05 Magnetostatics

Embed Size (px)

DESCRIPTION

150280611-

Citation preview

  • Magnetostatics

  • UCF Volume Current

    LSVQ VV

    mobility called is

    tQI

    vSIJ V

    vSt

    LStQI VV

    dSJI

    Definition:

    Volume current density

    tyconductivi VEEJ V

    vJ VEv

    V

    S

    v

    L

    J

    or

    1 resistivity

  • UCF Surface (Sheet) Current

    dwI S laJ dSJI

    Volume current density for surface current

    )(zSJJ

    laSJ

    SJ

    J

    Examplez

    x

    w

  • UCF Line Current

    Volume current density for line current

    zaJ )()( yxI Example

    I

    z

    I

  • UCFConservation of Charge

    Any current leaving a closed surface S implies a decrease of charge within that closed surface

    V

    VS

    dVdtddSJ

    dtdQI

    tV

    J

    V

    VV

    dVdtddVJ

    V S

    JdS

  • UCFSteady State Current

    0 J

    C

    G

    QI

    DJ

    EDEJ

    0t

    For steady state current

    V EJ 0)( VIf is uniform, 02 V Laplaces equation

    A steady state current problem is analogues to an electrostatic problem

  • UCF Example for Steady State Current

    zaEJ dV2

    zaE dVV 2

    Find resistance (conductance)

    zd

    VzV 2)(

    d

    1Then

    )()(

    2

    2top

    22top

    dS

    VI

    RG

    SdVSJI

    dV

    dVJ

    zz aa

    0

    V2

    zaS

    Recall for parallel plate capacitor

    dSC

  • UCF Biot-Savarts Law (1)'dlI

    0

    'r r

    RBd

    20 '

    4 RId RadlB

    20 '4 RI RadlB

  • UCFBiot-Savarts Law (2)

    '''' dVJdSI Jdldl

    0

    'r r

    R Bd

    20 '

    4 RdVd RaJB

    20 ')'(4 RdV RarJB

    'dS

    'dl

    )J(r'

  • UCFBiot-Savarts Law (3)

    '''' dSdwJI SS Jdldl

    0

    'r r

    R Bd

    20 '

    4 RdSd S RaJB

    20 ')'(4 RdSS RarJB

    'dw

    'dl

    )(r'J S

  • UCFBiot-Savarts Law (4)

    Example 1

    Example 2

    Example 3

    Find magnetic flux density on xoy plane (z=0) from a line current I on z axis from -a to a.

    z

    xy

    0

    -a

    a

    Find magnetic flux density from infinite line current I on z axis.

    Find magnetic flux density on z axis from loop current in xoy plane.

    z

    x

    y0

    a

  • UCFMagnetic Gausss Law

    0S

    dSB

    V S

    BdS

    Integral form

    0)( V

    dVB

    0 B differential formFrom Biot-Savarts Law

    Gausss Theorem

  • UCFAmperes Circuital Law

    LdL

    enclosedIL

    dLH

    HI

    Integral form

    LS

    dLHdSH )(From Stokess Theorem

    SS

    dSJdSH )(

    JB 0

    Differential form

    From Biot-Savarts Law

    Define HB 0JH

    Can be extended to general magnetic media.

  • UCFConstitutive Relationship

    rHHB r 0 permeability

    relative permeability

    In isotropic media

    material ticferromagne :1

    1 materialsmost For material icparamagnet :1,1

    vacuum:1material cdiamagneti :1,1

    r

    r

    r

    r

    r

  • UCFScalar Potential for Magnetostatics

    02 mV

    0 mVB

    0 HIn isotropic media

    mVH

    Or

    mV HB

    0mV Then

    If the permeability distribution is uniform

    Laplaces Equation

    Can only define for source free region

    Define

  • UCFVector Potential for Magnetostatics

    JA 20 A

    From math, we have

    and

    0 Bwe can define

    0)( TSince

    AB where A is called vector potential.In simple media, from JH

    JA )1(

    HB

    If is uniform, JA )(1AAA 2 )()(From math

    Define gauge

  • UCF Solution of Vector Potential

    ( )4

    V dVVR

    r

    Since the solution of Poissons Equation VV 2

    JA 2For equationIn Cartesian coordinate system

    zyx

    zyx

    aaaJaaaA

    zyx

    zyx

    JJJAAA

    2222

    the solution for equation (1) is

    is

    To be proved in the following slide.

