53
[KS], WS 2005/2006 2.1 Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/ [email protected]

02 1 Qos Multimedia

Embed Size (px)

Citation preview

Page 1: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 1/53

[KS], WS 2005/2006 2.1

Kommunikationssysteme [KS]

Dr.-Ing. Falko Dressler

Computer Networks and Communication SystemsDepartment of Computer Sciences

University of Erlangen-Nürnberg

http://www7.informatik.uni-erlangen.de/~dressler/

[email protected]

Page 2: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 2/53

[KS], WS 2005/2006 2.2

Course Overview

Network InfrastructureBasics of communication networks, packet- / circuit switched networks,telephone networks, ATM

Quality of Service and Multimedia

Policing, scheduling, AQM, audio/video streaming, conferencing and VoIP,IntServ, DiffServ, ATM, MPLS

SimulationTools, accomplishment, measures

Protocol EngineeringFSM, SDL, MSC, UML

Wireless / Mobile CommunicationsGSM, UMTS, mobility issues, WLAN, WPAN, WSN

Network SecurityThreats and security goals, basic mechanisms

Page 3: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 3/53

[KS], WS 2005/2006 2.3

Quality of Service

What is Quality of Service (QoS)?QoS is a concept for specifying how “good” services of communicationsystems arequalitative criteria : scalability, usability, compatibility, security,

manageability, robustness, …quantitative criteria : performance, reliability, availability, costs, …mechanisms to achieve QoS: system dimensioning, protocol optimization,control mechanisms, resource reservation, …

need to describe QoS requirements, workload characteristics, systemcapacity, to negotiate service level agreements, to design systems toachieve QoS, to monitor the QoS of systemsto avoid costly redesigns, QoS should be integral part of the whole systemlife cycle and not just as an afterthought : requirements analysis andspecification, design, development, testing, deployment, operation,evolution

Page 4: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 4/53

[KS], WS 2005/2006 2.4

QoS Parameters in Networks

Data in the network

(in transit, stored in buffers)

Data in the network

(in transit, stored in buffers)

throughput

loss

load

delay

Page 5: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 5/53

[KS], WS 2005/2006 2.5

QoS Requirements

Requirements of some applications:

Application

file transfer e-mail

Web documentsreal-time audio/video

stored audio/videointeractive gamesinstant messaging

Loss

no lossno lossno lossloss-tolerant

loss-tolerantloss-tolerantno loss

Throughput

elasticelasticelasticaudio: 5kbps-1Mbpsvideo:10kbps-5Mbpssame as abovefew kbps upelastic

Delay Sensitive

nononoyes, 100’s msec

yes, few secsyes, 100’s msecyes and no

Page 6: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 6/53

[KS], WS 2005/2006 2.6

QoS Requirements

QoS providing

best-effort : QoS parameters are met if possible, no mechanisms to assureQoS, no guarantees

imperfect : QoS parameters are met theoretically, some systemcomponents do not allow guarantees

predicted : QoS parameters are guaranteed if load is not increased

statistically : QoS parameters are guaranteed with a certain probability

deterministically : QoS parameters are guaranteed

Page 7: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 7/53

[KS], WS 2005/2006 2.7

QoS: Methodology Overview

Measurements(HW/SW/hybrid monitoring, benchmarks)

Modeling

Discrete-Event Simulation(OPNET, ns2, UML, ...)

Numerical Analysis(SPNs, Markov chains, ...)

Closed-Form Analysis(queuing models, ...)

Costs

P a r a m e t e r

e s

t i m a

t i o n

V a

l i d a t i o n

Abstraction

Page 8: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 8/53

[KS], WS 2005/2006 2.8

QoS: Methodology Overview

Measurementsmonitoring (observe system passively)benchmarking (actively generate workload)

