1 Fabricating BRDFs at High Spatial Resolution Using Wave Optics Anat Levin, Daniel Glasner, Ying Xiong, Fredo Durand, Bill Freeman, Wojciech Matusik,

Embed Size (px)

Citation preview

  • Slide 1
  • 1 Fabricating BRDFs at High Spatial Resolution Using Wave Optics Anat Levin, Daniel Glasner, Ying Xiong, Fredo Durand, Bill Freeman, Wojciech Matusik, Todd Zickler. Weizmann Institute, Harvard University, MIT
  • Slide 2
  • 2 Appearance fabrication Goal: Fabricating surfaces with user defined appearance Applications: - Architecture -Product design -Security markers visible under certain illumination conditions -Camouflage - Photometric stereo (Johnson&Adelson 09) Reflectance Acquisition Fabrication
  • Slide 3
  • 3 BRDF (Bidirectional Reflectance Distribution Function) z Dot (pixel) unit on surface ? x
  • Slide 4
  • 4 Reflectance Diffuse Shiny Fabricating spatially varying BRDF
  • Slide 5
  • 5 Controlling reflectance via surface micro-structure Reflectance Diffuse Shiny Surface micro structure What surface micro- structure produces certain reflectances?
  • Slide 6
  • 6 Surface Reflectance Previous work: BRDF fabrication using micro- facets theory (Weyrich et al. 09) 3cm Surface: oriented planner facets Limited spatial resolution Dot size ~ 3cm x 3cm
  • Slide 7
  • 7 Micro-facet model: limitations 3cm 0.3cm 0.03cm 0.003cm Surface scale Reflectance Wave effects at small scales => Substantial deviation from geometric optics prediction
  • Slide 8
  • 8 Previous work: BRDF design Weyrich et al. (2009); Fabricating microgeometry for custom surface reflectance. Matusik et al. (2009); Printing spatially-varying reflectance Finckh et al. (2010); Geometry construction from caustic images Dong et al. (2010); Fabricating spatially-varying subsurface scattering. Papas et al (2011); Goal-based caustics. Malzbender et al. (2012); Printing reflectance functions Lan et al. (2013); Bi-Scale Appearance Fabrication Geometric Optics
  • Slide 9
  • 9 Previous work: Wave scattering Wave models for BRDF: He et al. 91; Nayar et al. 91; Stam 99; Cuypers et al. 12 Holography e.g. Yaroslavsky 2004; Benton and Bove 2008 No practical surface construction Specific illumination conditions (often coherent), not general BRDF
  • Slide 10
  • 10 Contributions: Extra high resolution fabrication Analyze wave effects under natural illumination Analyze spatial-angular resolution tradeoffs Practical surface design algorithm compatible with existing micro-fabrication technology 3cm 0.1mm
  • Slide 11
  • 11 Surface should be stepwise constant with a small number of different depth values x z Prototype: Binary depth values Restricts achievable BRDFs 11 Photolithography and its limitations Geometric optics predicts: surface is a mirror Wave optics: variety of reflectance effects
  • Slide 12
  • 12 Preview: reflectance = Fourier transform Reflectance Diffuse Shiny Surface micro-structure Anisotropic Wide Narrow Wide
  • Slide 13
  • 13 Background: understanding light scattering 1. Coherent illumination: laser in physics lab 2. Incoherent illumination: natural world
  • Slide 14
  • 14 Wave effects on light scattering z x
  • Slide 15
  • 15 Surface scattering Fourier transform 2 Fourier transform See also: He et al. 91 Stam 99 z x
  • Slide 16
  • 16 Inverse width relationship 2 Wide surface features Narrow (shiny) reflectance x
  • Slide 17
  • 17 Inverse width relationship 2 Wide (diffuse) reflectance x Narrow surface features
  • Slide 18
  • 18 Inverse width relationship 2 impulse (mirror) reflectance x Flat surface
  • Slide 19
  • 19 Reflectance design with coherent illumination: Fourier power spectrum of surface height to produce reflectance Challenges: Complex non-linear optimization May not have a solution with stepwise constant heights Inexact solutions: speckles
  • Slide 20
  • 20 Speckles Noisy reflectance from an inexact surface x
  • Slide 21
