 静态不均压:串联的器件流过的漏电流相同,但因静

态伏安特性的分散性,各器件分压不等 承受电压高的器件首先达到转折电压而导通,使另一

个器件承担全部电压也导通,失去控制作用 反向时,可能使其中一个器件先反向击穿,另一个随

之击穿

1.8 电力电子器件器件的串联和并联使用

Page 154: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 154页PEN EC

1.8.1 晶闸管的串联 静态均压措施 选用参数和特性尽量一致的器件 采用电阻均压, Rp 的阻值应比器件阻断时的正、反向电阻小得多

图 1-41 晶闸管的串联a) 伏安特性差异  b) 串联均压措施

Page 155: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 155页PEN EC

1.8.1 晶闸管的串联

动态均压措施 动态不均压——由于器件动态参数和特性的差异造成

的不均压 动态均压措施:

选择动态参数和特性尽量一致的器件用 RC并联支路作动态均压采用门极强脉冲触发可以显著减小器件开通时间

上的差异

Page 156: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 156页PEN EC

1.8.2 晶闸管的并联 目的:多个器件并联来承担较大的电流 问题:会分别因静态和动态特性参数的差异

而电流分配不均匀   均流措施

挑选特性参数尽量一致的器件采用均流电抗器用门极强脉冲触发也有助于动态均流当需要同时串联和并联晶闸管时,通常采用先串后并的方法联接

Page 157: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 157页PEN EC

1.8.3 电力 MOSFET 和 IGBT 并联运行的特点

电力 MOSFET并联运行的特点Ron具有正温度系数,具有电流自动均衡的能力,容易并联

注意选用 Ron 、 UT 、 Gfs 和 Ciss尽量相近的器件并联电路走线和布局应尽量对称可在源极电路中串入小电感 , 起到均流电抗器的作

用   IGBT并联运行的特点

在 1/2 或 1/3额定电流以下的区段,通态压降具有负的温度系数

在以上的区段则具有正温度系数并联使用时也具有电流的自动均衡能力,易于并联 ■

Page 158: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 158页PEN EC

本章小结主要内容

全面介绍各种主要电力电子器件的基本结构、工作原理、基本特性和主要参数等

集中讨论电力电子器件的驱动、保护和串、并联使用

电力电子器件类型归纳单极型:电力 MOSFET

和 SIT

图 1-42 电力电子器件分类“树”

Page 159: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 159页PEN EC

本章小结 双极型:电力二极管、晶闸管、 GTO 、 GTR 和 SITH 复合型: IGBT 和 MCT 电压驱动型:单极型器件和复合型器件,双极型器件中

的 SITH

特点:输入阻抗高,所需驱动功率小,驱动电路 简单,工作频率高 电流驱动型:双极型器件中除 SITH 外 特点:具有电导调制效应,因而通态压降低,导

通损耗小,但工作频率较低,所需驱动功 率大 , 驱动电路较复杂

Page 160: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 160页PEN EC

本章小结   当前的格局 :

IGBT 为主体,第四代产品,制造水平 2.5kV / 1.8kA ,兆瓦以下首选。不断发展,与 IGCT 等新器件激烈竞争,试图在兆瓦以上取代 GTO

GTO :兆瓦以上首选,制造水平 6kV / 6kA

光控晶闸管:功率更大场合, 8kV / 3.5kA ,装置最高达 300MVA ,容量最大

电力 MOSFET :长足进步,中小功率领域特别是低压,地位牢固

Page 161: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 161页PEN EC

图 1-1 电力电子器件在实际应用中的系统组成

返回 ■

Page 162: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 162页PEN EC

图 1-2 电力二极管的外形、结构和电气图形符号

外形

结构

电气图形符号

返回

Page 163: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 163页PEN EC

图 1-3 PN 结的形成

-。 -。 -。

-。 -。 -。

-。 -。 -。

-。 -。 -。

-。 -。 -。

+· +· +·

+· +· +·+· +· +·

+· +· +·+· +· +·

+-

+-

+-

+-

+-

空间电荷区P型区 N型区

内电场

返回

Page 164: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 164页PEN EC

图 1-4 电力二极管的伏安特性

I

O

IF

U TO U F U

返回

Page 165: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 165页PEN EC

图 1-5 电力二极管的动态过程波形

正向偏置转换为反向偏置 零偏置转换为正向偏置

返回

Page 166: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 166页PEN EC

图 1-6 晶闸管的外形、结构和电气图形符号

外形 结构 电气图

形符号 返回

Page 167: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 167页PEN EC

图 1-7 晶闸管的双晶体管模型及其工作原理

双晶体管模型

工作原理 返回

Page 168: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 168页PEN EC

图 1-8 晶闸管的伏安特性

正向导通

雪崩击穿

O + U A- U A

- IA

IA

IH

IG2 IG1 IG=0

U bo

U DSM

U DRM

U RRMU RSM

IG2>IG1>IG

返回

Page 169: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 169页PEN EC

图 1-9 晶闸管的开通和关断过程波形

100%90%

10%

u AK

t

tO

0 td t r

t rr tgrU RRM

IRM

iA

返回

Page 170: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 170页PEN EC

图 1-10 双向晶闸管的电气图形符号和伏安特性

电气图形符号 伏安特

性 返回

Page 171: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 171页PEN EC

图 1-11 逆导晶闸管的电气图形符号和伏安特性

b)a)

UO

I

KG

A

IG=0

电气图形符号 伏安特性 返回

Page 172: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 172页PEN EC

图 1-12 光控晶闸管的电气图形符号和伏安特性

光强度强 弱

b)

A

G

K

a)