HW, SW, hybridcan measure QoS parameters: delays, throughput, resourceusage, …

A monitoring tool: tcpdumpcan dump headers and payloads of packets

Page 9: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 9/53

[KS], WS 2005/2006 2.9

QoS: Methodology Overview

Discrete-event simulationsystem is modeled in some visual/textual formalismrandom variables are used for times and other model elementsevents occur at discrete points in time

variables change instantaneouslyevent list processing:

important issues: modeling formalism, measure specification, tool

environment, simulation speed, animation, input modeling, randomnumber generation, output analysisadvantage: no modeling restrictionsdisadvantages: slow, uncertainty in confidentiality of results

tD1 A2 A3 D2 A4 A5 D3A10

Page 10: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 10/53

[KS], WS 2005/2006 2.10

QoS: Methodology Overview

A simulation tool: OPNETspecial-purpose simulation package in the networking area

hierarchies- network building blocks- state machines- C code

libraries of detailed protocols andapplication models: Multi-Tier Applications,Voice, HTTP, TCP, IP, OSPF, BGP, EIGRP,RIP, RSVP, Frame Relay, FDDI, Ethernet,ATM, 802.11 Wireless LANs, ...

Page 11: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 11/53

[KS], WS 2005/2006 2.11

QoS: Methodology Overview

Numerical analysissometimes possible to model system or system aspect as a stochasticprocess, e.g., a Markov chaineither directly or via a higher-level modeling formalisms, e.g., stochastic

Petri net (SPN) or UMLallows to represent complex interdependenciesadvantage: exact answersdisadvantages: restrictions in terms of state space and kinds of distributions allowed

Page 12: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 12/53

[KS], WS 2005/2006 2.12

QoS: Methodology Overview

Queuing (network) modele.g., HTTP requests/responses:

state spaces can be immense, product-form solutions avoid state-spacegenerationgood for checking whether a system is roughly well dimensioned and for identification of bottlenecksmultiple classes lead to good expressivenessbut cannot model interdependencies such as synchronization, blocking, …

clientLAN

Router Web server

upstream link

downstream link

Page 13: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 13/53

[KS], WS 2005/2006 2.13

Networking Delay Models

Basic model for a delay/loss systemCustomers (connection requests, messages, …) arrive according to somearrival patternSystem can be transmission line, multiplexer, router, network, …

Customer spends some time T in the system and then departsUnder certain conditions the system may block new customers to enter

Delay box :Multiplexer

switchnetwork

Message,packet,cellarrivals

Message,packet,celldepartures

T secondsLost or blocked

Page 14: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 14/53

[KS], WS 2005/2006 2.14

Networking Delay Models

Important performance parametersTime spent in the system: TFraction of arriving customersthat are lost or blocked : P b

Average number of customers/sthat pass through the system:throughput S

Key system variablesNumber of customersin the system: N(t)A(t) = number of arrivals in [0, t]B(t) = number of blocked customers in [0, t]D(t) = number of departures in [0, t]

01234

0 1 2 3 4 5 6 7 8 9 10

N(t)

t

Page 15: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 15/53

[KS], WS 2005/2006 2.15

Networking Delay Models

Some simple relationships

N(t) = A(t) – B(t) – D(t)

Long-term arrival rate:

Throughput:

Average number in the system:

Fraction of blocked customers:

scustomers/t

)t(Alimt ∞→

scustomers/t

)t(DlimSt ∞→

=

customers)dt'N(t't1

lim]N[Et

0t ∫ ∞→

=

)t(A)t(BlimP

tb ∞→=

Page 16: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 16/53

[KS], WS 2005/2006 2.16

A(t)

t 0

1

2

n-1

n

n+ 1

Time of n th arrival = τ1 + τ2 + . . . + τn

ArrivalRate λ

n arrivals

τ1 + τ2 + . . . + τn seconds=

1=

1

(τ1+τ2 +...+ τn)/n E [τ]

τ1 τ2 τ3 τn τn+1

Arrival Rate = 1 / mean interarrival time

•••

Page 17: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 17/53

[KS], WS 2005/2006 2.17

Networking Delay Models

Little‘s formula

E[N] = λ E[T]

Average number of customers in the system = arrival rate x average timespent in systemA fundamental relationshipIntuitively: crowded systems have long customer delay and reverselyE.g., on a rainy day, traffic on a rush hour moves slower than average(large E[T]), while streets are more crowded (large E[N]).

