36
Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland [email protected] ENGI 8673 Subsea Pipeline Engineering Lecture 08: Mechanical Design – Pressure Containment: Part 1

08 - Mechanical Design - Pressure Containment Part1

Embed Size (px)

DESCRIPTION

Pipeline Course

Citation preview

Page 1: 08 - Mechanical Design - Pressure Containment Part1

Shawn Kenny, Ph.D., P.Eng.Assistant ProfessorFaculty of Engineering and Applied ScienceMemorial University of [email protected]

ENGI 8673 Subsea Pipeline Engineering

Lecture 08: Mechanical Design – Pressure Containment: Part 1

Page 2: 08 - Mechanical Design - Pressure Containment Part1

2 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Lecture 08 Objective

To examine pressure containment requirements for mechanical design

Page 3: 08 - Mechanical Design - Pressure Containment Part1

3 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pi

Pe

Pressure Containment Parameters

Pipeline Section ResponseInternal Pressure, Pi

External Pressure, Pe

Nominal Internal Diameter, Di

Nominal External Diameter, De

Nominal Wall Thickness, t

Page 4: 08 - Mechanical Design - Pressure Containment Part1

4 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Wall Tension

Pipeline ExampleD = 1.0m, Pi = 10MPa and Pe = 0MPa1,000 tonnes wall force

Pi

PeσH σH

Pi

Pe

Page 5: 08 - Mechanical Design - Pressure Containment Part1

5 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Hoop Stress

Free Body Diagram

Thin Wall TheoryMean circumferential stressUniform wall stressTangential stress constantValid for D/t ≥ 20t ≤ 0.10 inner pipe radius

Pi

Pe

σH σH

Pi

Pe

2 0h i i e ot p D p Dσ − + =

Page 6: 08 - Mechanical Design - Pressure Containment Part1

6 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Hoop Stress (cont.)Code Requirements

General• External pressure credit• Product type, density• Elevation profile, water depth• Pressure reference

Design factors• No specific technical argument• Historical use• Simple, conservative• Code inertia

Design factors and parameter variation• Safety and cost implication• Wall thickness

Nominal versus minimumFabrication toleranceCorrosion allowance

• DiameterNominal, outside, internal

2i o

h SMYSp D

tσ φ σ= ≤

Pi

Pe

2i i e o

h SMYSp D p D

tσ φ σ

−= ≤

Page 7: 08 - Mechanical Design - Pressure Containment Part1

7 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure ContainmentDNV OS-F101

Section 5 D200• plx ≡

pli during operation or plt during system test (Sec.3 B300 and Sec.4 B200)

• pb ≡

pressure containment resistance (Sec.5 D203, Eqn.5.8)

• t1 ≡

characteristic wall thickness (Sec.5 C202, Table 5-2)

• γm ≡

material resistance factor (Sec.5 C205, Table 5-4)

• γSC ≡

safety class resistance factor (Sec.5 C206, Table 5-5)

( )1blx e

m sc

p tp p

γ γ− ≤

Page 8: 08 - Mechanical Design - Pressure Containment Part1

8 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)Design Process

Safety class• Sec.2 C200, C300 and C400

Partial factors• γinc ≡

Sec.3 B304• γm ≡

Sec.5 C205 Table 5-4• γSC ≡

Sec.5 C206 Table 5-5• αU ≡

Sec.5 C206 Table 5-5Loads (Demand)• Local pressure (Sec.4 B202; Sec.5 B203 & D203)

Resistance (Capacity)• Wall thickness tolerance (Sec.7 G307 Table 7-18)• Material derating (Sec.5 C300 Figure 2)

( )1blx e

m sc

p tp p

γ γ− ≤

Page 9: 08 - Mechanical Design - Pressure Containment Part1

9 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Safety ClassSec.2 C200

Page 10: 08 - Mechanical Design - Pressure Containment Part1

10 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Safety Class(cont.)

Sec.2 C300

Page 11: 08 - Mechanical Design - Pressure Containment Part1

11 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Safety Class(cont.)

Sec.2 C300

Page 12: 08 - Mechanical Design - Pressure Containment Part1

12 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Safety Class(cont.)

Sec.2 C403

Page 13: 08 - Mechanical Design - Pressure Containment Part1

13 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Partial FactorsIncidental to design pressure • Sec.3 B300• Pressure control and pressure safety systems

Page 14: 08 - Mechanical Design - Pressure Containment Part1

14 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Partial Factors(cont.)

