61
Emerging viruses Lecture 23 Biology W3310/4310 Virology Spring 2013 Nothing endures but change. HERACLITUS 1

023_W3310_13

Embed Size (px)

DESCRIPTION

fashion

Citation preview

Page 1: 023_W3310_13

Emerging  virusesLecture  23

Biology  W3310/4310Virology

Spring  2013

Nothing  endures  but  change.HERACLITUS

1

Page 2: 023_W3310_13

Emerging  viruses

• Emerging  virus  -­‐  causa1ve  agent  of  a  new  or  previously  unrecognized  infec1on

• The  term  became  popular  in  1990s,  but  emerging  viruses  are  not  new  

• Since  the  rise  of  agriculture  -­‐  11,000  years  ago  -­‐  new  infec1ous  agents  have  invaded  human  popula1ons  because  they  can  be  sustained  by  numbers  that  were  unknown  before  agriculture  and  commerce

2

Page 3: 023_W3310_13

Emerging  viruses

• Expanded  host  range  with  an  increase  in  disease  not  previously  obvious

• Transmission  of  a  virus  from  a  wild  or  domesFcated  animal  to  humans  -­‐  zoonosis

• Cross-­‐species  infecFon  may  establish  a  new  virus  in  the  populaFon  (SIV  moving  from  chimps  to  humans)

• OMen  cross-­‐species  infecFon  cannot  be  sustained  (e.g.  Ebola  and  Marburg  from  bats  to  humans)

3

Page 4: 023_W3310_13

4

Page 5: 023_W3310_13

Six  factors  that  drive  viral  emergence

Principles  of  Virology,  ASM  Press

5

Page 6: 023_W3310_13

Over-­‐riding  factors  driving  the  emergence  of  

infec8ous  diseases  of  humans  and  animals:  

Human  popula9on  growth  and    incredible  change  occurring  in  all  ecosystems  brought  about  by  human  occupa9on  of  almost  every  

corner  of  the  planet

Na8onal  Geographic  SocietyWhite  =  city  lights

Yellow  =  natural  gas  burnoffRed  =  fires

6

Page 7: 023_W3310_13

Convergent  Forces  of  Disease  Emergence

DEFORESTATION

EXPANDING  POPULATIONS“MEGA-­‐  CITIES”

POVERTY

GLOBALIZATION    RAPID  AIR  TRAVEL

 ENVIRONMENTAL  CHANGES

ALTERED  ECOSYSTEMS

MICROBIALEVOLUTION

7

Page 8: 023_W3310_13

Global  avia8on  network

8

Page 9: 023_W3310_13

Roles  of  Evolu8on

• Leads  to  the  biodiversity  of  pathogens  exisFng  in  nature

• AdaptaFon  to  new  hosts  and  environments  (through  variaFon  and  selecFon)

9

Page 10: 023_W3310_13

The  Amazon  North  Region  of  BrazilHome  to  183  Arthropod-­‐borne  and  Other  Vertebrate  Viruses

Acre

Rondonia

Amazonas

Para

Tocantins

AmapaRoraima

Porto Velho

Manaus

Belem

Macapa

Palmas

Rio Branco

Boa Vista

Aura, EEE, Una, WEE, Bussuquara, Ilheus, Kairi, Maguari, Taiassui, Caraparu, Itaqui,

Murutucu, Nepuyo, Melao, Acara, Benevides, Benfica, Bushbush, Capim, Guajara,

Ananindeua, Bimiti, Catu, Mirim, Moju, Timboteua, Utinga, Turlock, Bujaru, Icoaraci, Itaporanga, Urucuri, Belem, Para, Acado-like, Mosqueiro, Kwatta-like, Chaco, Timbo, Piry, Marco, Aruac, Inhangapi, Agua Preta, Cotia-

like, Marajo, Mucambo, yellow fever, Tacaiuma, Tucunduba, Apeu, Marituba,

Oriboca, Caraparu-like, Guama, Anhanga, Mayaro

Pixuna, SLE, Lukuni, Sororoca, Guaroa, Oropouche, Candiru, Pacui, Caninde, Gurupi, Irituia, Ourem, Tembe, Cocal,

Jurona

Cacipacore, Trombetas, Mapuera, Oriximina, Turuna, Saraca, Juruaca

Arumateua, Caraipe,Tucurui,Guamboa-Like, Uriurana, Anapu, Aracai, Aratau, Aruana, Arawete,

Bacuri, Canoal, Coari, Iopaka, Ipixaia, Iruana, Itaboca, Jandia, Jatuarana, Pacaja, Parakana,

Paranati, Pependana, Pindobai, Piratuba, Surumbi, Tekupeu, Timbozal, Tocantins, Tocaxa, Tuere,

Xaraira, Xiwanga, Breu Branco, Trocara, Jatobal, Jacunda.