Page 18: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 18/53

[KS], WS 2005/2006 2.18

Networking Delay Models

Derivation of Little’s formulaAssume no blocking,FIFO service, N(0)=0

No blocking, hence N(t) = A(t) – D(t)We can draw A(t) and D(t) in one graph, N(t) is the space between:

A(t) D(t)FIFO Delay Box

N(t)

T

A(t)

D(t)T 1

T 2

T 3T 4

T 5

T 6 T 7 Assumes

first-infirst-out

C 1 C 2 C 3 C 4 C 5 C 6 C 7

C 1 C 2 C 3 C 4 C 5 C 6 C 7

Arrivals

Departures

Page 19: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 19/53

[KS], WS 2005/2006 2.19

Networking Delay Models

Derivation of Little’s formula (cont.d)Let t 0 be a time where D(t) = A(t), thus N(t 0) = 0(e.g., when C 5 leaves)The area under N(t) is also givenby summing up the delays:

A little manipulation gives

By taking limits onboth sides and by assuming that

… we arrive at the desired expression E[N] = λ E[T]Can be shown also without assumptions

∑∫ =

=)t(A

1 j j

0

t

00

00

Tt1

)dt'N(t't1

⎭⎬⎫

⎩⎨⎧= ∑∫

=

)t(A

1 j j

00

0t

00

00

T)t(A

1t

)t(A)dt'N(t't1

⎭⎬

⎩⎨

⎧=∑=∞→

)t(A

1 j j0)t(A

0

0

T)t(A

1lim)T(E

Page 20: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 20/53

[KS], WS 2005/2006 2.20

Networking Delay Models

Application of Little‘s formulaValid for arbitrary systems which can delay and store customers but notloose or duplicate them

For blocking systems the customers A(t) - B(T) that are not blocked arethe arriving customers to the system, Little’s formula getsE[N] = λ (1-P b) E[T]

arrivals departuresE[N], T

Page 21: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 21/53

[KS], WS 2005/2006 2.21

Networking Delay Models

Queuing modelsExtend the delay box model by a queue and one or more serversThe arrival process and the service times are characterized stochastically

1

2

c

A(t)t

D(t)t

B(t)

Queue

ServersArrival process

X Service time

τi τi+1 …

Page 22: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 22/53

[KS], WS 2005/2006 2.22

Networking Delay Models

Arrival processSimple case: constant interarrival times = deterministic arrivalsMore interesting: interarrivals are independent random variables from aprobability distribution

Popular case: Poisson processarrival rate λ: requests per secondIn each small time interval Δ: P[new request ] = λΔthe interarrival times are then distributed according the exponentialdistribution F(t) = P[X ≤ t] = 1-e -λt and density f(t) = λe -λt

f(x) F(x)

x x

λ 1

Page 23: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 23/53

[KS], WS 2005/2006 2.23

Networking Delay Models

Popular case: Poisson process (cont.d)With exponentiallydistributed interarrival times we getThis is called the Poisson probability

Therefore this arrival process is called Poisson processMuch more involved arrival processes can be defined by using other interarrival distributions, dependent random variables, …

Self-similarity and long-range dependency are important aspectsconsidered todayHowever, exponential timing allows for easier analysisThe service times can also be deterministic, exponentially distributed,

distributed according to another distribution, or more complicatedwe use μ customers/s for the service rateFor packet switching: service time = packet length / bitrate

tet!t

t)][0,inarrivalsn[P λ−λ=

Page 24: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 24/53

[KS], WS 2005/2006 2.24

Networking Delay Models

Queuing system classification

Service times X M = exponentialD = deterministic

G = generalService Rate:μ = 1/ E [ X ]

Arrival Process / Service Time / Servers / Max Occupancy

Interarrival times τM = exponentialD = deterministic

G = generalArrival Rate:λ = 1/ E [τ]

1 server c serversinfinite

K customersunspecified if unlimited

Multiplexer Models: M/M/1/ K , M/M/1, M/G/1, M/D/1Trunking Models: M/M/ c /c , M/G/ c /c User Activity: M/M/ ∞, M/G/ ∞

N ki D l M d l

Page 25: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 25/53

[KS], WS 2005/2006 2.25

Networking Delay Models

Queuing system variables

1

2

c

X

N q(t)N s(t)

N(t) = N q(t) + N s(t)

T = W + X

W

λ P b

λλ (1 – P b)

N(t) = number in system

N q(t) = number in queue

N s(t) = number in service

T = total delay

W = waiting time

X = service time

N ki D l M d l

Page 26: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 26/53

[KS], WS 2005/2006 2.26

Networking Delay Models

Generality of Little‘s formula: it can be applied tothe queue: E[N q] = λ (1-P b) E[W]the servers: E[N S] = λ (1-P b) E[X]the complete system: E[N] = λ (1-P b) E[T]

