26
1 EE462L, Spring 2014 DC−DC SEPIC (Converter)

1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

Embed Size (px)

Citation preview

Page 1: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

1

EE462L, Spring 2014DC−DC SEPIC (Converter)

Page 2: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

2

Boost converter

+ Vout

Iout

CVin

iin

L1

+ v L1 –

SEPIC converter

+

v L2

C1

+ v C1 –

L2

Vin

iin

L1

+ v L1 –

+

v L2

C1

+ v C1 –

L2

+ Vout

Iout

C

!

Page 3: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

3

SEPIC converter

This circuit is more unforgiving than the boost converter, because the MOSFET and diode voltages and currents are higher

• Before applying power, make sure that your D is at the minimum, and that a load is solidly connected

• Limit your output voltage to 90V

Vin

iin

L1

+ v L1 –

+

v L2

C1

+ v C1 –

L2

+ Vout

Iout

C

!

SEPIC = single ended primary inductor converter

Page 4: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

4

+ Vout

Iout

CVin

I in

L1

+ 0 –

+ 0

KVL and KCL in the average sense

0

0

Iout

I in

C1

L2

Iout

+ Vin –

KVL shows that VC1 = Vin

Interestingly, no average current passes from the source side, through C1, to the load side, and yet this is a “DC - DC” converter

Page 5: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

5

Switch closed

Vin

iin

L1

+ Vin –

+

v L2

C1

+ Vin –

L2

+ Vout

Iout

C

assume constant

+ v D –

KVL shows that vD = −(Vin + Vout),

so the diode is openThus, C is providing the load power when the switch is closed

Vin

iin

L1 –

Vin

+

C1 + Vin –

L2

+ Vout

Iout

C

– (Vin + Vout) +

Iout

iL1 and iL2 are ramping up (charging). C1 is charging L2

(so C1 is discharging). C is also discharging.

+ Vin –

Page 6: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

6

Switch open (assume the diode is conducting because, otherwise, the circuit cannot work)

Vin

iin

L1

– Vout +

C1

+ Vin –

L2

+ Vout

Iout

C

C1 and C are charging. L1 and L2 are discharging.

+ Vout

KVL shows that VL1 = −Vout

011 outinavgL VDVDV

inout VDDV )1(

D

DVV inout

1

The input/output equation comes from recognizing that the average voltage across L1 is zero

assume constant

Voltage can be stepped-up or stepped-down

!

Page 7: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

7

+ Vin –

Vout +

iL L C iC

Iout

id iin

D

DVV inout

1

Voltage can be stepped-up or stepped-down

The buck-boost converterInverse polarity with respect to input

Compared with SEPIC:

+ Fewer energy storage components

+ Capacitor does not carry load current

+ In both converters isolation can be easily implemented

- Polarity is reversed

!

Page 8: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

8

Inductor L1 current rating

inrmsL II3

21

Use max

During the “on” state, L1 operates under the same conditions as the boost converter L, so the results are the same

Page 9: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

9

Inductor L2 current rating

22222 3

42

12

1outoutoutrmsL IIII

outrmsL II3

22

2Iout

0Iavg = Iout ΔI

iL2

Use max

+ Vout

Iout

CVin

I in

L1

+ 0 –

+ 0

0

0

Iout

I in

C1

L2

Iout

+ Vin –

Average values

Page 10: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

10

MOSFET and diode currents and current ratings

0

2(Iin + Iout)

0

Take worst case D for each

Vin

iin

L1

+ v L1 –

+

v L2

C1

+ v C1 –

L2

+ Vout

Iout

C

MOSFET Diode iL1 + iL2

outinrms III 3

2

Use max

switchclosed

switchopen

2(Iin + Iout)

iL1 + iL2

Page 11: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

11

Output capacitor C current and current rating

inCrms II3

2 outCrms II

2Iin + Iout

−Iout

0

As D → 1, Iin >> Iout , so

iC = (iD – Iout)

As D → 0, Iin << Iout , so

D

IDI

D

DII in

outout

in

1

,1

outinCrms III ,3

2max

switch closed

switch open

Page 12: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

12

Series capacitor C1 current and current rating

Switch closed, IC1 = −IL2

Vin

iin

L1 –

Vin

+

C1

+ Vin –

L2

+ Vout

Iout

C

– (Vin + Vout) +

Iout

+ Vin –

Vin

iin

L1

– Vout +

C1

+ Vin –

L2

+ Vout

Iout

C

+ Vout

Switch open, IC1 = IL1

Page 13: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

13

Series capacitor C1 current and current rating

inrmsC II3

21

2Iin

−2Iout

0

As D → 1, Iin >> Iout , so

iC1

As D → 0, Iin << Iout , so

outinrmsC III3

2,

3

2max1

switch closed

switch open

outrmsC II3

21

Switch closed, IC1 = −IL2

Switch open, IC1 = IL1

The high capacitor current rating is a disadvantage of this converter

!