Xingu, Ambe, Joa, Tapara, Acatinga, Acurene, Altamira, Assurinis, Bacajai, Gorotire, Kararao, Uxituba, Cajazeira, Codajas, Galibi, Iriri, Uruara

Itaituba, Pacora-like,

Jacareacanga, Flexal

Santarem, Jamanxi

dengue 2, dengue 3, Bocas, Triniti,

Barcarena

Murumbi

Munguba, Jari, Jutai, Monte Dourado, Paru,

Tumucumaque, Almeirim

Serra Norte, Catete, Parauapebas, Serra

Sul, Tapirope, Carajas, Maraba,

Curianopolis, Itacaiunas

Itupiranga

Melgaco

Mojui dos Campos, Belterra, Cuiaba,

Alenquer

Serra do Navio, Araguari, Amapari,

Ieri, Cupixi

dengue 1, dengue 4

Iaco, Moriche, Purus, Sena Madureira, Xiburema

Ariquemes

Balbina, Uatuma

North Region

Atlant

ic Oce

an

Atlantic Ocean

0                500              1,000Kilometers

             

Brazil

South America

Sites  from  which  viruses  were  isolated  at  the  Evandro  Chagas  Ins1tute  

10

Page 11: 023_W3310_13

Principles  of  Virology,  ASM  Press

11

Page 12: 023_W3310_13

The  general  interac8ons  of  hosts  and  viruses

• Stable:  maintains  virus  in  ecosystem

• Evolving:  passage  of  virus  to  naive  populaFon

• Dead-­‐end:  one  way  to  different  species

• Resistant  host:  infecFon  blockedPrinciples  of  Virology,  ASM  Press

12

Page 13: 023_W3310_13

Stable  host-­‐virus  interac8ons

• Both  parFcipants  survive  and  mulFply

• Some  are  effecFvely  permanent

-­‐ Humans  are  sole  natural  host  for  measles  virus,  herpes  simplex  virus,  HCMV,  smallpox

• May  include  infecFon  of  more  than  one  species

-­‐ Influenza  A  virus,  flaviviruses,  togavirusesPrinciples  of  Virology,  ASM  Press

13

Page 14: 023_W3310_13

Evolving  host-­‐virus  rela8onship

• Hallmarks  are  instability  and  unpredictability

• Outcome  of  infecFon  may  range  from  benign  to  death

-­‐ IntroducFon  of  smallpox  and  measles  to  naFves  of  Americas  by  Old  World  colonists  and  slave  traders

-­‐ IntroducFon  of  West  Nile  virus  into  Western  Hemisphere,  1999

• Virus  may  acquire  new  property  that  increases  virulence  or  spread,  or  if  host  changes  (e.g.  famine  or  populaFon  change  during  wars)

Principles  of  Virology,  ASM  Press

14

Page 15: 023_W3310_13

Dead-­‐end  interac8on

• Frequent  outcome  of  cross-­‐species  infecFon,  but  not  of  intraspecies  infecFons

• OMen  host  is  killed  so  quickly  that  there  is  li[le  or  no  transmission  to  others

• AlternaFvely,  the  new  infected  host  cannot  transmit  the  infecFon  to  others  of  the  same  species

• Contribute  li[le  to  the  spread  of  a  natural  infecFonPrinciples  of  Virology,  ASM  Press

15

Page 16: 023_W3310_13

The  complex  life  cycle  of  an  arbovirus

Stable  host-­‐virus  interac1ons

Principles  of  Virology,  ASM  Press

16

Page 17: 023_W3310_13

Rodents  and  Insect  Vectors  Move  EuropeanTick-­‐borne  Encephali8s  Among  Many  Hosts

Dead-­‐end  hosts

Principles  of  Virology,  ASM  Press

17

Page 18: 023_W3310_13

Other  dead-­‐end  infec8ons

• Yellow  fever  (monkey)

• Marburg,  Ebola,  Hendra,  Nipah,  SARS  progenitor  (bats)

• Lassa,  Junin,  Sin  Nombre  (rodents)