Traffic loadTraffic load : λ customers/s x E[X] s/customers = λ/μ ErlangsErlang is a dimensionless unit, 1 Erlang corresponds to a load that wouldoccupy a single system all of the time

Utilization ρAverage fraction of servers in use

)P1(

cc

]N[Eb

S −μ

λ==ρ

M/M/1 Q

Page 27: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 27/53

[KS], WS 2005/2006 2.27

M/M/1 Queue

Poisson arrivals (exponential interarrivals), exponential service,inifinite buffer

Basic model for packet multiplexers

Poisson arrivalsrate λ

Exponential servicetime with rate μInfinite buffer

M/M/1 Q

Page 28: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 28/53

[KS], WS 2005/2006 2.28

M/M/1 Queue

Analysis of the M/M/1 queuepossible by mapping on a continuous-time Markov chainstate-transition diagram:

...0 1 2

λ λ λ

μ μ μ

i-1 i i+1

λ λ λ λ

μ μ μ μ...

state: customers in system

arrival

service service rate

arrival rate

M/M/1 Queue

Page 29: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 29/53

[KS], WS 2005/2006 2.29

M/M/1 Queue

Solution

state probabilities :

balance equations : for each state, balance of flow in and flow out:

λπ0 = μπ1

(λ+μ)πi = λπi-1 + μπi+1, i = 1, 2, ...

...0 1 2 i-1 i i+1

λ λ λ λ λ λ λ

μ μ μ μ μ μ μ...

)n)t(N(Plimtn ==π

∞→

M/M/1 Queue

Page 30: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 30/53

[KS], WS 2005/2006 2.30

M/M/1 Queue

Steady-state solution (cont.)from the first balance equation we get π1 = ρ π0

from the second balance equation π2 = ρ2 π0

...

generally: πi = ρi π0, i = 0, 1, 2, ...using the normalization condition

we get π0 = 1 - ρ

and πi = ρi(1-ρ) for i = 0, 1, 2, ...

the modified geometric distribution

11 1 00i

0i

0ii =πρ−=πρ=π ∑∑

=

=

0 1 2 3 4 5 i

πi

M/M/1 Queue

Page 31: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 31/53

[KS], WS 2005/2006 2.31

M/M/1 Queue

Measures of interestaverage number of customers in the system (queue + service unit)

average number of customers in the queueρ−

ρ==ρρ−=π= ∑∑∞

=

= 1

)1(ii]N[E0i

i

0i

iL

ρ−ρ

=ρ−ρ−ρ

=π−−=π−π=π−= ∑ ∑∑∞

=

=

= 11)1(]N[Ei)1i(]N[E

2

1i 01i ii1i iq

M/M/1 Queue

Page 32: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 32/53

[KS], WS 2005/2006 2.32

M/M/1 Queue

With Little’s formulain steady-state, throughput = arrival rate = λthe delay in the system is

the delay in the queue is

ρ−μ=λ= 1 /1]N[E]T[E

ρ− ρμ=λ=1

)/1(]N[E]W[E q

M/M/1 Queue

Page 33: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 33/53

[KS], WS 2005/2006 2.33

M/M/1 Queue

Average delay vs. utilizationaverage delay E[T] in the M/M/1 queue as a function of ρ

linear growth for small utilizations, unbounded growth as utilizationapproaches unity!

0.2 0.4 0.6 0.80

5

10

15

ρ

E[T]

M/M/1 Queue

Page 34: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 34/53

[KS], WS 2005/2006 2.34

M/M/1 Queue

Typical design questionparallel systems with separate buffers and servers or onecentralized fast one?relevant in networking, IT infrastructures, ...

