6
東京大学・大学院工学系研究科(工学部)・准教授 科学研究費助成事業 研究成果報告書 C-19、F-19-1、Z-19 (共通) 機関番号: 研究種目: 課題番号: 研究課題名(和文) 研究代表者 研究課題名(英文) 交付決定額(研究期間全体):(直接経費) 12601 基盤研究(B)(一般) 2017 2015 次世代Liイオン電池負極用高次複合ナノ粒子創製 Developmentofcompositenanoparticlesfornegativeelectrodeofnextgeneration lithiumionbatteries 80359661 研究者番号: 神原 淳(Kambara,Makoto) 研究期間: 15H04152 平成 日現在 30 14,450,000 研究成果の概要(和文):本研究課題は,プラズマスプレー物理蒸着(PS-PVD)によるナノ粒子の特徴的な構造 を積極的に利用した独自の複合電極を開発し,リチウムイオン電池の高容量化と充放電サイクル安定性の向上両 立を目指した。主要な成果は,Sn担持Siナノ粒子を利用した活物質ネットワークを有する負極によって飛躍的な サイクル特性の向上を見出すと共に,SiO負極の高効率還元によって高容量化と高サイクル性を実現し,ナノ粒 子化に伴う不均化反応の高速化を初めて明らかにした。また,Siナノ粒子の1kg/hrの高スループット製造を実証 し高速生成時の構造変調機構を明らかにして目的構造と高速製造の両立のための要件を明示した。 研究成果の概要(英文):Thisprojectaimsatthesimultaneousattainmentofincreasedcapacityand enhancedcyclabilityoflithium-ionbatteriesbyusingthebestofthecharacteristiccomposite nanoparticlesdesignedbyplasmasprayPVD.Asthemajorachievements,wehavedemonstrated significantlyhighcapacitymaintainedafterlongercycleswiththeactive-material-networkinthe anodebyusingthebestofthecharacteristicstructureofSi:SnnanoparticleproducedbyPS-PVD. ThehighercyclecapacitieswithSiOnanoparticlesisalsoattainedbytheeffectivereduction duringPS-PVDofSiO,alongwiththenewfindingthatthedisproportionationreactioncanbe acceleratedinnanosizedSiO.Furthermore,wehavealsoachievedSinanoparticleproductionashigh as1kg/hr.Theeffectofthroughputontheco-condensationprocessinPS-PVDisclarifiedandthe optimalconditionstoproducetheoptimalcompositeparticlesatgreaterthroughputsareproposed. 研究分野: プラズマ材料工学 キーワード: リチウムイオン電池 ナノ粒子 プラズマスプレー 2版

* ô |±M¦Ì B wï.ÁWÏêD @

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: * ô |±M¦Ì B wï.ÁWÏêD @

東京大学・大学院工学系研究科(工学部)・准教授

科学研究費助成事業  研究成果報告書

様 式 C-19、F-19-1、Z-19 (共通)

機関番号:

研究種目:

課題番号:

研究課題名(和文)

研究代表者

研究課題名(英文)

交付決定額(研究期間全体):(直接経費)

12601

基盤研究(B)(一般)

2017~2015

次世代Liイオン電池負極用高次複合ナノ粒子創製

Development of composite nanoparticles for negative electrode of next generation lithium ion batteries

80359661研究者番号:

神原 淳(Kambara, Makoto)

研究期間:

15H04152

平成 年 月 日現在30 6 5

円 14,450,000

研究成果の概要(和文):本研究課題は,プラズマスプレー物理蒸着(PS-PVD)によるナノ粒子の特徴的な構造を積極的に利用した独自の複合電極を開発し,リチウムイオン電池の高容量化と充放電サイクル安定性の向上両立を目指した。主要な成果は,Sn担持Siナノ粒子を利用した活物質ネットワークを有する負極によって飛躍的なサイクル特性の向上を見出すと共に,SiO負極の高効率還元によって高容量化と高サイクル性を実現し,ナノ粒子化に伴う不均化反応の高速化を初めて明らかにした。また,Siナノ粒子の1kg/hrの高スループット製造を実証し高速生成時の構造変調機構を明らかにして目的構造と高速製造の両立のための要件を明示した。

研究成果の概要(英文):This project aims at the simultaneous attainment of increased capacity and enhanced cyclability of lithium-ion batteries by using the best of the characteristic composite nanoparticles designed by plasma spray PVD. As the major achievements, we have demonstrated significantly high capacity maintained after longer cycles with the active-material-network in the anode by using the best of the characteristic structure of Si:Sn nanoparticle produced by PS-PVD. The higher cycle capacities with SiO nanoparticles is also attained by the effective reduction during PS-PVD of SiO, along with the new finding that the disproportionation reaction can be accelerated in nanosized SiO. Furthermore, we have also achieved Si nanoparticle production as high as 1 kg/hr. The effect of throughput on the co-condensation process in PS-PVD is clarified and the optimal conditions to produce the optimal composite particles at greater throughputs are proposed.

