50
08-Mesh Analysis Text: 3.4 – 3.6 ECEGR 210 Electric Circuits I

08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

  • Upload
    haminh

  • View
    238

  • Download
    6

Embed Size (px)

Citation preview

Page 1: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

08-Mesh Analysis Text: 3.4 – 3.6

ECEGR 210

Electric Circuits I

Page 2: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Overview

• Introduction

• Mesh Analysis

• Mesh Analysis with Current Sources

• Analysis by Inspection

• Mesh Analysis vs. Nodal Analysis

2

Page 3: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Introduction

• Last lecture considered Nodal Analysis

Use KCL at each node

Solve for node voltage

Special treatment (supernode) for voltage sources

• Next consider mesh analysis

Use KVL at each node

Solve for current through meshs

Special treatment (supermesh) for current sources

Dr. Louie 3

Page 4: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Introduction

• Mesh analysis can only be applied to planar circuits (considered in this class)

Non-planar use nodal analysis

• Mesh: a loop that does not contain any other loop

Dr. Louie 4

+

-

+

-

two meshes

+

-

+

-

a loop, not a mesh

Page 5: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis

Steps to solve a circuit with N meshes

1. Assign a mesh current to N meshes

2. Apply KVL to each of the N meshes to generate N equations

3. Use Ohm’s Law to express voltages as functions of mesh currents (may be combined with step 2)

4. Solve resulting simultaneous linear equations

Dr. Louie 5

Page 6: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis

• Consider the circuit below

Dr. Louie 6

+

-

+

- V1 V2

R1 R2

R3

Page 7: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Step 1: Assign Mesh Currents

• Mesh: a loop (closed path) that does not contain another loop

• Two meshes: i1, i2

Dr. Louie 7

+

-

+

- V1 V2

R1 R2

R3 i1 i2

Page 8: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Step 2: Apply KVL

• KVL gives one equation per mesh (two equations)

V1 = Va + Vc

-V2 = Vb - Vc

Dr. Louie 8

Va Vb + + - -

+

-

+

- V1 V2 i1 i2 Vc

+

-

Page 9: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Step 3: Apply Ohm’s Law

• Need to write unknown voltages as function of mesh currents

Va = R1i1

Vb = R2i2

Vc = R3(i1 – i2)

• Via substitution into KVL equations

V1 = R1i1 + R3(i1 - i2)

-V2 = R2i2 + R3(i2 – i1)

Dr. Louie 9

Va Vb + + - -

+

-

+

- V1 V2 i1 i2 Vc

+

-

Page 10: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Step 4: Solve Equations

• Recap

two variables (i1, i2)

two KVL equations

• V1 = R1i1 + R3(i1 - i2)

• -V2 = R2i2 + R3(i2 – i1)

Dr. Louie 10

Va Vb + + - -

+

-

+

- V1 V2 i1 i1 Vc

+

-

Page 11: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Step 4: Solve Equations

• In matrix form

V1 = R1i1 + R3(i1 - i2)

-V2 = R2i2 + R3(i2 – i1)

• Many methods of solving linear equations

Dr. Louie 11

1 3 3 1 1

3 2 3 2 2

R R R i V

R R R i V

Page 12: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Let

V1 = 15V

V2 = 10V

R1 = 5Ω

R2 = 10Ω

R3 = 6Ω

R4 = 4Ω

• Find all mesh currents

Dr. Louie 12

+

-

+

- V1 V2

R1

R2

R3

R4

Page 13: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Equations:

V1 = i1R1 +R2(i1 – i2) + V2

V2 = -R2(i1 – i2) + i2R3 + i2R4

Note: the second equation can

also be written as:

V2 = R2(i2 – i1) + i2R3 + i2R4

• Using circuit values:

15 = i15 +10(i1 – i2) + 10

10 = 10(i2 – i1) + 6i2 + 4i2

Dr. Louie 13

+

-

+

- V1 V2

R1

R2

R3

R4

i1 i2

+ + + +

- -

- -

Page 14: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

Equations

15 = i15 +10(i1 – i2) + 10

5 = 15i1 – 10i2

10 = 10(i2 – i1) + 6i2 + 4i2

10 = –10i1 + 20i2

• In matrix form:

Dr. Louie 14

1

2

i15 10 5

i10 20 10

+

-

+

- 15V 10V

5W

i1 i2

10W

6W

4W

Page 15: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

Solving via matrix inversion

Dr. Louie 15

1

2

i15 10 5

i10 20 10

where

R (matrix)

1

2

1 1

2

i 5

i 10

i 5 1

i 10 1

R

R

1 0.1 0.05

0.05 0.075

R

Page 16: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Branch Currents

With mesh currents known, the current through each branch can be found

• i1 = 1A

• i2 = 1A

Dr. Louie 16

+

-

+

-

i1

1A

1A

1A

1A

current from mesh 1

+

-

+

-

i2

1A

1A

1A 1A

current from mesh 2

+

-

+

-

i2

1A

0A

0A 1A

total current

1A

1A

i1

Page 17: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Let

V1 = 12V

V2 = 6V

R1 = 1Ω

R2 = 2Ω

R3 = 3Ω

• How many meshes?

