77
Dra. ELENA BENAVIDES RIVERA Dra. ELENA BENAVIDES RIVERA BIOQUÍMICA Y NUTRICIÓN BIOQUÍMICA Y NUTRICIÓN CÓDIGO GENÉTICO-TRANSCRIPCIÓN CÓDIGO GENÉTICO-TRANSCRIPCIÓN

(02-OCT-14) 6C. Código Genético Traducción

Embed Size (px)

Citation preview

Page 1: (02-OCT-14) 6C. Código Genético Traducción

Dra. ELENA BENAVIDES RIVERADra. ELENA BENAVIDES RIVERA

BIOQUÍMICA Y NUTRICIÓNBIOQUÍMICA Y NUTRICIÓN

CÓDIGO GENÉTICO-TRANSCRIPCIÓNCÓDIGO GENÉTICO-TRANSCRIPCIÓN

Page 2: (02-OCT-14) 6C. Código Genético Traducción

CODIGO GENETICO -TRANSCRIPCIONCODIGO GENETICO -TRANSCRIPCION

CONTENIDO:CONTENIDO:

-Código genético. Características. Código genético. Características. Terminación de cadena y señales de Terminación de cadena y señales de inicio. Universalidad del código. inicio. Universalidad del código. Activación de aminoácidos. Estructura y Activación de aminoácidos. Estructura y función del tRNA. Reconocimiento función del tRNA. Reconocimiento codón-anticodón. codón-anticodón.

-Estructura y composición de los -Estructura y composición de los ribosomas de procariotes y eucariotes. ribosomas de procariotes y eucariotes. Síntesis de proteínas: iniciación, Síntesis de proteínas: iniciación, elongación y terminación. Complejo de elongación y terminación. Complejo de iniciación. Regulación de la síntesis iniciación. Regulación de la síntesis proteica en procariotes y eucariotes. proteica en procariotes y eucariotes. Regulación de la expresión génica.Regulación de la expresión génica.

Page 3: (02-OCT-14) 6C. Código Genético Traducción

CODIGO GENETICOCODIGO GENETICO

La información genética se almacena La información genética se almacena dentro de la molécula de ADN en forma dentro de la molécula de ADN en forma de un de un código tripletecódigo triplete, esto es una , esto es una secuencia de secuencia de tres bases que determina tres bases que determina un aminoácido.un aminoácido.

Si cada grupo de tres nucleótidos Si cada grupo de tres nucleótidos

determina un aminoácido. Teniendo en determina un aminoácido. Teniendo en cuenta que existen cuatro nucleótidos cuenta que existen cuatro nucleótidos diferentes (A, G, T y C), el número de diferentes (A, G, T y C), el número de grupos de tres nucleótidos distintos que grupos de tres nucleótidos distintos que se pueden obtener son variaciones con se pueden obtener son variaciones con repetición de cuatro elementos (los repetición de cuatro elementos (los cuatro nucleótidos) tomados de tres en cuatro nucleótidos) tomados de tres en tres: VR4,3 = (4)tres: VR4,3 = (4)33 = 64. Por consiguiente, = 64. Por consiguiente, existe un total de 64 tripletes diferentes, existe un total de 64 tripletes diferentes, cifra más que suficiente para codificar los cifra más que suficiente para codificar los 20 aminoácidos distintos.20 aminoácidos distintos.

Page 4: (02-OCT-14) 6C. Código Genético Traducción

OOrganizado en tripletes o codones: cada tres nucleótidos (triplete) cada tres nucleótidos (triplete) determinan un aminoácido.determinan un aminoácido.

Es Es degenerado: existen más existen más tripletes o codones que tripletes o codones que aminoácidos, de forma que un aminoácidos, de forma que un determinado aminoácido puede determinado aminoácido puede estar codificado por más de un estar codificado por más de un triplete.triplete.

EEs no solapado o sin superposiciones: un nucleótido solamente pertenece un nucleótido solamente pertenece a un único triplete.a un único triplete. La lectura es "sin comas": el el cuadro de lectura de los tripletes cuadro de lectura de los tripletes se realiza de forma continua "sin se realiza de forma continua "sin comas" o sin que existan comas" o sin que existan espacios en blanco.espacios en blanco.

