32
3. Liquid RW: 0-10% solids, slurry Basic principles*: volume + cost reduction, minimise generation, reduce volume, optimise treatment + conditioning Treatment: transfer, concentration, transformation; entire system, options Forms: decontamination + regenerative solutions, contaminated + scintillation fluids, condensates, drains, laundry, evaporator bottoms .. Sources: mines, reactors, reprocessing, .. Reactors: low + high purity RW, chemical, detergents, miscellaneous, primary + secondary (PWR) Reprocessing: 5 m 3 /t HLW, tanks, 60 m 3 /t MLW Institutions: scintillation, H-3, C-14 Wet waste: 10 - 99% solids, collection, pretreatment, dewatering, solidification collection: 60 days, decay, surge capacity pretreatment: remote handling dewatering: decantation, filtration, centrifugation, 25% cement WW technologies: disposal <I % free water, absorption (organic and inorganic sorbents), sludge handling: filtration cake 84%, centrifuging, freezing + thawing no RI release Management of LRW in NPP: regulatory limits NRC processing systems: filtration (F), ion exchange (IE), evaporation (E), condensate polishing (CP) High purity: F + IE + recycle, Low purity: <0.01 mho/m: F

20052012.pdf - CANDU Owners Group Library/20052012.pdf · exchange resins, off-gas:zeolites-Ag Crystallization*: ... natural/forced circulation, heater: ... 25flm, 42 kg/cm2 ph 2-14),

Embed Size (px)

Citation preview

3. Liquid RW: 0-10% solids, slurryBasic principles*: volume + cost reduction, minimisegeneration, reduce volume, optimise treatment +conditioningTreatment: transfer, concentration, transformation; entiresystem, optionsForms: decontamination + regenerative solutions,contaminated + scintillation fluids, condensates, drains,laundry, evaporator bottoms..Sources: mines, reactors, reprocessing, ..Reactors: low + high purity RW, chemical, detergents,miscellaneous, primary + secondary (PWR)Reprocessing: 5 m3/t HLW, tanks, 60 m3/t MLWInstitutions: scintillation, H-3, C-14Wet waste: 10 - 99% solids, collection, pretreatment,dewatering, solidificationcollection: 60 days, decay, surge capacitypretreatment: remote handlingdewatering: decantation, filtration, centrifugation, 25%cementWW technologies: disposal <I% free water, absorption(organic and inorganic sorbents), sludge handling: filtrationcake 84%, centrifuging, freezing + thawing no RI releaseManagement of LRW in NPP: regulatory limits NRCprocessing systems: filtration (F), ion exchange (IE),evaporation (E), condensate polishing (CP)High purity: F + IE + recycle, Low purity: <0.01 mho/m: F

Iodine100100100

All*100001001000

+ IE, >0.01 mho/m: E + CP by IE. Chemical: E + ? CP byIE. Detergent: F. Miscellaneous: E + CP. Secondarysystem: F + IEVolume reduction: disposal + transportation costDrying: injection fluidized bed 300-500 C, 190 l/h,conveyor, hopper, off-gas: gas/solid separator + venturiscrubber + REPA + C. Drying and incineration: ionexchange resins, off-gas: zeolites-AgCrystallization*: 120 l/min, 50% saltEvaporation: >0.01 mho/m, different compositionsEvaporator = heater + body + deentrainment device +condenser + pumpsTypes**: natural/forced circulation, heater: external/internalhorizontal/vertical, thin filmDecontamination factors (feed/distillate) used by NRC forevaporators.Type ofwasteNo Detergent WasteDetergent Waste IncludedBoric Acid* except iodineSeparation factors (bottom!distillate) :100 k - 1 M fornonvolatilesIon exchange*: <0.01 mho/m, polymers, styrenedivinylbenzene, fonns: R+, OR-

•harac ens ICS 0 lOn-exc ange resms:

Type FG R RL- C-eq/l pH MO% T-F

SA S H2SO4 95 1.5-2 1-14 250

SB QAl NaOH 80 0.5-1 1-14 140

SB QA2 NaOH 80 0.5-1 1-14 100

WE amme NH40 95 1.5- 1-7 200s H 2.5

Ch t·r f"