Page 14: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

14

Worst-case load ripple voltage

Cf

I

C

TI

C

QV outout

The worst case is where D → 1, where output capacitor C

provides Iout for most of the period. Then,

−Iout

0

iC = (iD – Iout)

Page 15: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

15

Worst case ripple voltage on series capacitor C1

2Iin

−2Iout

0

iC1

fC

IV out

1

switch closed

switch open

1

1

11 C

TDI

C

DTI

C

QV inout

Then, considering the worst case (i.e., D = 1)

Page 16: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

16

Voltage ratings

MOSFET and diode see (Vin + Vout)

• Diode and MOSFET, use 2(Vin + Vout)

• Capacitor C1, use 1.5Vin

• Capacitor C, use 1.5Vout

Vin

L1 C1

+ Vin –

L2

+ Vout

C

– (Vin + Vout) +

Vin

L1

– Vout +

C1

+ Vin –

L2

+ Vout

C

Page 17: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

17

Continuous current in L1sec/

1A

L

Vout

fL

DVTD

LD

DV

TDL

VI

boundary

in

boundary

in

boundary

outin 1

11

111

2

fI

DVL

in

inboundary 2

1

2Iin

0Iavg = Iin

iL

(1 − D)T

fI

VL

in

in

21 guarantees continuous conduction

Then, considering the worst case (i.e., D → 1),

use max

use min

Page 18: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

18

Continuous current in L2

sec/ 2A

L

Vout

fL

DVTD

L

VI

boundary

out

boundary

outout 2

)1()1(

22

2Iout

0

Iavg = Iout

iL

(1 − D)T

fI

DVL

out

outboundary 2

)1(2

fI

VL

out

out

22 guarantees continuous conduction

Then, considering the worst case (i.e., D → 0),

use max

use min

Page 19: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

19

Impedance matching

out

outload I

VR

equivR

load

out

out

out

out

in

inequiv R

D

D

I

V

D

D

D

DID

VD

I

VR

22 11

1

1

DC−DC Boost Converter

+

Vin

+

Iin

+

Vin

Iin

Equivalent from source perspective

Source D

DVV inout

1

D

DII inout

1

Page 20: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

20

Impedance matching

load

out

out

out

out

in

inequiv R

D

D

I

V

D

D

D

DID

VD

I

VR

22 11

1

1

For any Rload, as D → 0, then Requiv → ∞ (i.e., an open circuit)

For any Rload, as D → 1, then Requiv → 0 (i.e., a short circuit)

Thus, the SEPIC converter can sweep the entire I-V curve of a solar panel

!

Page 21: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

21

Example - connect a 100Ω load resistor

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mp

s

D = 0.80

6.44Ω equiv.

100Ω equiv.

D = 0.50

D = 0.88

2Ω e

quiv

.

With a 100Ω load resistor attached, raising D from 0 to 1 moves the solar panel load from the open circuit condition to the short circuit condition

Page 22: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

22

Example - connect a 5Ω load resistor

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mp

s

D = 0.47

6.44Ω equiv.

100Ω equiv.

D = 0.18

D = 0.61

2Ω e

quiv

.

Page 23: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

23

Worst-Case Component Ratings Comparisons for DC-DC Converters

Converter Type

Input Inductor

Current (Arms)

Output Capacitor Voltage

Output Capacitor Current (Arms)

Diode and MOSFET Voltage

Diode and MOSFET Current (Arms)

Buck/Boost inI

3

2

1.5 outV

outin II ,

3

2max

)(2 outin VV outin II 3

2

5.66A p-p 200V, 250V 16A, 20A

Our components

9A 250V

10A, 5A10A 90V 40V, 90V

Likely worst-case SEPIC situation

10A, 5A

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

SEPIC DESIGN

Page 24: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

24

Comparisons of Output Capacitor Ripple Voltage

Converter Type Volts (peak-to-peak) Buck/Boost

Cf

Iout

5A

1500µF 50kHz

0.067V

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

SEPIC DESIGN

Page 25: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

25

Minimum Inductance Values Needed to Guarantee Continuous Current

Converter Type For Continuous

Current in the Input Inductor

For Continuous Current in L2

Buck/Boost

fI

VL

in

in

21 fI

VL

out

out

22

40V

2A 50kHz

200µH

90V

2A 50kHz

450µH

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

SEPIC DESIGN

Page 26: 1 EE462L, Spring 2014 DC−DC SEPIC (Converter). 2 Boost converter + V out – I C V in i L1 + v L1 – SEPIC converter + v L2 – C1 + v C1 – L2 V in i L1 +

26

Additional Components for Buck/Boost Converter

Series Capacitor

Voltage

Series Capacitor (C1)

Current (Arms)

Series Capacitor (C1)

Ripple Voltage (peak-to-peak)

Second Inductor (L2)

Current (Arms)

1.5 inV

outin II

3

2,

3

2max

fC

Iout

1 outI

3

2

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

10A 5A40V

Likely worst-case SEPIC situation

5A

5A

33µF 50kHz3.0V

SEPIC DESIGN

Our components 9A14A p-p50V

Conclusion - 50kHz may be too low for SEPIC converter

SEPIC converter