• Laboratory  animal  models

18

Page 19: 023_W3310_13

Emerging  infec8ons:  Two  steps

• IntroducFon

• Establishment  and  disseminaFon

19

Page 20: 023_W3310_13

Encountering  new  hosts

• Rare  chance  encounters  of  viruses  with  new  hosts  may  never  be  detected

• Single-­‐host  infecFons  are  not  transmi[ed  among  humans  for  many  reasons

20

Page 21: 023_W3310_13

Expanding  viral  niches

• Successful  encounters  require  access  to  suscepFble  and  permissive  cells

• PopulaFon  density  and  health  are  important  factors

• Virus  populaFons  will  survive  in  nature  only  because  of  serial  infec9ons  (a  chain  of  transmission)

21

Page 22: 023_W3310_13

Human  are  constantly  providing  new  ways  to  meet  viruses

Principles  of  Virology,  ASM  Press

22

Page 23: 023_W3310_13

Principles  of  Virology,  ASM  Press

23

Page 24: 023_W3310_13

Bats:  a  source  of  zoono8c  infec8ons

•Four  previously  unknown  paramyxoviruses  isolated  from  flying  foxes  since  1995,  including  Nipah  and  Hendra  viruses

•Three  cause  severe  disease  in  domes1c  animals  (horses  and  pigs)  and  are  known  to  infect  humans

24

Page 25: 023_W3310_13

Nipah  virus

• First  outbreak  Malaysia  1998

-­‐ Outbreak  of  respiratory  and  neurological  disease  on  pig  farms

-­‐ 105  human  deaths,  1  million  pigs  culled

• Fruit  bats  excrete  virus  in  urine  but  are  unaffected

• Pig  farmers  plant  mangoes  near  pigpens

• Pigs  spread  infecFon  to  humans

• Subsequently  humans  infected  by  consuming  date  palm  sap  contaminated  by  bats  (India,  Bengladesh)

• Human  to  human  transmission;  infecFons  conFnue25

Page 26: 023_W3310_13

Hendra  virus

• Discovered  in  Hendra,  Australia,  September  1994

-­‐ Outbreak  killed  14  racehorses  and  a  trainer

• Spread  from  flying  foxes  to  horses,  then  to  humans

• Horses  conFnue  to  acquire  infecFon

26

Page 27: 023_W3310_13

27

Page 28: 023_W3310_13

Diseases  of  explora8on  and  coloniza8on

• Explosive  epidemic  spread  may  occur  when  a  virus  enters  a  naive  populaFon

• Smallpox  reached  Europe  from  the  Far  East  in  710  AD,  a[ained  epidemic  proporFons

• Smallpox  changed  the  balance  of  human  populaFons  in  the  New  World  -­‐  killed  3.5  million  Aztecs  in  2  years  (1520  -­‐  spread  from  Hispaniola),  allowing  conquest  by  Cortez

28

Page 29: 023_W3310_13

Yellow  fever  virus:  Humans  change  the  paUern  and  pay  the  price

Yellow  fever  deaths,  Philadelphia,  1793

Principles  of  Virology,  ASM  Press

“Yellow  Fever  will  discourage  the  growth  of  great  ci9es  in  our  na9on”THOMAS  JEFFERSON,  1800

29

Page 30: 023_W3310_13

Changes  in  human  popula8ons  and  environments

• Emergence  of  epidemic  poliomyeliFs  in  the  beginning  of  the  20th  century:  improved  sanitaFon  delayed  transmission

• Known  since  4,000  years  ago,  stable  host-­‐virus  relaFonship

30

Page 31: 023_W3310_13

Poliomyeli8s:  A  disease  of  modern  sanita8on

Principles  of  Virology,  ASM  Press

31

Page 32: 023_W3310_13

Changing  climate  and  animal  popula8ons

• Hantavirus  pulmonary  syndrome  -­‐  first  noted  in  the  Four  Corners  area  of  New  Mexico,  1993

• Disease  is  caused  by  Sin  Nombre  virus,  endemic  in  the  deer  mouse  (Peromyscus  maniculatus,  30%  virus  posi1ve)

• Originally  called  Muerto  Canyon  virus,  but  residents  objected  to  the  name

32

Page 33: 023_W3310_13

Changing  climate  and  animal  popula8ons

• In  1992-­‐93,  abundant  rainfall  produced  a  large  crop  of  piñon  nuts,  food  for  humans  and  the  deer  mouse.  Mouse  popula1on  rose,  contact  with  humans  increased.