Material resistance• Sec.5 C205

Table 5-4Safety class• Sec.5 C206

Table 5-5

Page 15: 08 - Mechanical Design - Pressure Containment Part1

15 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Partial Factors (cont.)Material strength• Sec.5 C306 Table 5-6

Page 16: 08 - Mechanical Design - Pressure Containment Part1

16 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

LoadsPressure definitions• Sec.4 B200

Page 17: 08 - Mechanical Design - Pressure Containment Part1

17 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Loads (cont.)Local Incidental Pressure• Operations, pli

• System test, plt

Page 18: 08 - Mechanical Design - Pressure Containment Part1

18 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Loads (cont.)Local incidental pressure

Page 19: 08 - Mechanical Design - Pressure Containment Part1

19 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

ResistanceSec.7 G307 Table 7-18

Page 20: 08 - Mechanical Design - Pressure Containment Part1

20 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)

Resistance (cont.)Derating• Sec.5 C300

Figure 2

Page 21: 08 - Mechanical Design - Pressure Containment Part1

21 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Pressure Containment (cont.)Pressure Containment Resistance, pb

Sec.5 D203

Wall thickness• Sec.5 C202• Sec.5 D203• Sec.6 D203

Diameter• D ≡

nominal outside diameter Sec.1 D200

( ) 2 23b cb

tp t fD t

=−

( )1blx e

m sc

p tp p

γ γ− ≤

Page 22: 08 - Mechanical Design - Pressure Containment Part1

22 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Engineering Design T. Zimmerman, C-FERPRCI R&D Forum April 2003

Page 23: 08 - Mechanical Design - Pressure Containment Part1

23 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Probabilistic Basis

LoadDemand

ResistanceCapacity

Target SafetyLevels

Page 24: 08 - Mechanical Design - Pressure Containment Part1

24 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

DNV OS-F101 LRFD Format

Risk Basis for Design

Sec.2 C100-500

Page 25: 08 - Mechanical Design - Pressure Containment Part1

25 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

DNV OS F101 ⇔ Traditional Codes

LRFD versus Working StressSec.13 E400

Page 26: 08 - Mechanical Design - Pressure Containment Part1

26 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01

Calculate the minimum wall thickness to meet pressure containment requirements using DBNV OS-F101 (2007) for a subsea oil pipeline beyond the 500m platform excursion limit.

Page 27: 08 - Mechanical Design - Pressure Containment Part1

27 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

Pipeline System ParametersPIPELINE SYSTEM PARAMETERS

Nominal Outside Diameter Do 324mm:=

Initial Selection Nominal Wall Thickness (Sec.5 C203 Table 5-3) tnom 15.9mm:=

Fabrication Process (Sec.7 B300 Table 7-1) [SMLS, HFW, SAW] FAB "SAW":=

Corrosion Allowance (Sec.6 D203) tcorr 3mm:=

Elastic Modulus E 205GPa:=

Specified Minimum Yield Stress (Sec.7 B300 Table 7-5) SMYS 450MPa:=

Speciifed Minimum Tensile Stress (Sec.7 B300 Table 7-5) SMTS 535MPa:=

Coefficient of Thermal Expansion αT 1.15 10 5−⋅ C 1−

:=

Poisson's Ratio ν 0.3:=

Pipeline Route Length Lp 0.75km:=

Linepipe Density ρs 7850kg m 3−⋅:=

Concrete Coating Thickness tc 50mm:=

Concrete Coating Density ρc 3050kg m 3−⋅:=

Page 28: 08 - Mechanical Design - Pressure Containment Part1

28 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

Operational Parametersg tc 50mm:=

Concrete Coating Density ρc 3050kg m 3−⋅:=

OPERATATIONAL PARAMETERS

API Gravity API 30:=

Product Contents Density

ρcont 1000 kg⋅ m 3−⋅141.5

131.5 API+⋅:= ρcont 876.2m 3.0− kg⋅=

Design Pressure (Gauge) Pd 12MPa:=

Safety Class (Sec.2 C200-C400) [L, M, H] SC "M":=

Design Pressure Reference Level href 10m:=

Temperature Differential ΔT 75 C⋅:=

Maximum Water Depth hl 120− m:=

Seawater Density ρw 1025kg m 3−⋅:=

Hydrotest Fluid Density ρt 1025kg m 3−⋅:=

Page 29: 08 - Mechanical Design - Pressure Containment Part1

29 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

DNV OS F101 Partial FactorsDNV OS-F101 PARTIAL FACTORS

System Operations Incidental/Design Pressure Factor (Sec 3B 304) γinc_o 1.10:=

System Test Incidental/Design Pressure Factor (Sec 3B 304) γinc_t 1.00:=

Material Resistance Factor (Sec.5 C205 Table 5-4) γm 1.15:=

Safety Class Resistance Factor (Sec.5 C206 Table 5-5) γSC 1.138:=

Material Strength Factor (Sec.5 C306 Table 5-6) αU 0.96:=

Page 30: 08 - Mechanical Design - Pressure Containment Part1

30 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

DNV OS F101 Wall Thickness ToleranceWALL THICKNESS FABRICATION TOLERANCE (SEC.7 G307 TABLE 7-18)

tfab 0.5mm FAB "SMLS" tnom 4mm≤∧if

0.125 tnom⋅ FAB "SMLS" tnom 4mm>∧if

0.125 tnom⋅ FAB "SMLS" tnom 10mm≥∧if

0.100 tnom⋅ FAB "SMLS" tnom 25mm≥∧if

3mm FAB "SMLS" tnom 30mm≥∧if

0.4mm FAB "HFW" tnom 6mm≤∧if

0.7mm FAB "HFW" tnom 6mm>∧if

1.0mm FAB "HFW" tnom 15mm>∧if

0.5mm FAB "SAW" tnom 6mm≤∧if

0.7mm FAB "SAW" tnom 6mm>∧if

1.0mm FAB "SAW" tnom 10mm>∧if

1.0mm FAB "SAW" tnom 20mm>∧if

:= tfab 1.000mm=

Page 31: 08 - Mechanical Design - Pressure Containment Part1

31 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

DNV OS F101 Material DeratingMATERIAL DERATING (SEC.5 C300 FIGURE 2)