SA = Strong acid, SB = Strong base, WE = Weak base, FG= Functional Groups (8 = Sulfonic, QA = Quaternaryammonium (types 1 or 2», R = Regenerant, RL =Regeneration level, C = Capacity, MOT = Maximumoperating temperature.Properties: strong exchanger: + efficiency (dissociation ofsalts), - regeneration; weak exchanger: slow, $, shorter life,pH +. T sensitive; nuclear grade leachable impurities,uniform size; selectivity, particle size: 0.4 - 0.7 mm, flowrate 1 - 40 l/s/m2

, pressure drop 0.1 - 2 kg/cm2, swelling

Mixed vs separate bed: regeneration, separation, mixing

CS,Rb2

Decontamination factors «0.1 mCi/l):System Cations AnionsMixed Bed (Li3BO)) 10 10Mixed Bed (H+OH-):Powdex (Any System) 10(10)* 10(10) 2(10)Radwaste 100(10) 100(10) 2(10)Cation Bed 100(10) 1(1) 10(10)Anion Bed 1(1) 100(10) 1(1)Filtration: cake + filtrate, septum (membrane)Types: PWR: disposable (cartridge*) BWR: precoat*,metallic: sintered metal (5 flm) or wire mesh (8 flm),clogging backflushing cleaningprecoat F: diatomaceous earth, efficiencyflatbed F: belt, screen, e = 95% (> 1 flm), oilcentrifugal F*: horizontal filter discs,P< 4.2 kg/cm2

, spin, e> 95% (> 1 flm), Europeetched disk F: pressure vessel, 5.3 kg/cm2

, backflushing with .compressed ait - slurry to evaporator, e = 100% (> 5 flm),no precoat - waste volumeReverse osmosis: osmotic pressure*, membranes : celluloseacetate, compaction, hydrolysis, fouling;types*: spiral wound, hollow-fibre (aromatic polyimide, D= 100 flm, walls: 25flm, 42 kg/cm2 ph 2-14), tubular(external/internal 100/40 kg/cm2

)

Ultrafiltration: colloids. Centrifugation*: basket/helical,plugging. System design: tankage, flexibility, sampling,maintenance, operator exposure

Tanks: bottoms, man way opening 60 cm, shielding, steel,SS, fibreglass; Evaporators: segregated + shieldedcomponents; Resin handling, operation: planning,redundancy, cross-connections, trainingSolidification of HLW*: aims: monolith, resistance,leaching, $;Vitrification in France*: 1958, 1963: 15 kg glass blocks1000 Ci/l, pot technique 1969-73 induction heating 1180 CMarcoule 12 t ofglass 3000 Ci/l OF = 1E+6 liquids 1E+11gas; continuous process: flexible, $, 1972 calciner 300 Cglass frit; La Haque 800 m3/y glass 100 W/IVitrification in US: PNL, 1150 C, off-gas C-14 Ru 1-129removed, canisters air-cooled vaults, storage tanks*, in situvitrification*: PNL, 3.5 MWobsidianSolidification of MLW: LLW regulations, free liquid .detection: process control (boundary conditions), detection(inspection)Cement: silicates of Ca,AI,Fe oxides, + lime, magnesia,gypsum - swelling + setting; 25% water, boric acid, 5-10%waste solids; mechanical strength: >15% waste, resins,sludge; +: $ well known available self-shielding no vapoursshelflife strength leachability mixing: in-container/on-line;-: pH sensitive swelling cracking volume dust prematuresettingUrea-formaldehyde*: ~60% solids catalyst(H3P04,NaHS04) polymerization 1 -30 min, curing ­hours, cross-linking evaporator concentrate/UF = 1 - 3, free

P G GF RE GGREGP P FP P FF G FG G* G0.5 0.6-1 >2ML ML ML1.5-2 1-1.3 1-1.5G F WESeldom 0 Never

water release, sludge, resins, Na2S04, paper pulp/woodflourOther polymers: thermoplastics, PE, Vinyl ester styreneAsphalt*: organics, asphaltenes, malthenes, Europe, heating150 C, mixing: thin film evaporator extruder/evaporator*, +:well known, available, compatible, $, no free-standingwater, individual coating, shelf life, leachability, not achemical process; -: flammable, fires, salts, gas formation,melting, mixing, vapoursComparison of cement, urea formaldehyde resin and asphaltComparison Factor Cement Resin AsphaltShelf life of immobilizing agent Long Short LongMix fluidity P G FMixer cleanability P G FChemical tolerances for:Boric acid solutionN~S04 solutionAlkaline solutionDetergent waste solutionOrganic liquidsIon exchange resinsSludge