]T[Em1

m/m1m/1

]T[E separatedcentralize =μλ−

μ=

mseparatesystems

or onecentralizedsystem

μλ−μ=/1

/1]T[E seperate

central system has less idle times, faster, multiplexing gain

λ

λ

λ

μ

μ

μ

mλmμ

M/M/1 Queue

Page 35: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 35/53

[KS], WS 2005/2006 2.35

M/M/1 Queue

Estimation of packet delays in networksapplication of Little‘s formula both on the network level and the switch leveltogether with results for the M/M/1 queueand some assumptions

rough estimation of packet delays for given paths of packet flowsapplied in routing, control, management

M/M/1 Queue

Page 36: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 36/53

[KS], WS 2005/2006 2.36

Q

Estimation of packet delays in networksλnet = packet arrival rate to the networkλm = packet arrival rate to switch mμm = service rate of switch m

Little’s formula for the network:

E[N net ] is composed of switch queue sizes:

Applying Little’s formula for the switches and insertion:

M/M/1 mean system delay:

And insertion yields the mean packet delay in the network:

netnetnet /]N[E]T[E λ=

∑∑ λ==m

mmm

mnet ]T[E]N[E]N[E

∑λλ

=m

mmnet

net ]T[E1

]T[E

m

mm 1

/1]T[E ρ−

μ=

∑ρ−

ρ

λ=

m m

m

net

net

1

1]T[E

M/M/c/c Queue

Page 37: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 37/53

[KS], WS 2005/2006 2.37

Q

Poisson arrivals, exponential service, c service units, no buffer

blocked calls are cleared from the system; no waiting allowed.basic model for dimensioning telephone trunksperformance parameter: P b = fraction of arrivals that are blocked

1

2

c

N(t )

λ P b

λ λ (1– P b)

E[X] =1/ μ

M/M/c/c Queue

Page 38: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 38/53

[KS], WS 2005/2006 2.38

Q

Analysis of the M/M/c/c queuestate-transition diagram of the underlying Markov chain:

the rates of exponential state transitions can be superposed, multipleservice units therefore correspond to multiples of the service rate

... c-1 c

λ λ

(c−1)μ

0 1 2

λ λ λ

μ2μ

M/M/c/c Queue

Page 39: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 39/53

[KS], WS 2005/2006 2.39

Solution

balance equations : for each state, balance of flow in and flow out:λπ0 = μπ1 ⇒ π1 = ρ π0

(λ+μ)π1 = λπ0 + 2 μπ2 ⇒ π2 = ρ2/2 π0

(λ+2 μ)π2 = λπ1 + 3 μπ3 ⇒ π3 = ρ3/3! π0

…(λ+(c-1) μ)πc-1 = λπc-2 + c μπc ⇒ πc = ρc/c! π0

cμπc = λπc-1

gives πn = ρn/n! π0 for 0 ≤ n ≤ c

the normalization condition givesthe solution is hence ∑

∑∑=

== ρ=π⇒=πρ=π c

0i

i0

c

0i0

ic

0ii

!i/

11

!i

cn0for !i/

!n/c

0i

i

n

n ≤≤ρ

ρ=π

∑=

M/M/c/c Queue

Page 40: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 40/53

[KS], WS 2005/2006 2.40

Erlang B formulablocking probability P b =

proportion the system is fullalso valid for M/G/c/c: service time distribution need not beexponential, the solution valid for any service time distribution withmean 1/ μknown as the Erlang B formulaheavily used for dimensioning of telephone systems, also callcenters

∑=

ρρ=π c

0i

i

c

c

!i/

!c/

Page 41: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 41/53

[KS], WS 2005/2006 2.41

Examples

Telephone Network (TrafficManagement & Overload Control)

Traffic Management & Overload Control

Page 42: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 42/53

[KS], WS 2005/2006 2.42

Telephone calls come and goPeople activity follow patternsMid-morning & mid-afternoon at officeEvening at home

Summer vacationOutlier Days are extra busy

Mother’s Day, Christmas, …

Disasters & other events cause surges in trafficNeed traffic management & overload control

Traffic Concentration

Page 43: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 43/53

[KS], WS 2005/2006 2.43

Traffic fluctuates as calls initiated & terminatedDriven by human activity

Providing resources soCall requests always met is too expensiveCall requests met most of the time cost-effective

Switches concentrate traffic onto shared trunksBlocking of requests will occur from time to timeTraffic engineering provisions resources to meet blockingperformance targets

Fewer

trunks

Many

lines

Fluctuation in Trunk Occupancy

Page 44: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 44/53

[KS], WS 2005/2006 2.44

1

2

3

45

6

7

T r u n

k n u m

b e r

N(t)

t

All trunks busy, new call requests blockedNumber of busy trunks

active

active

active

activeactive

activeactive

active

active

active

Modeling Traffic Processes

Page 45: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 45/53

[KS], WS 2005/2006 2.45

Find the statistics of N(t) the number of calls in the system

ModelCall request arrival rate : λ requests per secondIn a very small time interval Δ,