Es Es universal: el mismo triplete en el mismo triplete en diferentes especies codifica para el diferentes especies codifica para el mismo aminoácido. La principal mismo aminoácido. La principal excepción a la universalidad es el excepción a la universalidad es el código genético mitocondrial.código genético mitocondrial.

CARACTERISTICAS DEL CODIGO GENETICO

Page 5: (02-OCT-14) 6C. Código Genético Traducción

SEÑALES DE TERMINACIONSEÑALES DE TERMINACION

La terminación del mensaje es menos específica La terminación del mensaje es menos específica y puede ser redundante. En las células hay tres y puede ser redundante. En las células hay tres tripletes que significan fin tripletes que significan fin

UAAUAA UAGUAG UGAUGA Los codones de terminación son reconocidos Los codones de terminación son reconocidos

por proteínas que interrumpen la síntesis por proteínas que interrumpen la síntesis proteica.proteica.

Page 6: (02-OCT-14) 6C. Código Genético Traducción

REDUNDANCIA DEL CODIGO REDUNDANCIA DEL CODIGO (DEGENERACIONES) CODONES SINONIMOS(DEGENERACIONES) CODONES SINONIMOS

Hay varios codones para cada aminoácido. Hay varios codones para cada aminoácido. Cada grupo de codones para el mismo Cada grupo de codones para el mismo

aminoácido está formado por “sinónimos”, aminoácido está formado por “sinónimos”, codones que significan lo mismo.codones que significan lo mismo.

Por ejemplo: Para la valina hay cuatro Por ejemplo: Para la valina hay cuatro codones sinónimos, GUU, GUA,GUC,GUG, codones sinónimos, GUU, GUA,GUC,GUG, para la Arginina hay seis.para la Arginina hay seis.

SOLO LA METIONINA (AUG) y el triptófano SOLO LA METIONINA (AUG) y el triptófano tienen un solo codón.tienen un solo codón.

Page 7: (02-OCT-14) 6C. Código Genético Traducción

ESTRUCTURA DE LOS ARNESTRUCTURA DE LOS ARN

Page 8: (02-OCT-14) 6C. Código Genético Traducción

CLASIFICACION DE LOS ARNCLASIFICACION DE LOS ARN

Masa molecular media de sus cadenas.Masa molecular media de sus cadenas. Velocidad de sedimentación.Velocidad de sedimentación.

ARNm (MENSAJERO)ARNm (MENSAJERO) ARN (RIBOSOMICO)ARN (RIBOSOMICO) ARNt (TRANSFERENCIA).ARNt (TRANSFERENCIA). ARNnpu (Pequeños y ricos en uridina)ARNnpu (Pequeños y ricos en uridina)

Page 9: (02-OCT-14) 6C. Código Genético Traducción

ARNm (MENSAJERO)ARNm (MENSAJERO)

Cadenas largas con estructura primaria.Cadenas largas con estructura primaria. Transporta la información necesaria para la Transporta la información necesaria para la

síntesis proteica.síntesis proteica. La información se organiza en codones.La información se organiza en codones. Vida media corta.Vida media corta. En procariotas: Extremo 5” con grupo En procariotas: Extremo 5” con grupo

trifosfatotrifosfato En Eucariotas: Extremo 5” con grupo metil-En Eucariotas: Extremo 5” con grupo metil-

guanosina-trifosfato y 3” con una cola poli-A.guanosina-trifosfato y 3” con una cola poli-A.

Page 10: (02-OCT-14) 6C. Código Genético Traducción

ARNr (ribosomal)ARNr (ribosomal)

CADA ARNr presenta cadenas de diferente CADA ARNr presenta cadenas de diferente tamaño (S) CON ESTRUCTURA SECUNDARIA tamaño (S) CON ESTRUCTURA SECUNDARIA Y TERCIARIA.Y TERCIARIA.