Volumetric efficiency$Product formProduct density, g/cm3

Water binding strengthResidual free water

Comparison Factor Cement Resin AsphaltMechanical strength G F GProduct stability G LW GCombustibility No Yes YesFreeze/thaw resistance F P GLeach resistance M M HighRE = Reduced efficiency, * = may require pH adjustment,$ = Defmed as the ratio ofthe volume ofradwaste treated tothe volume of fmal product. G = Good, P = Poor, F = Fair,M = Moderate, WE = Water evaporation duringpreparations, LW = loses water, ML = Monolith, 0 =OccasionallyManagement of HLW in the US: reprocessing, nuclearweapons, submarines, underground tanks*: Hanford single­walled 1960 leaks 2000 m3

, Savannah RiverManagement of LLW: segregation by T and formMethods: aqueous: T< 90 d decay + drain, T> 90 d burial;organic: incineration 12% burial 88%.Disposal of LLW: doses to public DEL, operating targetsALARA«DELGround D: US (Hanford, ORNL, SRP) 1.3E+8 m3

, 2.5E+6Ci discharged, soil stratigraphy, texture, ion exchange,monitoring wells, Ru-l06 370 m in 8 y, nitrates 520 m in 8y; salt mines, porous sandstonesSea D: volume, not a drinking water, discharge point,horizontal jet, eddy diffusionReconcentration: absorption adsorption, sea bed

JJ.?Concentration factors , Derived Working Limits (D-nCi/l)for seawater, ICRP Pennissible Daily Intakes (PDI-Ci) andsafe release rates (R-Ci/y) for fish (F) and white mussel:WM) .

RI Fe-59 Zn-65 Cs- Sr-90 H-3 Pu-137 239

F 5300 5200 74 1 1 5

WM 27000 13000 14 1 1 290

D 48 140 2400 880 26E+6 380

R 150 450 7500 2800 8E+7 1200

PDI 130 220 44 0.22 6600 11Environmental surveys: extemaVintemal exposurePreliminary discharge: sampling, RI concentrationsDisposal in rivers: dry weather flow, drinking water

liquidwaste

I

collectionsegregation

off-gastreatment

volume I/~======!.J

reductiontt« ..., ':ftWit pure

/ '" lI~~t~!'rr------{

transportinterimstorage

disposal

VACUUNSYSTEM

COOLINGWATER VENT

CONDENSER SUBCOOlER

ENTRAINMENTSEPARATOR

CRYSTALLIZER

~FEED

STEAMCONDENSATESTEAM

PRODUCTRECIRCULATION

PUMP

COOLINGWATER

TO TOFEED DISTILLATE FEEDTANK TANK

TODISTILLAlTANKS

6. LAYOUT OF A CRYSTALLIZER SYSTEM FOR VOLUME REDUCTION OF L1QIRADWASTE (COURTESY OF GILBERT/COMMONWEALTH COMPANIES' REA[PA., AND HPD CORPORATION, GLEN ELLYN, ILL.)

II0TOII OlllVE - __--

TO' , _..r::~~r-L-lII0TOll IEAIIING

SE'AllATOil

fEED!i'..:.,~~ VA' 011;0:,. OUTLET

HEATINGMEDIUM

"

"..:'

II0TOII •..•·"·,;

,,HUTING •

A Il T · I, ......

~ I•

.' ••;

,;

~ ,~

"

HEATINGMEDIUM

10TTOMlEAlIlNG

'110DUCT OUTLET-----=~~

CUTAWAY VIEW SHOWINGROTOR BLADES

VAPOR ..

DRIVE

VAPOR

iVENT

i

FEED

•DRIPS

LIQUID

STEAM

~•.,

+THICK

LIQUOR

" ., ,

~IG. 5. THIN-FILM EVAPORATOR (HORIZONTAL TYPE). ,---_._----------.....;-----------

FLASHCHAMBER

DEM/STER

<f-STF;AM(CONDENSING .OUTSIDE TUBES I

! I I!i ! !IiII' I I

., I I' . i. I

I. 1 II :I !:,' III', •• I

! ill! ,::,. !II I' I; ,'/. ! I I I

, 'I I' " ' ,:I I. . i I' I •I I I: I. .