  • 21 Reflectance design with coherent illumination: Fourier power spectrum of surface height to produce reflectance Challenges: Complex non-linear optimization May not have a solution with stepwise constant heights Inexact solutions: speckles Our approach: Bypass problems utilizing natural illumination Pseudo random surface replaces optimization Need to model partial coherence
  • Slide 22
  • 22 Incoherent illumination: Point source=> Area source Area source = collection of independent coherent point sources x
  • Slide 23
  • 23 Incoherent reflectance: blurring coherent reflectance by source angle * x Angular Convolution Illumination angle Coherent reflectance
  • Slide 24
  • 24 Reflectance averaged over illumination angle is smooth x 24 Incoherent reflectance: blurring coherent reflectance by source angle
  • Slide 25
  • 25 Challenge: avoiding speckles Angular v.s. spatial resolution tradeoffs. Partial coherence. Our analysis:
  • Slide 26
  • 26 Angular resolution => Spatial coherence resolution x
  • Slide 27
  • 27 Angular resolution => spatial coherence resolution x Coherent area Phase change Coherent: Incoherent: Partial coherent:
  • Slide 28
  • 28 Angular resolution -> spatial coherence resolution x Coherent area Coherent: Incoherent: Partial coherent:
  • Slide 29
  • 29 Angular resolution => Spatial coherence resolution x Each coherent region emits a coherent field with speckles
  • Slide 30
  • 30 Angular resolution => Spatial coherence resolution x Each coherent region emits a coherent field with speckles
  • Slide 31
  • 31 Angular resolution => Spatial coherence resolution x Each coherent region emits a coherent field with speckles
  • Slide 32
  • 32 Angular resolution => Spatial coherence resolution Averaging different noisy reflectances from multiple coherent regions => smooth reflectance. x
  • Slide 33
  • 33 Angular resolution => Spatial coherence resolution x Dot size Coherent size
  • Slide 34
  • 34 Angular resolution => Spatial coherence resolution x Coherent size Dot size
  • Slide 35
  • 35 Angular resolution => Spatial coherence resolution x Dot size Coherent size Human eye resolution + typical angle of natural sources. => Smooth reflectance (see paper)
  • Slide 36
  • 36 Recap: Coherent BRDF = Fourier power spectrum of surface height. Incoherent BRDF = Fourier power spectrum of surface height, blurred by illumination angle.
  • Slide 37
  • Next: Design surface height to produce desired BRDF. Coherent design: Fourier power spectrum to produce BRDF - Complex non linear optimization Incoherent design: Blurred Fourier power spectrum to produce BRDF - Pseudo randomness is sufficient
  • Slide 38
  • 38 Surface tiling algorithm x x z z
  • Slide 39
  • 39 Surface tiling algorithm x Coherent illumination => noisy reflectance
  • Slide 40
  • 40 Surface tiling algorithm x
  • Slide 41
  • Step size distribution 41 Surface sampling Sampled surface micro-structure Reflectance Diffuse Glossy Shiny
  • Slide 42
  • 42 BRDFs produced by our approach Anisotropic Anisotropic anti-mirrors Isotropic Anti-mirror
  • Slide 43
  • 43 Fabrication results Electron microscope scanning of fabricated surface 20 m
  • Slide 44
  • 44 Imaging reflectance from fabricated surface Specular spike, artifact of binary depth prototype, can be removed with more etching passes (see paper)
  • Slide 45
  • Imaging under white illumination at varying directions wafer camera Moving light
  • Slide 46
  • Vertical illuminationHorizontal illumination Negative image Anisotropic BRDFs at opposite orientations
  • Slide 47
  • VerticalHorizontal Negative image
  • Slide 48
  • Narrow Isotropic Anti- mirror large incident angle: Anti-mirror kids: bright Background: dark Small incident angle: Anti-mirror kids: dark Background: bright
  • Slide 49
  • 49 Limitations
  • Slide 50
  • 50 Limitations
  • Slide 51
  • 51 Summary Spatially varying BRDF at high spatial resolution (220 dpi). Analyze wave effects under natural illumination. Account for photolithography limitations. Pseudo randomness replaces sophisticated surface design.
  • Slide 52
  • Thank you! 52 20 m Wafer available after session