FORMA PARTE DE LOS RIBOSOMASFORMA PARTE DE LOS RIBOSOMAS CUMPLE SU FUNCION DURANTE LA CUMPLE SU FUNCION DURANTE LA

SINTESIS PROTEICASINTESIS PROTEICA PROCARIOTAS:PROCARIOTAS: ARNr 16sARNr 16s ARNr 23SARNr 23S ARNr 5SARNr 5S 5-10 copias en E.coli5-10 copias en E.coli

Page 11: (02-OCT-14) 6C. Código Genético Traducción

ARNrARNr

Se sintetiza en las regiones organizadoras Se sintetiza en las regiones organizadoras nucleolares (NUCLEOLO).nucleolares (NUCLEOLO).

EUCARIOTAS:EUCARIOTAS: ARNr 18S, 5S, 5.8S, 28SARNr 18S, 5S, 5.8S, 28S 130 copias en D MELANOGASTER130 copias en D MELANOGASTER

Page 12: (02-OCT-14) 6C. Código Genético Traducción

ARNtARNtSon moléculas de pequeño tamaño

ESTRUCTURA SECUNDARIA

ESTRUCTURA TERCIARIA

Page 13: (02-OCT-14) 6C. Código Genético Traducción

ANTICODON EN EL ARNt

CODON DE ALANINA ARMm

MOLECULA DE ARN t

Page 14: (02-OCT-14) 6C. Código Genético Traducción

ARNnpuARNnpu

PEQUEÑO TAMAÑO RICAS EN PEQUEÑO TAMAÑO RICAS EN URACILOSURACILOS

FORMAN RIBONUCLEOPROTEINAS FORMAN RIBONUCLEOPROTEINAS (RNPpn)(RNPpn)

FUNCION:FUNCION:CORTE Y EMPALEM DE ARNCORTE Y EMPALEM DE ARNMADURACION DE LOS ARMm MADURACION DE LOS ARMm

(EUCARIOTAS)(EUCARIOTAS)MADURACION DE ARNt (RIBOZIMA P)MADURACION DE ARNt (RIBOZIMA P)

Page 15: (02-OCT-14) 6C. Código Genético Traducción

TRANSCRIPCIONTRANSCRIPCION

Page 16: (02-OCT-14) 6C. Código Genético Traducción

TranscripciónTranscripción

ARN polimerasa. En eucariotas

ARN Pol I ARNr

ARN Pol II ARNm

ARN Pol III ARNt y pequeños ARN nucleares (snARN)

Reacción de polimerización irreversible.

Dirección del proceso 5´→ 3´.

1 error cada 104 nucleótidos copiados.

Polimerizacion

rNTP entrante

Cadena de ARN en crecimiento 5 3

Page 17: (02-OCT-14) 6C. Código Genético Traducción

TranscripciónTranscripción

Hebra de ADN transcribien-

dose

Crecimiento del ARN por

extremo 3’

Cadena molde

Cadena codificante

Cadena de ADN complementarias

ARN polimerasa

Page 18: (02-OCT-14) 6C. Código Genético Traducción

TranscripciónTranscripciónEl ADN tiene 2 cadenas, Cuál de ellas se transcribe para producir el ARN?

El ADN contiene muchos genes, la posición del promotor es lo que define que cadena del ADN se transcribirá. La cadena molde es aquella que posee la secuencia complementaria a la del transcripto y de la cual se copia el mismo.

La cadena codificante es la secuencia de ADN que es igual a la del futuro transcripto, excepto por las Timinas que se transcriben a Uracilo en el ARN.

Triplete de nucleótidos que codifica para el aminoácido Metionina

Cadena codificante

Cadena molde

No todos los genes de un organismo se copian de la misma cadena.