• What are the equations?

Dr. Louie 17

+

-

+

- V1 V2

R1 R2

R3

Page 18: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Two meshes

i1: V1 = i1R1 + V2

i2: V2 = i2R2 + i2R3

• Via substitution

12 = i11 + 6

6 = i25

• Solving:

i1 = 6A

i2 = 1.2A

Dr. Louie 20

+

-

+

- V1 V2

R1 R2

R3

i1 i2

In this example, the equations are decoupled

Page 19: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Presence of current sources reduces the number of equations (unknowns) mesh analysis

• If current source (independent or dependent) exists in one loop only

Mesh current = current source

Dr. Louie 21

I1

(I1 = i1)

+

- V1

R1

R2

R3

R4

i1 i2

Page 20: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• If the current source exists between two meshes, then create a supermesh

Dr. Louie 22

I1

(I1 = i1 - i2)

+

- V1

R1

R2

R3

R4

i1 i2

Page 21: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Supermesh: a closed loop created from combining meshes by ignoring current sources AND any elements in series with them

• Sum of voltages around supermesh = 0

Use mesh currents as variables

• Also applies to dependent current sources

Dr. Louie 23

I1 +

- V1

i1 i2

I1 +

- V1

i3

Page 22: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Two or more supermeshes that intersect can be combined into a larger supermesh

• Properties of a supermesh

Current source inside the supermesh provides a constraint equation needed to solve for the individual mesh currents

A supermesh has no current of its own

A supermesh reduces the number of KVL equations

KCL must be also applied for an additional independent equation

Dr. Louie 24

Page 23: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Draw the mesh currents (assume clockwise rotation)

Dr. Louie 25

+

- 6V 3A

2W

1W 8W

2W

4W

Page 24: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Find the mesh currents

Dr. Louie 26

i1 i2

+

-

i3

6V 3A

2W

1W 8W

2W

4W

Page 25: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Make a supermesh out of the current source and series resistor

• Write KVL for supermesh (using i1, i2 and i3)

6 = 2(i1 - i3) + 4(i2 - i3) + 8i2

Dr. Louie 27

+

-

i3

6V

2W

8W

2W

4W

i1 i2

+

-

i3

6V 3A

2W

1W 8W

2W

4W

Page 26: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Write KVL for i3 (cannot write for i1, i2)

0 = 2i1 +4i2 - (2 + 4 + 2)i3

• Current source provides a constraint equation

3 = i1 - i2

Dr. Louie 28

i1 i2

+

-

i3

6V 3A

2W

1W

4W

2W

Page 27: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• How many independent equations?

6 = 2(i1 - i3) + 4(i2 - i3) + 8i2 (supermesh)

0 = 2i1 +4i2 - 8i3 (mesh 3)

3 = i1 - i2 (current source constraint)

• How many unknowns?

i1, i2, i3

Dr. Louie 29

Solve!

i1 i2

+

-

i3

6V 3A

2W

1W

4W

Page 28: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis with Current Sources

• Solving…

6 = 2(i1 - i3) + 4(i2 - i3) + 8i2

0 = 2i1 +4i2 - 8i3

3 = i1 - i2

• i1 = 3.474 A

• i2 = 0.474 A

• i3 = 1.105 A

Dr. Louie 30

i1 i2

+

-

i3

6V 3A

2W

1W

4W

Page 29: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Find the mesh currents in the circuit shown. Find the voltage across the current source.

Dr. Louie 31

+ -

10V

2W

4W

2W

8W 2A

Page 30: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Identify meshes and supermesh

Dr. Louie 32

+ -

10V

2W

4W

2W

8W 2A

Page 31: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Write mesh and supermesh equations

Dr. Louie 33

+ -

10V

2W

4W

2W

8W 2A

Page 32: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Add constraint equation using KCL around supermesh

Dr. Louie 34

+ -

10V

2W

4W

2W

8W 2A

Page 33: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• 3 equations, 3 unknowns. Solve.

Dr. Louie 35

Page 34: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Identify meshes and supermesh

Dr. Louie 36

+ -

10V

2W

4W

2W

8W 2A

i1

i2

+ -

10V

2W 2W

8W i3 4W

Page 35: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Write mesh and supermesh equations

0 =-10 + (2+2)i1 – 2i2 + 2i3 (i1 mesh)

0 = -i1(2+2) + (2+4)i2 – (2+8)i3 (supermesh)

Dr. Louie 37

+ -

10V

2W

4W

2W

8W 2A

i1

i3 i2

Page 36: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Add constraint equation using KCL

0 =-10 + (2+2)i1 – 2i2 + 2i3 0 = -i1(2+2) + (2+4)i2 – (2+8)i3 0 = 2 – i2 – i3

Dr. Louie 38

+ -

10V

2W

4W

2W

8W 2A

i1

i3 i2

Page 37: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Three equations, three unknowns. Solve.