研究分野: プラズマ材料工学

キーワード: リチウムイオン電池 ナノ粒子 プラズマスプレー

2版

Page 2: * ô |±M¦Ì B wï.ÁWÏêD @

M M M

tt p Li

˚(LiB)sut s t

oT pN s s

Si uM t C( ) s10 t ˚ p

˚t p Nt oT Li-Si

s t t s400% c tt o Si

s o Ct NSi

t pt oT p

t p s(1)150nm s

(2) s s(3)C 2 t / s

pN u tCVD t oTLi ˚

su it T p a

oT N ˚s ouT t

˚ soT s t Si

t Np V

LIB N

t Ou s o

PVD t ts s

N t p P10nm t nc-Si

sp (1)p(3) p

s Ns P Ni Sipo t 1 Si s

o Sips N t ˚ u

p t oN y

u l o360g/min t o t

s y o toT p su

p w Nou PS-PVD t

ot t t

s

c pLiB t N

t PS-PVD s Si s

u s ot p

N uo

N u X ps

t t ws p SEM s

XPS w TEM-EELSt pN t s

o t s ut

N Li pp

N ˚ p ptt N PS-PVD

s sp

t tp s

t t ot

t s mt N

4-1. Si:Ni t s Si p Ni

PS-PVD t s30-40nm t 100nm

t tN 1 s Si:Ni

tSTEM-HAADF NiSi s

ot NiSi2p N

7 -4 t 7803 2.. 1

t PS-PVD ot Si t u2200K p p

st t

s ks N 2

s t s k Si

Page 3: * ô |±M¦Ì B wï.ÁWÏêD @

u 30-40nm pt

o tp NNi t u 1450K oT

sT Si tp Si t 10ms

t 15nm t Si s 1750Ko Ni s tp N

TEM 10nm t Nit u Gibbs-Thomson

1300K p N k Ni u Sis 40ms p

Si-Ni t pNiSi2 t

tp N

2 Si t p Si

t Ni Si pt ˚ 3 s N

Ni t Si t [N-0]s Ni1at%i i o

100 p Nt u Ni soT p ot

t t p Nj Si t s Ni

tp Nt ˚t o

t XRD 50Si Li o p

NiSi2 Si tu s

tp N

t

4 MD s Si-Li (a)NiSi2(b)NiSi2

4 s LAMMPSs Si:Li s Li/Si=0.1t ot Si tNi t Si u Li s 110

s ˚ suNiSi2 T Si u u

s LiN k NiSi2

u s ˚ s V Si tT s

tp N 4-2.Si:Sn

t Si-Sn o 90HouT tt Sn t Si

tN k Sn o

ts Sn p

Si tN s Sn w

s SnOx oT ps u

tp N ot PS-PVD s k

30nm t Si s nm t Snl nm t SnOx

SiTEMs N t XPS

Sn p s SnO2 tN p

s Ar o 300 oo

t s oSnO2 N

t ot5 s

su 50 o 1500mAh/gt t

su 3000mAh/g˚ NSn

s t utt s Sn o

po Nt su u

k p Snp SnO2 Lio p s V

s Tp N

5 Si:Sn ˚t

Page 4: * ô |±M¦Ì B wï.ÁWÏêD @

4-3. SiO Si p SiO

Si s t stt s t t

s 50% pN t s t

ou SiO ti

p N t PS-PVD t CH4 sou p o

p p Nt SiO

t s pos V

p pN 6 s t

ou p toT N u

O ms t 10 to N

o t Si sm p

(CCT)ss t

s k 2p i

SiOx s p pk N SiO tt Si p

poT p N

6 PS-PVD SiOx t(a) p(b)t

7 SiO t Si t SiOx

w 4-4.

PS-PVD s tsu t

N t Si t sV t p s s

ou tp N o

s

t p 1kg/hr tot t ps t

N t 8 st p t

tu t ou t

s o p N2 Ni t u ts 1831K 2100K op N t t Si

2.6nm 11.2nm t Sit p p N

o 1%Ni o pot Ni t

Ni ouTk Si/Ni4.3 p N

t u o Si s Ni p Sipt s s

o op N j PS-PVD

ou ˚ s SiNis

ps N o1kg/ho su t Si-Ni

t N s kp ˚t

u 10 s tou N k 4-1

o Ni tsu Ni

o Si tV Tp N

8 s V Sit NNi

o N

9 Ni tSi:Ni NNi N

Page 5: * ô |±M¦Ì B wï.ÁWÏêD @

10 o Si:Nip t

o Si t sus k u

tt t p150nm s 50nm o

T l tN t t s ot

pV

p k N c PS-PVD s Si-M

t st

o ˚ t s oTp Np t

p t ts s ptp N

t 1 p t 1kg/hr oV pu PS-PVD t

ot s tp N

M w su

S 5 (1) R.Ohta, K. Fukada, T. Tashiro, M.