Page 19: (02-OCT-14) 6C. Código Genético Traducción

Producto de la transcripción de ADN a ARN

caat tata intron intronexon exon exon

5´UTR untranslated region

3´UTRuntranslated region

Sitio de inicio de la trascripción (nucleotido+1)

PromotorRegión estructural

Región codificante

intron intronexon exon exon

exon exonexon

AAAAAAAG

TRANSCRIPTO MADURO:

• Adición de caperuza en extremo 5´

• Adición de cola de adeninas (cola de poli A)

• Remoción de intrones

Adición de caperuza en extremo 5´ (agregado de una G y metilación de los 3 primeros nucleótidos)

Adición de cola de adeninas (cola de poli A), aguas arriba, en la secuencia 3´UTR, existe una señal de poliadenilación

Remoción de intrones (splicing)

Page 20: (02-OCT-14) 6C. Código Genético Traducción

Procesamiento ARNm 3’: Adición de cola de poli A Procesamiento ARNm 3’: Adición de cola de poli A (poliadenilación)(poliadenilación)

Protege al transcripto frente a la degradación enzimática.

Aumenta la estabilidad del transcripto. Es requerido para una eficiente síntesis proteica.

Poly A polimerasa

Endonucleasa

Sitio de clivaje (corte) aguas abajo de la señal de poliadenilación

Page 21: (02-OCT-14) 6C. Código Genético Traducción

Algunos de estos genes se expresan en todas las células todo el tiempo. Estos genes se denominan “housekeeping”. Estos son los responsables de las funciones metabólicas de rutina comunes a todas las células (Ej. respiración).

Todas las células de un organismo poseen todos los genes, pero.....

Algunos se expresan cuando un grupo de células entra a una vía de diferenciación particular (Ej. anticuerpos).

Algunos se expresan en aquellas células que se han diferenciado de una manera particular (Ej los genes de tubulinas TUA1, se expresan en los granos de polen en cambio el TUB1, se expresa en la raíz por arriba del meristema apical).

Algunos se expresan solamente bajo ciertas condiciones del ambiente celular. (Ej. una hormona puede “prender” o “apagar” ciertos genes en una célula).

Page 22: (02-OCT-14) 6C. Código Genético Traducción

T A C G A A C C G T T G C A C A T C

A U G C U U G G C A A C G U G

Transcripción:

1- Iniciación: Una ARN‑polimerasa comienza la síntesis del precursor del ARN a partir de unas señales de iniciación "secuencias de consenso " que se encuentran en el ADN.

ARNpolimerasa

Page 23: (02-OCT-14) 6C. Código Genético Traducción

T A C G A A C C G T T G C A C A T C

A U G C U U G G C A A C G U G

Transcripción:

2. Alargamiento: La síntesis de la cadena continúa en dirección 5'3'. Después de 30 nucleótidos se le añade al ARN una cabeza (caperuza o líder) de metil‑GTP en el extremo 5‘ con función protectora.

m-GTP

ARNpolimerasa

Page 24: (02-OCT-14) 6C. Código Genético Traducción

A U G C U C G U G

Transcripción:

3- Finalización: Una vez que la enzima (ARN polimerasa) llega a la región terminadora del gen finaliza la síntesis del ARN. Entonces, una poliA‑polimerasa añade una serie de nucleótidos con adenina, la cola poliA, y el ARN, llamado ahora ARNm precursor, se libera.

m-GTP

poliA-polimerasa

U A G A A A A A

ARNm precursor

Page 25: (02-OCT-14) 6C. Código Genético Traducción

ARNmprecursor

AAAAAAAUG UAG

cola

4. Maduración (cont.): El ARNm precursor contiene tanto exones como intrones. Se trata, por lo tanto, de un ARNm no apto para que la información que contiene sea traducida y se sintetice la correspondiente molécula proteica. En el proceso de maduración un sistema enzimático reconoce, corta y retira los intrones y las ARN‑ligasas unen los exones, formándose el ARNm maduro.

ARNmmaduro

Cabeza

Page 26: (02-OCT-14) 6C. Código Genético Traducción

Región codificadora del gen

Promotor E1 I1 E2 I2 E3 Terminador

ADN

ARNmprecursor

ARNmmaduro

AAAAAA

AAAAAAAUG UAG

AUG UAG

ATCTAC

Cabeza

Cabeza E1 I1 E2 I2 E3 cola

cola

Maduración del ARNm (Visión de conjunto).