Prob[ new request ] = λΔProb[no new request] = 1 - λΔ

The resulting random process is a Poisson arrival process:

Holding time : Time a user maintains a connection

X a random variable with mean E(X)Offered load : rate at which work is offered by users:

a = λ calls/sec * E( X ) seconds/call (Erlangs)

( λ T)k e – λ T

k! Prob( k arrivals in time T ) =

Blocking Probability & Utilization

Page 46: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 46/53

[KS], WS 2005/2006 2.46

c = Number of TrunksBlocking occurs if all trunks are busy, i.e. N(t)=c If call requests are Poisson, then blocking probability P b is given byErlang B Formula

The utilization is the average # of trunks in use

P b =

a c

c!

k !∑ a k

k =0

c

Utilization = λ (1 – P b) E [ X ]/c = (1 – P b ) a /c

Blocking Performance

Page 47: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 47/53

[KS], WS 2005/2006 2.47

aTo achieve 1% blocking probability:a = 5 Erlangs requires 11 trunksa = 10 Erlangs requires 18 trunks

Multiplexing Gain

Page 48: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 48/53

[KS], WS 2005/2006 2.48

Load Trunks@1% Utilization

1 5 0.20

2 7 0.29

3 8 0.38

4 10 0.40

5 11 0.45

6 13 0.46

7 14 0.50

8 15 0.53

9 17 0.53

10 18 0.56

30 42 0.71

50 64 0.78

60 75 0.80

90 106 0.85

100 117 0.85

At a given P b, the system becomesmore efficient in utilizing trunks withincreasing system sizeAggregating traffic flows to sharecentrally allocated resources is moreefficientThis effect is called Multiplexing Gain

Routing Control

Page 49: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 49/53

[KS], WS 2005/2006 2.49

Routing control: selection of connection pathsLarge traffic flows should follow direct route because they are efficient in useof resourcesUseful to combine smaller flows to share resourcesExample: 3 close CO’s & 3 other close COs

10 Erlangs between each pair of COs

17 trunks for 10 Erlangs9x17=153 trunksEfficiency = 90/153=53%

106 trunks for 90 ErlangsEfficiency = 85%

E

F

D

B

C

A(a)

10 Erlangs between each pair

Tandemswitch 2

Tandemswitch 1

B CA

(b)Trunkgroup

E FD

90 Erlangs when combined

Alternative Routing

Page 50: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 50/53

[KS], WS 2005/2006 2.50

Deploy trunks between switches with significant traffic volumeAllocate trunks with high blocking, say 10%, so utilization is highMeet 1% end-to-end blocking requirement by overflowing to longer paths over tandem switchTandem switch handles overflow traffic from other switches so it can operateefficientlyTypical scenario shown in next slide

Switch SwitchHigh-usage route

Tandemswitch

Alternative route

Typical Routing Scenario

Page 51: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 51/53

[KS], WS 2005/2006 2.51

High-usage route B-E

Tandemswitch 1

Alternative routesfor B-E, C-F

High-usage route C-F

Switch B

Switch C

Switch E

Switch D

Switch F

Tandemswitch 2

Switch A

Dynamic Routing

Page 52: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 52/53

[KS], WS 2005/2006 2.52

High-usage route

Alternative routes

Switch A Switch B

Tandemswitch 3

Tandemswitch 1

Tandemswitch 2

Traffic varies according to time of day, day of weekEast coast of North America busy while West coast idle

Network can use idle resources by adapting route selection dynamicallyRoute some intra-East-coast calls through West-coast switches

Try high-usage route and overflow to alternative routes

Overload Control

Page 53: 02 1 Qos Multimedia

8/8/2019 02 1 Qos Multimedia

http://slidepdf.com/reader/full/02-1-qos-multimedia 53/53

[KS], WS 2005/2006 2.53

C a r r

i e d l o a

d

Offered load

Network capacity

Overload SituationsMother’s Day, Xmas

CatastrophesNetwork Faults

StrategiesDirect routes firstOutbound firstCode blocking

Call request pacing