• The  virus  is  excreted  in  mouse  droppings,  and  contaminated  blankets  or  dust  from  floors  provided  opportuni1es  for  human  infec1on

• Humans  are  not  the  natural  host  for  Sin  Nombre  virus,  the  human  disease  is  rare

• Not  new  -­‐  earliest  known  case  1959

33

Page 34: 023_W3310_13

Distribu8on  of  Peromyscus  maniculatus  and  Loca8on  of  HPS  Cases  as  of  August  27,  2003

Total  Cases  (N=349  in  31  States)

Peromyscusmaniculatus

SNVOther  virus

34

Page 35: 023_W3310_13

35

Page 36: 023_W3310_13

Sin  NombrePeromyscus  maniculatus

Rio  SegundoReithrodontomys  mexicanus

El  Moro  CanyonReithrodontomys  megalo9s

AndesOligoryzomys  longicaudatus

BayouOryzomys  palustris

Black  Creek  CanalSigmodon  hispidus

Rio  MamoreOligoryzomys  micro9s

Laguna  NegraCalomys  laucha

MuleshoeSigmodon  hispidus

New  YorkPeromyscus  leucopus

Juqui8baUnknown  Host

MacielNecromys  benefactus

Hu39694Unknown  Host

LechiguanasOligoryzomys  flavescens

PergaminoAkodon  azarae

OránOligoryzomys  longicaudatus

Caño  DelgaditoSigmodon  alstoni

Isla  VistaMicrotus  californicus

Bloodland  LakeMicrotus  ochrogaster

Prospect  HillMicrotus  pennsylvanicus

BermejoOligoryzomys  chacoensis

CalabazoZygodontomys  brevicauda

ChocloOligoryzomys  fulvescens

(Virus  Names  in  Orange  are  Associated  with  Human  Disease)

New  World  Hantaviruses

36

Page 37: 023_W3310_13

Hantavirus  zoono8c  infec8on  is  a  warning  that  poten8al  human  diseases  lurk  in  the  wild  if  we  

inadvertently  intrude  upon  another  host-­‐parasite  rela8onship

37

Page 38: 023_W3310_13

SARS  -­‐  Rise  and  fall  of  a  zoono8c  infec8onPNEUMONIA  -­‐  CHINA  (GUANGDONG):  RFI                                                **********************************                                                A  ProMED-­‐mail  post<hfp://www.promedmail.org>ProMED-­‐mail  is  a  program  of  the  Interna1onal  Society  for  Infec1ous  Diseases  <hfp://www.isid.org>                                                [1]                                                Date:  10  Feb  2003                                              From:  Stephen  O.  Cunnion,  MD,  PhD,  MPH  <[email protected]>  This  morning  I  received  this  e-­‐mail  and  then  searched  your  archives  and  found  nothing  that  pertained  to  it.  Does  anyone  know  anything  about  this  problem?"Have  you  heard  of  an  epidemic  in  Guangzhou?    An  acquaintance  of  mine  from  a  teacher's  chat  room  lives  there  and    reports  that  the  hospitals  there  have  been  closed  and  people  are  dying.“                                              -­‐-­‐Stephen  O.  Cunnion,  MD,  PhD,  MPHInterna1onal  Consultants  in  Health,  IncMember  ASTM&H,  ISTM<[email protected]>

38

Page 39: 023_W3310_13

SARS

• Outbreak  of  severe  atypical  pneumonia,  unknown  eFology,  Guangdong  Province,  China,  Nov  2002

-­‐ 305  cases,  5  deaths

• IncubaFon  period  2-­‐10  days

• Illness  begins  with  prodrome  of  fever

-­‐ Chills,  headache,  malaise,  myalgia

• Next  phase:  dry  cough,  shortness  of  breath

• 10-­‐20%  may  require  mechanical  venFlaFon

39

Page 40: 023_W3310_13

SARS  (Severe  acute  respiratory  syndrome)

• A  Chinese  doctor  who  treated  first  paFents  traveled  to  Hong  Kong  on  21  February  2003,  stayed  on  ninth  floor  of  Metropole  Hotel

• He  died  in  hospital  22  February

• InfecFon  spread  to  10  people  in  hotel,  who  flew  to  Singapore,  Vietnam,  Canada,  US  before  symptoms  evident