Page 27: (02-OCT-14) 6C. Código Genético Traducción

Met

1er aminoácido

ARNtAnticodón

Codón

ARNm

Subunidad menor del ribosoma

AAAAAAAAAAA P A

A U G C A A

U A C

Iniciación: La subunidad pequeña del ribosoma se une a la región líder del ARNm y el ARNm se desplaza hasta llegar al codón AUG, que codifica el principio de la proteína. Se les une entonces el complejo formado por el ARNt-metionina (Met). La unión se produce entre el codón del ARNm y el anticodón del ARNt que transporta la metionina (Met).

5’ 3’

U G C U U A C G A U A G

(i)

Page 28: (02-OCT-14) 6C. Código Genético Traducción

Met

Subunidad menor del ribosoma

AAAAAAAAAAA P A

A U G C A AU A C

Elongación I: A continuación se une la subunidad mayor a la menor completándose el ribosoma. El complejo ARNt-aminoácido2 , la glutamima (Gln) [ARNt-Gln] se sitúa enfrente del codón correspondiente (CAA). La región del ribosoma a la que se une el complejo ARNt-Gln se le llama región aminoacil (A).

5’3’

Gln

G U UU G C U U A C G A U A G

(i)

Page 29: (02-OCT-14) 6C. Código Genético Traducción

ARNmAAAAAAAAAAA

P A

A U G C A AU A C

Elongación II: Se forma el enlace peptídico entre el grupo carboxilo de la metionina (Met) y el grupo amino del segundo aminoácido, la glutamina (Gln).

5’

Gln-Met

G U UU G C U U A C G A U A G

3’

Page 30: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación III: El ARNt del primer aminoácido, la metionina (Met) se libera.

5’

U A C

Gln-Met

G U UU G C U U A C G A U A G

ARNm3’

Page 31: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación IV: El ARNm se traslada, de tal manera que el complejo ARNt-Gln-Met queda en la región peptidil del ribosoma, quedando ahora la región aminoacil (A) libre para la entrada del complejo ARNt-aa3

5’ 3’

Gln-Met

G U UU G CU G C U U A C G A U A G

ARNm

Page 32: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación V: Entrada en la posición correspondiente a la región aminoacil (A) del complejo ARNt-Cys, correspondiente al tercer aminoácido, la cisteína (Cys).

5’

Gln-Met

G U UU G CU G C U U A C G A U A G

ARNm3’

A C G

Cys

Page 33: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación VI: Unión del péptido Met-Gln (Metionina-Glutamina) a la cisteína (Cys).

5’

G U UU G CU G C U U A C G A U A G

ARNm3’

A C G

Cys-Gln-Met

Page 34: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación VII: Se libera el ARNt correspondiente al segundo aminoácido, la glutamina (Glu).

5’

U G CU G C U U A C G A U A G

ARNm3’

G U U

A C G

Cys-Gln-Met(i)

Page 35: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación VIII: El ARNm corre hacia la otra posición, quedando el complejo ARNt3-Cys-Glu-Met en la región peptidil del ribosoma.

5’

U G CU G C U U A C G A U A G

ARNm3’

A C G

Cys-Gln-Met

Page 36: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación IX: Entrada del complejo ARNt-Leu correspondiente al 4º aminoácido, la leucina.

5’

U G CU G C U U A C G A U A G

ARNm3’

A C G

Cys-Gln-Met

A A U

Leu

Page 37: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación X: Este se sitúa en la región aminoacil (A).

5’

U G CU G C U U A C G A U A G

ARNm3’

A C G

Cys-Gln-Met

A A U

Leu

Page 38: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación XI: Unión del péptido Met-Gln-Cys con el 4º aminoácido, la leucina (Leu). Liberación del ARNt de la leucina. El ARNm se desplaza a la 5ª posición

5’

U G CU G C U U A C G A U A G

ARNm3’

A C G

A A U

Leu-Cys-Gln-Met

Page 39: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación XII: Entrada del ARNt de la leucina, el 5º aminoácido, la arginina (ARNt-Arg).