IzQ-..4.J:;)Ua:-u

APPROXIMATELIQUID LEVEL-~

~_""' ...............,.,o.n..VENT+4-.~~ 'I I I i

I I" ~I IICUTAWAY VIEW OF I . .' I'SHELL'flNu'TUSE : 1,,;';;!l1 ~HEAT EXCHANGER .' '., .i .Ii, I I'LIOUOR BOILING , ! I II ' .:..INSIDE TUeES---t-~i !I'llil:

DRIPS ,-r- I. i: I

VAPOR

f

+THICI(LIQUOR

3. SHORT·TUBE VERTICAL (CALANDRIA OR STANDARD) EVAPORA'

,

. ...... '.' ..

.'. ..... ~..

..~THICK' LIQUOR

, .. . - . . ...

,M-- NATURAL CIRCULATIONOF UNVAPORIZED LIQUID

" VAPOR

'. ~.. t '.....

ENTRAINMENTSEPARATOR

14-- FLASH CHAMBER":--;.!,

r"~E:::::::~-t-:--IMPINGEMENT BA FFLE___ APPROXIMATE

LIQUID LEVEL

VE NT·.....~-·c:::::

, FEEO---'"

DRIPS ....1---'«:

STEAM--;.,...----....r::(CONDENSING OUTSIDE

TUBES)LIQUID BOILING INSIDE .

TUBES------l

"AWAY VIEW OF-tELL-ANO-TUBE::AT EXC HANGER

~ure 5-5 Natural-circulation~ iisin'g-film; long~tube verticai 'evaporator ~ith ~n 'inter-I heater. Source: (DOE 1984). ." ' ',.' .... ,:', .;" I,

------_.-' ...,. _...._-------

VAPOR

tDEMISTER

C:llo1l!t- FEEO

c:J.-. THICK LIQUOR

.J, .DRIPS ~..~=~~

z,- 7 \~~, ~ I \ ".~~. . , .I .~._~" I I', ~ l..-. •,1',' I -",I, - ! II

I, I I, lll~- FLASH CHAMBER

~-;---IMPINGEMENT BAFFlI,~, I' Ii

. . I APPROXIMATE.~! II I LIQUID LEVEL

STEAM 'i ~.:-\....\-r---.--:-~

LIQUOR BOILINGINSIDE TUBES

. ·CUTAWAY VIEW OFSHELL-AND-TUBEHEAT EXCHANGER

FIG, 7. FORCEO-CIRCULATION EVAPORATOR WITH AN EXTERNAL HORIZONTAL HEATER

----_... _--_ ..,----------------------

WATER OR WASTE SOLUTIONINLET

-'STRIBUTOR--

REGENERANTINLET ANDBACKWASHWATEROUTLET__+-__--.

WATER OR WASTE SOLUTIONINLET

DISTRIBUTOR --..,L'

INLET FORCAUSTICREGENERANT FeRANION EXCHANGERAND BACKWASHWATER OUTLET -i-----,

AIR VENT

DEIONIZEDSOLUTIONOUTLET AND9ACKWASHWATER INLET

(a) SEPARATE BED SYSTEM

SPENTREGENERANTEFFLUENTCOLLECTOR

AIR IN

(b) MIXED-BED

SEPARATRESINLAYERSREPRESECONDITtCREGENEI

DEIONIZED SOLUTICOUTLET AND ACIDREGENERANTINLE(AND BACKWASH WI

SYSTEM

FIG. 9. SCHEMATIC DIAGRAM OF MIXED·BED AND SEPARATE·BED ION EXCHANGE SYSTE

INLET-+--J

TYPICAL WOUND--oFILTEA ELEMENT(FLOW FAOM OUT-

SID E TO INSIDE)

OUTLET

HINGEDL.ID

SWINGBOLTS

---tttt==- BASKETLIFTING

RING

r--_ REMOVABLE BASKET(CONTAINING SEVERALFILTER ELEMENTS)

L.--PRESSUREVESSEL

~---+~I-+-GAS KETS

VESSELSUPPORT

Figure 5.3 Typical disposable cartridge filter illustrating liquid flow from outside;"~;~ .. "f ".l",ment. Source: (DOE 1984).

PRECOATING WITH ALTER AID THE FILTEIIING CYCLE 8ACKWAIHING

---:::m::Iim1_lID

-o • Q

• ••o•,

'. ",

FIG. 10. OPERATIONAL CYCLE OF A PRESSURE PRECOAT FILTER HAVING VERTICAL TUBULAR ELEMENTS

(From Croll·Reynold. brodlure on CaRita mlero)

-----------_._--_._------

-n£COUING

If­I

fILLING THE FtLTEll

4SCAVENGE FILTRATION

"

3FILTRATION

6

CElilBlFUGAl DISCHARGE ~~-l~ [~~!-

~= L2J'

FIG. 11. OPERATIONAL CYCLE OF A CENTRIFUGAL PRECOAT FILTER

(From Nuwco, Inc. brochure on Schenk filters.)