O U AK

IA

电气图形符号 伏安特性

返回

Page 173: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 173页PEN EC

图 1-13 GTO 的内部结构和电气图形符号

c) 电气图形符号a) 各单元的阴极、门极间隔排列的图形 b) 并联单元结构断面示意图

返回

Page 174: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 174页PEN EC

图 1-14 GTO 的开通和关断过程电流波形

返回

Page 175: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 175页PEN EC

图 1-15 GTR 的结构、电气图形符号和内部载流子的流动

内部结构断面示意图

电气图形

符号 内部载流子的流动

返回

Page 176: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 176页PEN EC

图 1-16 共发射极接法时 GTR 的输出特性

返回

Page 177: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 177页PEN EC

图 1-17 GTR 的开通和关断过程电流波形

返回

Page 178: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 178页PEN EC

图 1-18 GTR 的安全工作区

S O A

O

Ic

Ic MP S B

P c M

U c eU c eM

返回

Page 179: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 179页PEN EC

图 1-19 电力 MOSFET 的结构和电气图形符号

内部结构断面示意图

电气图形

符号 返回

Page 180: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 180页PEN EC

图 1-20 电力 MOSFET 的转移特性和输出特性

转移特性

输出特性

返回

Page 181: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 181页PEN EC

图 1-21 电力 MOSFET 的开关过程

测试电路

开关过程波形up— 脉冲信号源, Rs— 信号源内阻,

返回 RG— 栅极电阻, RL—负载电阻, RF—检测漏极电

Page 182: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 182页PEN EC

图 1-22 IGBT 的结构、简化等效电路和电气图形符号

返回

内部结构断面示意图

简化等效电路

电气图形符号

Page 183: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 183页PEN EC

图 1-23 IGBT 的转移特性和输出特性

转移特性 输出特

性 返回

Page 184: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 184页PEN EC

图 1-24 IGBT 的开关过程

返回

Page 185: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 185页PEN EC

图 1-25 光耦合器的类型及接法

普通型 高速型 高传输比型

返回

Page 186: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 186页PEN EC

图 1-26  理想的晶闸管触发脉冲电流波形

I

t

IM

t1 t2 t3 t4

t1~t2脉冲前沿上升时间( <1s )  t1~t3强脉冲宽度 IM强脉冲幅值( 3IGT~5IGT ) t1~t4脉冲宽度  I脉冲平顶幅值( 1.5IGT~2IGT )

返回

Page 187: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 187页PEN EC

图 1-27 常见的晶闸管触发电路

T M

R 1

R 2

R 3

V 1

V 2

VD 1

VD 3

V D 2 R 4+ E 1 + E 2

返回

Page 188: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 188页PEN EC

图 1-28  推荐的 GTO 门极电压电流波形

返回

O t

tO

u G

iG

Page 189: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 189页PEN EC

图 1-29  典型的直接耦合式 GTO 驱动电路

50 kHz50 V

GTO

N 1

N 2

N 3

C 1 C 3

C 4

C 2 R 1

R 2

R 3

R 4

V 1

V 3

V 2

LVD 1

VD

2

VD 3

VD 4

返回

Page 190: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 190页PEN EC

图 1-30  理想的 GTR 基极驱动电流波形

tO

ib

返回

Page 191: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 191页PEN EC

图 1-31   GTR 的一种驱动电路

VD 1

A

V

VS0V

+10V+15V

V 1

VD 2

VD 3

VD 4

V 3

V 2

V 4

V 5

V 6

R 1

R 2

R 3R 4

R 5

C 1

C 2

返回

Page 192: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 192页PEN EC

图 1-32  电力 MOSFET 的一种驱动电路

A+-

MOSFET

20V

20V

u i

R 1 R 3R 5

R 4R 2

R G

V 1V 2

V 3C 1

- V CC

+ V CC

返回

Page 193: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 193页PEN EC

图 1-33   M57962L 型 IGBT 驱动器的原理和接线图

13故障指示

检测端

V CC

接口电路

门极关断电路

定时及复位电路

检测电路

4

1

5

8

6

14

13

u o

V EE

81

5

4

6- 10 V

+ 15 V

30 V+5 V

M 57962 L

14

u i1

快恢复t rr ¡Ü0.2 s

4.7k

3.1

100 F

100 F

返回

Page 194: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 194页PEN EC

图 1-34  过电压抑制措施及配置位置

F避雷器  D 变压器静电屏蔽层  C静电感应过电压抑制电容RC1阀侧浪涌过电压抑制用 RC 电路 RC2阀侧浪涌过电压抑制用反向阻断式 RC 电路RV 压敏电阻过电压抑制器  RC3阀器件换相过电压抑制用 RC 电路RC4 直流侧 RC抑制电路  RCD阀器件关断过电压抑制用 RCD 电路

返回

Page 195: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 195页PEN EC

图 1-35   RC 过电压抑制电路联结方式

单相三相 返回

Page 196: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 196页PEN EC

图 1-36  反向阻断式过电压抑制用 RC电路

返回

Page 197: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 197页PEN EC

图 1-37  过电流保护措施及配置位置

返回

Page 198: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 198页PEN EC

图 1-38   di/dt 抑制电路和充放电型 RCD 缓冲电路及波形

电路

波形

返回

Page 199: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 199页PEN EC

图 1-39  关断时的负载线

返回

Page 200: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 200页PEN EC

图 1-40  另外两种常用的缓冲电路

放电阻止型吸收电路

RC吸收电路

返回

Page 201: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 201页PEN EC

图 1-41  晶闸管的串联

伏安特性差异 串联均压措施

返回

Page 202: 《 电力电子技术 》 电子教案

西安交通大学电力电子与新能源技术研究中心西安交通大学电力电子与新能源技术研究中心 ((PENECPENEC)) 制制作作

第 1 章第 202页PEN EC

图 1-42  电力电子器件分类“树”