ΔSMYS ΔT 50 C⋅−( )30MPa50 C⋅

⎛⎜⎝

⎞⎟⎠

⋅⎡⎢⎣

⎤⎥⎦

50 C⋅ ΔT< 100C<if

30MPa ΔT 100 C⋅−( )40MPa100 C⋅

⎛⎜⎝

⎞⎟⎠

⋅+⎡⎢⎣

⎤⎥⎦

otherwise

:= ΔSMYS 15.00 MPa⋅=

ΔSMTS ΔT 50 C⋅−( )30MPa50 C⋅

⎛⎜⎝

⎞⎟⎠

⋅⎡⎢⎣

⎤⎥⎦

50 C⋅ ΔT< 100C<if

30MPa ΔT 100 C⋅−( )40MPa100 C⋅

⎛⎜⎝

⎞⎟⎠

⋅+⎡⎢⎣

⎤⎥⎦

otherwise

:= ΔSMTS 15.00 MPa⋅=

fy SMYS ΔSMYS−( ) αU⋅:= fy 418 MPa⋅=

fu SMTS ΔSMTS−( ) αU⋅:= fu 499 MPa⋅=

Page 32: 08 - Mechanical Design - Pressure Containment Part1

32 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

Engineering AnalysisPRESSURE CONTAINMENT (Sec.5 D200)

Local Incidental Pressure During Operations (Sec.4 B202; Sec.5 D203)

Pli γ inc_o Pd⋅ ρcont g⋅ href hl−( )⋅+:= Pli 14.32 MPa⋅=

Local Incidental Pressure System Test (Sec.4 B202; Sec.5 B203 & D203)

Plt γ inc_t Pd⋅ ρt g⋅ href hl−( )⋅+ γ inc_t Pd⋅ ρt g⋅ href hl−( )⋅+ Pli≥if

1.03 Pli⋅ SC "L"if

1.05 Pli⋅ SC "M"if

1.05 Pli⋅ SC "H"if

:= Plt 15.03 MPa⋅=

External Hydrostatic Pressure

Pe ρw g⋅ hl⋅:= Pe 1.21 MPa⋅=

Page 33: 08 - Mechanical Design - Pressure Containment Part1

33 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

Engineering Analysis (cont.)Characteristic Yield Resistance (Sec.5 D203)

fcb min fyfu

1.15,

⎛⎜⎝

⎞⎟⎠

:= fcb 417.60 MPa⋅=

Wall Thickness Requirement - Operations (Sec.5 D202 Eqn.5.7)

t1_oDo

12

γ SC γ m⋅ Pli Pe−( )⋅

2

3⋅ fcb⋅+

:= t1_o 5.66 mm⋅=

Minimum Wall Thickness -Operations (Sec.5 C202 Table 5-2)

tmin_o t1_o tfab+ tcorr+:= tmin_o 9.66 mm⋅=

Wall Thickness Requirement - System Test (Sec.5 D202 Eqn.5.7)

t1_tDo

12

γ SC γ m⋅ Plt Pe−( )⋅

2

3⋅ fcb⋅+

:= t1_t 5.97 mm⋅=

Page 34: 08 - Mechanical Design - Pressure Containment Part1

34 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Example 8-01 (cont.)

Engineering Analysis (cont.)

Minimum Wall Thickness - System Test (Sec.5 C202 Table 5-2)

tmin_t t1_o tfab+:= tmin_t 6.66 mm⋅=

Minimum Wall Thickness Requirement for Pressure Containment

tmin max tmin_o tmin_t, ( ):= tmin 9.66 mm⋅=

Wall Thickness Check

tmin_chk "WALL THICKNESS OK" tnom tmin>if

"INCREASE WALL THICKNESS" otherwise

:= tmin_chk "WALL THICKNESS OK"=

Page 35: 08 - Mechanical Design - Pressure Containment Part1

35 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

Reading List

Section 5 – DNV (2007). Submarine Pipeline Systems. Offshore Standard, DNV OS-F101, October 2007, 240p.

Page 36: 08 - Mechanical Design - Pressure Containment Part1

36 ENGI 8673 Subsea Pipeline Engineering – Lecture 08© 2008 S. Kenny, Ph.D., P.Eng.

References

DNV (2007). Submarine Pipeline Systems. Offshore Standard, DNV OS-F101, October 2007, 240p.