DILUTESOLUTION

.,' .

••., .•

CONCENTRATED

• SOLUTION ••

• • ••• •

• • • •· •• • •• • •• • • • • •

• • • • • • • •• • • •

• • • • -. IOSlloTlc• • •

PRESSURE• • • •• • • • •• • · • •• • • •• • • • SEMIPERMEABLE• • •• • • MEMBRANE•• •• • •

, .Figurc·14.1. ~ . .':. .' ." . -.' ..' . . . . ....-.' "... . - . ." .

Osmosis: normal flow from low to high concentration.. '. ", ~ ... ..' '. ....

./

.. '

PRESSURE

. .. .

DILUTESOLUTION

• •

. - ~ ,- .SEMIPERMEABLE

MEMBRANE'•

• ••

• •• •

• • •• ••

• ,• • •

I • • • •• • • • • • • • • •• • • • •• • •• • • • • •

CONCENTRATED''., SOLUTION.'

•••• •... .. ...• • • • • •

· . . " ., ... . . .. .• • • •

.,

igure 14.2 Reverse osmosis: flow reversed by application of pressure to high-conceltration solution.

IfIO,eoblt ' . .; .. ' ,:",tmbront .~;' ::::':" .

""-::::13-::";'.;'.f:·1I'~/er

Oil.'o Concrn,soMion troled .

Reverse osmosis]-'~f~

Osmosi

Porous fttd­dislribulor lub.

nullv.... '''''4:'1Opt/Nnd fibers

liD" bNndlu(lJ-slulptJ

Porous TubularSupporlmt1lu,,,'" .

.... IrItmliront

t.. ;