Dougakiuchi, M. Kambara, Effect of PS-PVD production throughput on Si nanoparticles for negative electrode of lithium ion batteries, J. Phys. D: Appl. Phys.,51 (2018)105501. Doi:10.1088/1361-6463/aaab37

(2) T. Tashiro, M. Dogakiuchi, M. Kambara, Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition, Sci. Technol. Adv. Mater., 17 (2016) 744-752. Doi:10.1080/14686996.2016.1240574

(3) K. Fukada, R. Ohta, M. Kambara, Enhanced cycle capacity of lithium ion batteries with nanocomposite Si anodes produced by rapid co-condensation in plasma spray PVD, ECS

Trans., 77 (2017) 41-47. Doi:10.1149/07703.0041ecst

(4) t−

131 279279(2016)1-6.

(5) PVD s2 ˚ Si

153129 129(2016)1-6.

S 28

69 s ˚ 7 5

)2015 9 13-16

R. Ohta, Y. Ohta, T. Tashiro, M. Kambara, Production of composite Si nanoparticles by plasma spray PVD and CH4 annealing for negative electrode of lithium ion batteries, 68th GEC, 2015/10/12-16.

PVD s ˚ Si

332015 10

19 T. Tashiro, M. Kambara,

Nanocomposite Si/SiOx particle formaition through enhanced disproportionation reaction during plasma spray PVD, MRS-J, 2015/12/8-10.

( PVD s ˚ Si

t2015 12 4

) PVD s 2 ˚ Si

17 2016 1 21

PVD s 2 ˚ Sit 1582016 3 23-25

PVD s Li ˚

Si-Ni t 632016 3

19-22 t

131 279 20164 22 M. Kambara, et al., Nanocomposite Si-M particles produced by plasma spray PVD for high-density lithium ion batteries, ICMCTF 2016, 2016/4/25-29. s

2016 7 4

Page 6: * ô |±M¦Ì B wï.ÁWÏêD @

742016 8 5

PVD s Li

˚ Si-Ni t77 2016 9

13-16 M. Kambara, et al., (4 authors), Lateral epitaxial overgrowth of silicon thick films during nanocluster assisted mesoplasma CVD, 69th GEC, 2016/10/10-16

( M. Kambara, Plasma spray PVD for nanoparticlate Si composite anodes of high density lithium ion batteries, NTI-UT Joint Conference, 2016/11/30-12/1

) PVD s 2˚ Si

153 1292016 12 9 M. Kambara, Enhanced cycle capacity of lithium ion batteries with Ni-epitaxially-attached Si nanoparticles as anode produced by plasma spray physical vapor deposition, 26th MRS-J, 2016/12/19-22 S. Hamazaki et al., (6 authors, 7th), Production of SiO nanoparticles with reduced oxygen content by pulse-modulated plasma spray PVD for an increase in capacity of LiBs, (poster) 26th MRS-J, 2016/19-22 PVD s Li ˚ Si

722017 3 27-29

PS-PVD s Si t

p Li ˚ 652018

PS-PVDSi:Sn s

LiB 652018 M. Kambara, T. Tohara, R. Ohta, Enhancement in capacity of lithium ion batteries with composite Si:Sn nanoparticulate anode produced through co-condensation in PS-PVD, MRS-J, 2017

Plasma Conference 2018 2017 M. Kambara, T. Tohara, R. Ohta, Enhanced cyclability with plasma sprayed Si-M canocomposite anodes for lithium ion batteries, AEPSE2017, 2017.

( s

t 153 302017

) M. Kambara, K. Fukada, R. Ohta, T. Tohara, N. Gerile, Enhanced cycle capacity of lithium ion batteries with nanocomposite Si anodes produved by rapid co-condensation in plasma spray PVD, ECS 2017, 2017. ( M. Kambara, Nanocomposite Si particle production by plasma spray PVD for next generation high energy density lithium ion batteries, 22nd Korea-Japan Workshop, 2017. M. Kambara, R. Yamada, S. Wu, Nanocluster assisted mesoplasma epitaxial bridging, ICMCTF 2017, 2017.

S 1 M. Kambara, H. Hideshima, M. Kaga, T.

Yoshida, Plasma spray PVD: High throughput production of nanoparticles, Encyclopedia Plasma Technol., Taylor & Francis, (2017) 1176-1190.

S

˚ tw

)(

t

t SFFF : : D E DA A :

Kambara, Makoto

80359661