    (1)

    ( )4

    dVR

    J rA

  • UCF Solution of Poissons Equation

    RVdrV

    VdrdQ

    V

    V

    4)(

    )(

    r

    O

    r )(rV

    Rvolume charge density

    Vd

    This is the solution of Poissons Equation

    VV 2

  • UCF Magnetic Boundary Conditions

    current surfacefor

    current or volume current nofor 0

    21

    LJLHLH

    S

    tt

    dSJdLH2

    0h

    0Volume

    0dSB 20for 0)(

    )(

    S12n

    S12n

    JHHaJHHa

    1 LMedia 1Media 2

    H1

    H2

    H1t

    H2t

    0h1

    S

    Media 1

    Media 2

    B1

    B2

    B1n

    B2n

    021 SBSB nn

    0)(or 0

    12

    12

    BBannn BB

    (1)

    (2)

    na

    na

    JS

  • UCF Perfect Magnetic Conductor (PMC)

    0Han 0tH

    0H

    Media B

    mSBan

    (1)

    (2)

    na

    PMC

    (introduced)

  • UCF Energy Stored in Magnetostatic Field

    HB 21

    mw

    V mm dVwW

    Energy density

    Total energy

  • Ferromagnetic Materials

    T. Gonen, Electric machines with MatLab, 2nd Edition, p. 68, CRC press, 2012.

  • Magnetic Domains

    T. Gonen, Electric machines with MatLab, 2nd Edition, p. 69, CRC press, 2012.

    (a) Magnetic domains oriented randomly;(b) Magnetic domains becoming magnetized;(c) Magnetic domains fully magnetized (lined up) by the magnetic field H

  • Hysteresis Loop (I)

    Br remnant flux or residue fluxHc coercive flux or coercivity

  • Hysteresis Loop (II)

    0CH

    soft material

  • dVE

    AIJ

    AdR

    RIV

    resistance

    EJ

    dV

    AI

    Differential form:

    I

    A

    + V

    E

    dSince and , we have

    or

    where

    integral form

    Ohms Law

    _

  • Magnetic Ohms Law

    dH F

    AB

    AdR

    RF

    reluctance

    HB

    dAF

    Differential form:

    A

    +

    H

    dSince and , we have

    or

    where

    integral form

    F

    dSB

    F is called magnetomotive force (MMF), whose unit is A.

    _

  • Magnetic Circuit

    length d

    RHd

    NIHd

    NIL

    F

    dlH

    R

    R

    NIA

    d

    area A

    +_

  • Electric vs Magnetic Circuits

    Ni

    +_

    _

  • Inductance

    dsB

    IN

    IL

    NB

    Flux linkageI

    total

    NIR

    total

    NLR

    2

    NI total

    +_

  • Mutual Inductance

    ipIN

    ipII

    L

    pi

    i

    pi

    iii

    ,0

    ,0

    2

    R

    nnnnnn

    ninjij

    iiiii

    nn

    nn

    ILILIL

    ILILILIL

    ILILILILILIL

    2211

    11

    22221212

    12121111

    Self inductance

    I1

    I2

    In

    n

    jpII

    L pj

    iij ,0Mutual inductance

  • Example 1

    Find magnetic flux density in two airgaps.

    1g

    1w 2w2g

    r

    N turns

    I

    l

    1gR 2gR

    1 2

  • Example 2

    cm 10 cm 200 cm 1A 10 1000 wlgINFind flux and airgap flux density Bg.

    w

    wlA

    Ag

    g0R

    g

    NIR2

    ABg

    gR

    gR

    gR2

    l

  • Example 3

    5% cross-section increase for fringing in airgap

    Find: (a) total reluctance of the flux path;(b) current required to produce B = 0.5 T in the air gap; (c) inductance of the coil.

    r=2000

  • Example 4

    (1) How much is current required to produce 0.016Wb of flux in the core?(2) What is cores relative permeability at that current level?(3) What is its reluctance and inductance at this level?

    M5 Steel at DC

    N = 400, A = 150 cm2lc = 55 cm

  • Example 5

    2221212

    2121111

    ILILILIL

    r

    N1 turns

    g

    N2 turns 0g

    g

    gAR

    (1) Let I2 = 0

    r

    N1 turns

    I1

    N2 turns

    Find self and mutual inductances.

    (2) Let I1 = 0

    +_

    11INgR

    r

    N1 turns

    I2

    N2 turns

    +_

    22 INgR

  • Example 6

    2221212

    2121111

    ILILILIL

    1g

    2g

    r

    N1 turns

    I1N2 turns

    I2

    10

    11

    gg A

    gR

    Find self and mutual inductances.

    20

    22

    gg A

    gR

    (1) Let I2 = 0

    1gR2gR

    (2) Let I1 = 0