10 = 4i1 – 2i2 + 2i3 0 = -4i1 + 6i2 – 10i3 2 = i2 + i3

• i1 = 3.667A

• i2 = 2.167A

• i3=-0.167A

Dr. Louie 39

+ -

10V

2W

4W

2W

8W 2A

i1

i3 i2

Page 38: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Now find the voltage across the current source

Dr. Louie 40

+ -

10V

2W

4W

2W

8W 2A

Page 39: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• Voltage across current source is found by KVL:

VCS = (4+2)i2 - 2i1 = 13- 7.333 = 5.667V

Dr. Louie 41

+ -

10V

2W 2W

8W 2A 4W Vcs +

-

Page 40: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Example

• The two circuits are therefore equivalent

Dr. Louie 42

+ -

10V

2W 2W

8W 2A 4W

+ -

10V

2W 2W

8W 5.67V +

- 4W

Page 41: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal and Mesh Analyses by Inspection

• Under certain circumstances we can write nodal or mesh analysis equations simply by inspecting the circuit

Saves time

Fewer errors

• Inspection can be used in nodal analysis when all sources are independent current sources

• Inspection can be used in mesh analysis when all sources are independent voltage sources

• See text 3.6 for more details

Dr. Louie 43

Page 42: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal Analysis by Inspection

• Example: use nodal analysis to find the node voltages

I1 = I2 + i1 + i2 (KCL)

I2 = i3 – i2 (KCL)

i1 = (V1 - 0)/R1 (Ohm’s Law)

i2 = (V1 – V2)/R2 (Ohm’s Law)

i3 = (V2 - 0)/R3 (Ohm’s Law)

Dr. Louie 44

I1

I2

i1 i3

i2 V1 V2

1 2 2 1 1 2

2 2

2 3 2

1 1 1

R R R V I I

V I1 1 1

R R R

Page 43: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal Analysis by Inspection

• In terms of conductances:

Dr. Louie 45

1 2 2 1 1 2

2 2 3 2 2

G G G V I I

G G G V I

I1

I2

i1 i3

i2 V1 V2

Page 44: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal Analysis by Inspection

• G is symmetric

• Diagonal elements are sum of conductances connected to each node

• Off-diagonal elements are negative of conductances between nodes

• Current vector is sum of currents entering each node

Dr. Louie 46

1 2 2 1 1 2

2 2 3 2 2

G G G V I I

G G G V I

I1

I2

i1 i3

i2 V1 V2

Page 45: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal Analysis by Inspection

Dr. Louie 47

I1

I2

V1 V2

1 2 2 1 1 2

2 2 3 4 4 2 2

4 4 5 3

0

0 0

G G G V I I

G G G G G V I

G G G V

V3

G1

G2

G3 G4 G5

Node 1 is not directly connected to node 3, so there is a 0 here

Page 46: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis by Inspection

• Similarly, for mesh analysis:

Dr. Louie 48

1 3 3 1 1

3 2 3 2 2

R R R i v

R R R i v

+

-

+

- V1 V2

R1 R2

R3 i1 i2

Page 47: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Mesh Analysis by Inspection

• R is symmetric

• Diagonal elements are sum of resistances in the mesh

• Off-diagonal elements are negative of resistances common to the meshes

• Voltage vector is sum of independent voltage sources in each mesh in a clockwise fashion

Dr. Louie 49

1 3 3 1 1

3 2 3 2 2

R R R i v

R R R i v

+

-

+

- V1 V2

R1 R2

R3 i1 i2

Page 48: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal Versus Mesh Analysis

• When should nodal analysis be used?

• When should mesh analysis be used?

• Factors to consider:

Nature of the network

What information is to be solved for

Dr. Louie 50

Page 49: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal Versus Mesh Analysis

• Use nodal analysis when network has:

Many parallel connected elements

Many current sources

Supernodes

• Use mesh analysis when network has:

Many series connected elements

Many voltage sources

Supermeshes

Dr. Louie 51

Page 50: 08-Mesh Analysis - drhenrylouie · Introduction • Mesh analysis can only be applied to planar circuits (considered in this class) Non-planar use nodal analysis • Mesh: a loop

Nodal Versus Mesh Analysis

• If node voltages are required:

Nodal analysis

• If branch or mesh currents are required:

Mesh analysis

• Nodal analysis is usually used in computer-aided analysis, such as in PSPICE

Dr. Louie 52