• InfecFon  spread  to  8000  people  in  29  countries,  10%  mortality

40

Page 41: 023_W3310_13

Hotel  MHong  Kong

Guangdong  Province,  China

A

A

H,JA

H,J

Hong  Kong  SAR

Hosp.  1:  99  HC

8  hospitals  total

Total:  156    close  contacts  of  HCW  and  pa8ents

United  States

1  HCW

I,  L,M

I,L,M

K Ireland

0  HCWK

Singapore

34  HCW

37  close  contacts

C,D,E

C,D,E

B

B

Vietnam

37  HCW

21  close  contacts

F,G

Canada

18  HCWF,G

 11  close  contacts

Spread  from  Hotel  Metropole(21  February  2003)

 249  cases  traced  to  “A”  as  of  March  28,  2003

41

Page 42: 023_W3310_13

SARS  virion

~120  nm

42

Page 43: 023_W3310_13

SARS-­‐CoV  disease  mechanisms

• Transmifed  by  respiratory  droplets

• Virus  enters  respiratory  tract  and  mul1plies  in  epithelial  cells

• Mul1plica1on  in  alveolar  epithelial  cells  leads  to  lung  injury

• Immune  suppression  cause  of  severe  disease?

Principles  of  Virology,  ASM  Press

43

Page 44: 023_W3310_13

Probable  cases  of  SARS  by  date  of  onset,Hong  Kong:  n  =  1  753,  as  of  9  June  2003

Num

ber  o

f  cases

01  Feb 13  Feb 25  Feb 9  Mar 21  Mar 2  Apr 14  Apr 26  Apr 8  May 20  May 1  Jun 9  Jun

0

20

40

60

80

100

120

Outbreak  ends  July  2003

44

Page 45: 023_W3310_13

Probable  SARS  Cases  Worldwide  Reported  to  WHO  as  of  Sept.  26,  2003

China  (5327)

Singapore  (238  +  1)

Hong  Kong  (1755)

Vietnam  (63)

Canada  (251)

U.S.  (29)

Europe:10  countries  (34)

Thailand  (9)

Taiwan  (346)

Total:  8,098  cases;  774  deaths  (9.6%  case  fatality)

Australia  (6)

45

Page 46: 023_W3310_13

SARS  and  the  economy:impact  on  global  travel

46

Page 47: 023_W3310_13

Airport  screening  and  health  informa8on,  Hong  Kong,  SARS,  2003

47

Page 48: 023_W3310_13

Public  Health  Responses  to  SARS

• Epi  Surveillance  and  early  warning

• Case  inves1ga1on,  contact  tracing

• Interven1ons

-­‐ Immuniza1on:  NOT  AVAILABLE

-­‐ An1viral  agents:  NOT  AVAILABLE

-­‐ Travel  restric1ons,  quaran1ne:  WIDELY  USED

-­‐ Public  educa1on

• Infec1on  control  for  healthcare  providers  and  in  healthcare  setngs

48

Page 49: 023_W3310_13

Origin  of  SARS-­‐CoV• Human  sera  collected  

before  SARS  outbreak  do  not  contain  anFbodies  to  SARS-­‐CoV

• Early  Guangdong  SARS  cases  were  in  handlers  of  animals  for  the  exoFc  food  market

• Animal  traders  had  significantly  higher  prevalence  of  anF-­‐SARS-­‐CoV  anFbodies  than  control  groups

49

Page 50: 023_W3310_13

An8body  to  coronavirus  in  humans,  Guandong  Province

Occupa8on # An8body  (%)

Wild  animal  trader 20 8    (40)

Animal  slaughterer 15 3  (20)

Vegetable  handler 20 1    (5)

Control(hosp.,  non-­‐resp.) 60 0    (0)

50

Page 51: 023_W3310_13

Origin  of  SARS-­‐CoV

•  Virus  isolated  from  Himalayan  palm  civets  in  live-­‐animal  market  in  Guangdong  (May  2003)

• Evidence  that  some  SARS  infec1ons  in  China  were  transmifed  from  civets  to  humans

• Civet  culling  and  quaran1ne  imposed

• Probably  not  animal  reservoir  of  the  virus:

‣ Civet  viruses  >99.6%  iden1ty

‣ Virus  not  owen  isolated  from  farm  or  wild  civets

Paguma  larvata  (Palm  civet)Link  to  humans?