P.,ONSboriup d.isf

~~~~1l~

~piral-wound

. .'~

Conccn-~1tated

. ",

-,. ." . r •.•. ~ '\; :

Oil.te

)

FIG. 12. DRAWINGS OF SEVERALCOMMERCIALLY·AVAILABLE REVERSE OSMOSIS DESIGNS

(Reprinted with permission from POWER, June 1973)

MOTOR

CASING -11---1

1~IOUIO

OUT~ET

/I

I

/AOJUSTAB~E

UNI.OAOEAKNIFE

(a)

\'r--,J

FE EOIN~ET-

WASHIN~ET

SO~IOS

CAKE

\PERFORATEO

BASKET

REMOVABl.EVA~'1E PI.ATE

SOI.IOSOISCHARGE

CONVEYORORIVE SHAFT

~

I.I0UiOOISCHARGE PORTS

SCROI.1.CONVEYOR

.I.IOUIOOISCHARGE

CENTRIFUGEBOwl.

501.105OISCHARGE

PORTS

SHEAVE

(bJ

Figure 5-7 Typical centrifuge types (a) top suspended perforated-basket centrifuge and(b) helical conveyor solid-bowl centrifuge. Source: (DOE 1984).

WASTE SOLUTION -,

GLASS or CERAMIC 'CALCI NE

· -

,, '

ADDITIVES

ADSORPTION

EVAPORATIONand I or

CALCINATION PRESSURE

SINTERING

EVAPORATORend

MELTER MELTER

~

FURTHERTREATMENT

METAL MATRIX

orCOATED PARTICLE

Figure 1: Basic Solidification Processes

CAlCINAnON.. DDIIITES [. "Elt;ASI IN1'O '"i: I

"'''O'~HfRr . :

IllfR LOICO.. , 1... ' "0..

R[CE~"ON 0' PlSSION ~aoouc,.r--L-- ..... ~OLUlIOHS

a[~aOCHS'HG ~LAN'

'OR cONCr"'R..."ONOR TE"~ORMY

S'ORAGf 0'FISSION ~ROOUClS

.. .

'"

',H'''G Of. :O",..' ..fll

LID

•.....Z..

......·r-l~o..

. . L'OU'D:. .... :~.::. ['HUE .. ,S

Figure 2: Simplified flowsheet of vitrification plant at Marcqule (AVM)

REFRACTORY

.SCREW JACKFOR ON~F

ORA INCONTROL

m

ELECTRODES

BOTTOM DRAIN(fOR SHUT DOWN

ONLY)

PIVOT

COOLINGPLATE

.HLLW

ADDITIVES ---..l

OfF-GAS

LIQUID LEVELIN VAULT THERMOCOUPLES

LIQUID LEVELIN TANK

AIR MONITOIAND FILTER

Defense waste storage tank. (From The Safety ofNuclear Reactors and Related Faties, WASH· 1250, U.S. Atomic Energy Commission, July 1973.)

Subsidence

Electrode

MeltingZone

In situ vitrification. (Courtesy of the Pacific Northwest Laboratory.)

Rock

ACID •I GLASS FORMERSr----...

J

jlNORGANIC I~ ~

EXCHANGERTO REMOVE CESIUM I FEED

~ ICONCENTRATOR

---- I M:AKNEKUP I,,~ ~

OFF-GASSYSTEM

SUBMERGED ­BED SCRUBBER

CANISTER CLOSURE,INSPECTION, HANDLINC

AND STORAGE

~I

• •FEED DELIVERYI SYSTEM I

j r--f

SLURRY-FEDCERAMIC MELTER

MELTERFEEDTANK

RADWASTETREATMENT

SYSTEM

~CESIUM WASTE

fUPEANATANT

SLUDGE

THOREXWASTE

PUREX WASTE

Figure 2-4 Solidification of commercial high-level waste at West Valley. Source: (DOE1987).

. CHEMICALS

WASTE

/,I

II

II

II

~

SODIUMSILICATE

DRYCEMENTHOPPER

I.1I~--:a----'---- r"--'''' FILLPORT

CEMENT PAOOUCT INDRUMS lOR CASKS)

TO STORAGE

'J·lINE MIXING PROCESS FOR INCORPORATING RADWASTE IN CEMENT

DRYCEMENTHOPPER

EMENT PRODUCT CIN DRUMS .....-- ~Z7Z7Za

TO STORAGE

WASTE

,./

'*'

CHEMICALS

8. IN-DRUM MIXING PROCESS FOR INCORPORATING RADWASTE IN CEMl

CHEMICALS

WASTE--,

UREA-FORMALDEHYDESUSPENSION

IN-LINE MIXER

••:..•':...

CATALYST

FILLING ANDMIXING ASSEMBLY

(WITH DISPOSABLE f=!======loMIXER BLADE) :,

1-:to:

UREA-FORMALDEHYDEPRODUCT IN DRUMS (ORCASKS) TO STORAGE

STI RRED·VESSEL PROCESS FOR INCORPORATING RADWASTE IN UREA­FORMALDEHYDE RESIN

EMlA.SION BRAKES

WETTING (Ilt~'-_AGENT

- RADIOACTiVE WASTESFROM PRETREATMENTAND PRECONCENTRATlONPROCESSES

CONTAINERS

HOlD TANK FORRADIOACTIVE SLURRIES

•TWIN·SCREW ORFOUR·SCREW MlXER·CONCENTRATOR

-CONDENSATE

DRAIN

~'I ~.. i! I TURNTAIlLE.,

I •

'IG.7. WERNER AND PFLEIDERER EXTRUDER/VAPORATOR PROCESS FOR VOLUME REDUCTION ANDSOLIDIFICATION IN ASPHALT

OTOR

RIve1

2.1 m

i3.8 m

5.5 m

-L-

~

Grode

,,•

Temperature gauge

• p ••,~-$j;Fi~- I~'....--...•. ~.. " \ ...•.. ,....... f.\

liquId level

gauge "

,.'

Air cooledcondenser

\leak detection0.20 m dry well

\

23 m die x 5.5 m high

Figure 2.4 Diagram of a tank for holding reprocessing waste. (Based on U.S.Department of Energy)

"~."._-.....---_.' ',~

~ CEMENT AND ADDITIVESARE BLENDED AND STOREDIN BINS '.",

Q) WASTE PUMPED TO MIXER

@GROUT PUMPED DOWN WEL

[

@SURGE AND MIXING TUB

-------HE SOLUTIONrANKS

EACH INJECTION IS ABATCH OPERATION

SUBSEQUENT INJECTIONSMADE BY INITIATING NEWFRACTURE HIGHER INWELL

~GROUT FORCED INTOFORMATION

Fig. 6. Hydrofracture flow sheet and operations.

,