5’

U G CU G C U U A C G A U A G

ARNm3’

A A U

Leu-Cys-Gln-Met

G C U

Arg

Page 40: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

Elongación XIII: Unión del péptido Met-Gln-Cys-Leu con el 5º aminoácido, la arginina (Arg). Liberación del ARNt de la leucina (Leu). El ARNm se desplaza a la 6ª posición, se trata del un codón de finalización o de stop.

5’

U G C U U A C G A U A G

ARNm3’

A A U

Arg-Leu-Cys-Gln-Met

G C U

Page 41: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA P A

A U G C A A

5’

U G C U U A C G A U A G

ARNm3’

A A U

Arg-Leu-Cys-Gln-Met

G C U

Finalización I: Liberación del péptido o proteína. Las subunidades del ribosoma se disocian y se separan del ARNm.

Page 42: (02-OCT-14) 6C. Código Genético Traducción

AAAAAAAAAAA

Finalización II: Después unos minutos los ARNm son digeridos por las enzimas del hialoplasma.

5’

ARNm

3’

A U G C A A U G C U U A C G A U A G

(i)

Page 43: (02-OCT-14) 6C. Código Genético Traducción

Regulación de la síntesis proteica en Regulación de la síntesis proteica en procariotes y eucariotes. Regulación procariotes y eucariotes. Regulación

de la expresión génica.de la expresión génica.

Page 44: (02-OCT-14) 6C. Código Genético Traducción

Cómo es la estructura de un gen eucariota?

Región regula-

toria

ESQUEMATIZACION DEL GEN

Otra secuencia regulatoria fuera de la secuencia del gen

Otra secuencia regulatoria fuera de la secuencia del gen

ADNRegión

regulatoria Región estructural

Región estructural

Sitio de inicio de la trascripción (nucleotido+1)

RECORDAR

Page 45: (02-OCT-14) 6C. Código Genético Traducción

Detalle de la estructura de un gen eucariota

ESQUEMATIZACION DEL GEN

caat tata intron intronexon exon exon

5´UTR 3´UTR

Sitio de inicio de la trascripción (nucleotido+1)

Promotor Región estructural

Región codificante

Primeras tres bases (ATG) que codificarán para el codón de

iniciación

Ultimas tres bases TGA ó TAA ó TAG que codificarán para uno de los 3 posibles codones de terminación o STOP.

Región regula-

toriaRegión estructural

Page 46: (02-OCT-14) 6C. Código Genético Traducción

Nomenclatura ADN: nucleótido +1, aguas arriba (-) y aguas abajo (+)

Promotor Región estructural

Sitio de inicio de la trascripción: nucleotido +1

+1

Aguas abajo (+)Aguas arriba (-)

Por convención…..

Direccionalidad del ADN

Al esquematizar una sola de las hebras de ADN, SIEMPRE se escribe su secuencia en sentido 5´→3´

5´ 3´CCATGGTCTATGACTGGTCCATGCTAGCTGAGCTCGT

Page 47: (02-OCT-14) 6C. Código Genético Traducción

ARN procariota es policistrónicoARN procariota es policistrónico

Posee información solo para una proteína

Posee información para varias proteinas

Page 48: (02-OCT-14) 6C. Código Genético Traducción

No todos los genes se expresan simultáneamente ni al mismo nivel

Genes constitutivos: se expresan al mismo nivel independientemente de las condicionesambientales

Genes regulados: se expresan a distintos niveles (o no se expresan) dependiendo de las condiciones

Genes constitutivos y genes reguladosGenes constitutivos y genes regulados

Regulación de la expresión génicaRegulación de la expresión génica

Page 49: (02-OCT-14) 6C. Código Genético Traducción

Expresión génica en procariotas: Expresión génica en procariotas: ARNs policistrónicosARNs policistrónicos

Page 50: (02-OCT-14) 6C. Código Genético Traducción

Regulación de la expresión génica en procariotasRegulación de la expresión génica en procariotasEl operónEl operón

Page 51: (02-OCT-14) 6C. Código Genético Traducción

Existen algunos procesos metabólicos que son necesarios para el funcionamiento normal de casi todas las células, de manera que existen una serie de necesidades básicas para el mantenimiento normal de una célula.