51

Page 52: 023_W3310_13

Origin  of  SARS-­‐CoV

• SARS-­‐like  CoVs  isolated  from  different  species  of  horseshoe  bats  in  different  regions  of  China

• Isolated  from  provinces  >1000  km  apart

• Up  to  84%  of  bats  examined  had  anF-­‐SARS-­‐CoV  anFbodies

• Bat  SARS-­‐like-­‐CoVs  88-­‐92%  sequence  idenFty  with  human  or  civet  strains

• Greater  geneFc  diversity  in  bat  viruses  than  those  of  humans  or  civets

• Hypothesis:  bats  are  reservoir  of  SARS-­‐CoV,  transmi[ed  to  humans  via  market  animals  (e.g.  civets)

52

Page 53: 023_W3310_13

How  did  SARS-­‐CoV  adapt  to  humans?

• Hundreds  of  SARS  viral  RNA  genomes  were  sequenced  from  humans  and  animals  during  and  aMer  the  epidemic

• CoV  spike  glycoprotein  is  a  major  determinant  of  species  specificity  of  infecFon

• Human  and  civet  strains  differ  by  only  four  amino  acids  in  the  receptor-­‐binding  domain,  but  cause  >1000-­‐fold  difference  in  binding  affinity  to  cell  receptor,  human  angiotensin-­‐converFng  enzyme  2  (ACE2)

53

Page 54: 023_W3310_13

SARS-­‐Cov  -­‐  ACE2  interac8on

large  binding  interface

addi1on  of  charge

dele1on  of  methyl

pro  reduces  binding  surface

large  glycan

lacks  hydrophobic  

pocket

54

Page 55: 023_W3310_13

Will  SARS  Return?

• No  known  transmission  of  human  SARS-­‐CoV.  Most  recent  human  cases  of  SARS-­‐CoV  infecFon  were  laboratory-­‐acquired  (China,  April  2004)

• December  2003  -­‐  January  2004:  4  SARS  cases  in  Guangdong  Province,  new  animal  -­‐  human  transmission

• SARS-­‐CoV  precursor  conFnues  to  circulate  in  animals;  wild  game  banned  in  markets

• Re-­‐emergence  will  be  more  quickly  recognized  and  contained

CREDIT:  MICHAEL  REYNOLDS/EPA/NEWSCOM

55

Page 56: 023_W3310_13

CoV-­‐EMC

• 17  cases,  11  fataliFes,  March  2013

• Closely  related  to  bat  coronaviruses

• Not  SARS-­‐CoV

• Virus  circulaFng  in  Arabian  peninsula

• Binds  dipepFdyl  pepFdase  4  receptor

Science  5  April  2013:  Vol.  340  no.  6128  pp.  17-­‐18

56

Page 57: 023_W3310_13

Virus Disease

HCoV-­‐229EHCoV-­‐NL63HCoV-­‐OC43HCoV-­‐HKU1SARS-­‐CoV

•Respiratory  diseases•  Febrile  upper  tract  infec1on•  Lower  tract  infec1ons•  Asthma  exacerba1on•  Atypical  pneumonia

Coronavirus  disease  in  humans

1890,  bovine  CoV

1686  -­‐  1800,  bat  CoV

1450  -­‐  1191,  bat  CoV

CoV-­‐EMC •  Severe  pneumonia2003,  bat  CoV

57

Page 58: 023_W3310_13

Canine  parvovirus:  Cat-­‐to-­‐dog  by  two  muta8ons

• Canine  parvovirus  idenFfied  in  1978,  cause  of  new  enteric  and  myocardial  infecFon  in  dogs

• Evolved  from  feline  panleukopenia  virus,  another  parvovirus

-­‐ Infects  cat,  mink,  racoon

58

Page 59: 023_W3310_13

Canine  parvovirus

two  amino  acid  changes!

59

Page 60: 023_W3310_13

How  common  are  host  range  jumps?

• Dead  end:  Very  common

• Those  that  produce  sustaining  transmission:  Rare

• Can  we  predict  them?  No

• But  we  can  know  what  is  out  there,  and  react  (preparedness)

60

Page 61: 023_W3310_13

Emerging  infec8ons  can  be  detected  and  controlled  only  by  socie8es  willing  to  pay

• Research  and  development  in  academia  and  industry

• Early  detecFon  and  idenFficaFon  technology

• Databases  of  all  viral  genomes  in  the  ecosystem

• First  responder  acFons  combined  with  rapid  communicaFon

• Public  health  acFon  including  vaccines,  drug  stockpiles,  quaranFnes

• Inter-­‐agency  communicaFon  and  cooperaFon  among  local,  state,  and  federal  government

61