Los genes que codifican para las enzimas necesarias para el metabolismo básico celular se están expresando continuamente, es decir, se expresan de forma constitutiva o continua.

Page 52: (02-OCT-14) 6C. Código Genético Traducción

Los genes constitutivos codifican para sistemas enzimáticos constitutivos, que se necesitan siempre para la actividad normal de la célula.

Page 53: (02-OCT-14) 6C. Código Genético Traducción

Frente a los genes constitutivos, nos encontramos con los genes que se expresan solamente en determinadas situaciones y que, por consiguiente, codifican para enzimas que solamente se necesitan en momentos concretos.

A este tipo de genes se les llama genes adaptativos y a las enzimas codificadas por ellos, sistemas enzimáticos adaptativos. Se denominan así pensando en que se expresan cuando la célula se adapta a una determinada situación ambiental.

Page 54: (02-OCT-14) 6C. Código Genético Traducción

CONTROL POSITIVO Y CONTROL NEGATIVO

Control positivo: Se dice que un sistema está bajo control positivo cuando el producto del gen regulador activa la expresión de los genes, actúa como un activador.

Control negativo: se dice que un sistema está bajo control negativo cuando el producto del gen regulador reprime o impide la expresión de los genes, actúa como un represor.

Page 55: (02-OCT-14) 6C. Código Genético Traducción

REGULACION DE LA EXPRESION REGULACION DE LA EXPRESION GENICAGENICA

Ejemplo: Metabolismo de azúcares.Ejemplo: Metabolismo de azúcares.

BACTERIAS: Glucosa, Galactosa, Lactosa, BACTERIAS: Glucosa, Galactosa, Lactosa, Rafinosa, Ramnosa, XilosaRafinosa, Ramnosa, Xilosa

CELULAS EUCARIOTAS: CELULAS EUCARIOTAS: GLUCOSAGLUCOSA

Las bacterias tienen vías catabólicas para varios Las bacterias tienen vías catabólicas para varios azúcares, si se expresan todas implicaría un enorme azúcares, si se expresan todas implicaría un enorme gasto energíagasto energía

El cambio en la expresión ocurre en pocos minutosEl cambio en la expresión ocurre en pocos minutos

Page 56: (02-OCT-14) 6C. Código Genético Traducción

Un operón consiste en: 

un operador: controla el acceso de la ARN polimerasa al promotor

un promotor: donde la ARN polimerasa reconoce el sitio de inicio de la transcripción

un gen regulador: controla el tiempo y velocidad de transcripción de otros genes

un gen estructural: codifican las enzimas relacionadas o las proteínas estructurales

Page 57: (02-OCT-14) 6C. Código Genético Traducción

El gen regulador codifica para una proteína que se pega al operador, obstruyendo al promotor (y por lo tanto a la transcripción), del gen estructural.

Cuando se remueve la proteína represora, puede producirse la transcripción.

El operador y el  promotor son sitios de unión sobre el ADN y no se trasncriben.

Page 58: (02-OCT-14) 6C. Código Genético Traducción

Clasificación de los operones de Clasificación de los operones de acuerdo a su regulaciónacuerdo a su regulación

INDUCIBLES: OPERON LACTOSA INDUCIBLES: OPERON LACTOSA (utilización de nutrientes).(utilización de nutrientes).

REPRECIBLES: OPERON TRIPTOFANO REPRECIBLES: OPERON TRIPTOFANO ( Biosintesis).( Biosintesis).

CONSTITUTIVOS: METABOLISMO CONSTITUTIVOS: METABOLISMO GLUCOSA ( Esenciales )GLUCOSA ( Esenciales )

Page 59: (02-OCT-14) 6C. Código Genético Traducción
Page 60: (02-OCT-14) 6C. Código Genético Traducción

Cuando hay lactosa en el medio (intestinos de un mamífero durante la lactancia), ésta 

funciona como inductor, se une al represor  cambiando su forma lo que evita

que se pueda unir al operador, de este modo la polimerasa puede transcribir los

genes correspondientes.

Este operón lac sólo se activa cuando hay lactosa en el medio.

Page 61: (02-OCT-14) 6C. Código Genético Traducción
Page 62: (02-OCT-14) 6C. Código Genético Traducción

Cuando no hay lactosa en el medio, la proteína represora se encuentra unida al operador impidiendo la transcripción de los genes para las enzimas que metabolizan la lactosa.

Page 63: (02-OCT-14) 6C. Código Genético Traducción

Operón lactosa en ausencia de lactosa

Page 64: (02-OCT-14) 6C. Código Genético Traducción

En ausencia del inductor (la lactosa), la proteína represora producto del gen i se encuentra unida a la región operadora e impide la unión de la ARN-polimerasa a la región promotora y, como consecuencia, no se transcriben los genes estructurales.

Page 65: (02-OCT-14) 6C. Código Genético Traducción

Cuando un producto del metabolismo, el triptofano por ejemplo, está en cantidades suficientes la bacteria puede dejar de fabricar las enzimas que los sintetizan.

En este sistema, el producto funciona como correpresor uniéndose al represor y de este modo detiene la síntesis proteica.

OPERONES REPRIMIBLES

Page 66: (02-OCT-14) 6C. Código Genético Traducción

Cuando un producto del metabolismo, el triptofano por ejemplo, está en cantidades suficientes la bacteria puede dejar de fabricar las enzimas que los sintetizan.

En este sistema, el producto funciona como correpresor uniéndose al represor y de este modo detiene la síntesis proteica.

Page 67: (02-OCT-14) 6C. Código Genético Traducción
Page 68: (02-OCT-14) 6C. Código Genético Traducción

Operón triptófano: en presencia de triptófano

Page 69: (02-OCT-14) 6C. Código Genético Traducción

Tanto la represión como la inducción son ejemplos de control negativo, dado que la proteína represora detiene (" turn off ") la transcripción. 

La lactosa, el azúcar de la leche, es hidrolizada por la enzima beta-galactosidasa. Esta enzima es inducible: solo se produce en grandes cantidades cuando la lactosa, el sustrato sobre el cual opera, esta presente.

En cambio, las enzimas para la síntesis del aminoácido triptófano se producen continuamente a menos que el triptófano este presente en el medio de cultivo, se dice en este caso que las enzimas sintetizadoras de triptófano están reprimidas.

Page 70: (02-OCT-14) 6C. Código Genético Traducción

Regulación de la expresión génica en Regulación de la expresión génica en eucariotaseucariotas

Regulación a nivel transcripcional.

1.Selección del gen que se transcribe

2.Modificación de la tasa de expresión 3. Uso de promotores alternativos

Page 71: (02-OCT-14) 6C. Código Genético Traducción

Niveles de regulación en eucariotasNiveles de regulación en eucariotas

Page 72: (02-OCT-14) 6C. Código Genético Traducción

Regulación post-transcripcionalRegulación post-transcripcional

•Modificación del extremo 3’: Poliadenilación y uso de secuencias de término alternativas

•Splicing alternativo

•Edición del RNA

Page 73: (02-OCT-14) 6C. Código Genético Traducción

Regulación post-transcripcionalRegulación post-transcripcionalProcesamiento (splicing) alternativoProcesamiento (splicing) alternativo

Page 74: (02-OCT-14) 6C. Código Genético Traducción

Regulación post-transcripcionalRegulación post-transcripcionalProcesamiento (splicing) alternativoProcesamiento (splicing) alternativo

Page 75: (02-OCT-14) 6C. Código Genético Traducción

Regulación post-transcripcionalRegulación post-transcripcionalEdición del ARNEdición del ARN

Page 76: (02-OCT-14) 6C. Código Genético Traducción

Regulación transcripcional y post-Regulación transcripcional y post-transcripcional múltipletranscripcional múltiple

Page 77: (02-OCT-14) 6C. Código Genético Traducción

Niveles de regulación en Niveles de regulación en eucariotaseucariotas