1 Matrix Lecture

Embed Size (px)

Citation preview

  • 7/30/2019 1 Matrix Lecture

    1/11

    1

    Direct AC/AC Matrix Converters

    Direct AC/AC Matrix ConvertersDirect AC/AC Matrix Converters

    Dipartimento di Ingegneria Elettrica

    Alma Mater Studiorum - Universit di Bologna

    Viale Risorgimento, 2 - 40136 Bologna

  • 7/30/2019 1 Matrix Lecture

    2/11

    2

    Matrix Converters

    3ii

    0

    3oi

    2ii

    3iv

    1oi 2oi

    1ii

    3ov

    2iv

    33S

    1ov 2ov

    1iv 11S

    12S

    13S

    21S

    22S

    23S

    31S

    32S

    Basic schemeof matrix converters.

    have received considerable attention in recent years

    may become a good alternative to PWM-VSI topology

    Bi-directional power flow

    Sinusoidal input/output waveforms

    Controllable input power factor Compact design, due to the lack of

    dc-link capacitors for energy storage

    Topology complexity of the matrix

    converter makes study a hard task

    Topology complexity of the matrix

    converter makes study a hard task

  • 7/30/2019 1 Matrix Lecture

    3/11

    3

    Space Vector Modulation (SVM) algorithm

    SVM completely exploit the possibility of matrix converters to

    control the input power factor regardless the output power factor

    fully utilize the input voltages

    reduce the number of switch commutations in each cycle period.

    SVM allows an immediate comprehension of the modulation

    process

    without the need for a fictitious DC link

    avoiding the addition of the third harmonic components.

  • 7/30/2019 1 Matrix Lecture

    4/11

    4

    29 = 512 Available

    27 Possible

    21 = 18+3 usefully employed

    Active Configurations

    Determine an output voltage

    vector , and an input current

    vector , having fixed

    directions

    ov

    ii

    Switching Configurations

    Zero Configurations

    Determine zero input current

    and zero output voltage vectors

  • 7/30/2019 1 Matrix Lecture

    5/11

    5

    Switching Configurations Employed

    Switching

    configurationlist

    Switches On vo o ii i

    +1 S11 S22 S32 2/3 v12i 0 2/3io1 -/6

    1 S12 S21 S31 -2/3 v12i 0 -2/3 io1 -/6

    +2 S12 S23 S33 2/3 v23i 0 2/3 io1 /22 S13 S22 S32 -2/3v23i 0 -2/3 io1 /2+3 S13 S21 S31 2/3v31i 0 2/3io1 7/6

    3 S11 S23 S33 -2/3v31i 0 -2/3 io1 7/6+4 S12 S21 S32 2/3v12i 2/3 2/3io2 -/6

    4 S11 S22 S31 -2/3v12i 2/3 -2/3io2 -/6+5 S13 S22 S33 2/3v23i 2/3 2/3 io2 /2

    5 S12 S23 S32 -2/3v23i 2/3 -2/3 io2 /2+6 S11 S23 S31 2/3v31i 2/3 2/3io2 7/6

    6 S13 S21 S33 -2/3v31i 2/3 -2/3 io2 7/6+7 S12 S22 S31 2/3v12i 4/3 2/3io3 -/6

    7 S11 S21 S32 -2/3v12i 4/3 -2/3 io3 -/6+8 S13 S23 S32 2/3v23i 4/3 2/3 io3 /2

    8 S12 S22 S33 -2/3v23i 4/3 -2/3 io3 /2+9 S11 S21 S33 2/3v31i 4/3 2/3io3 7/6

    9 S13 S23 S31 -2/3v31i 4/3 -2/3 io3 7/601 S11 S21 S31 0 - 0 -02 S12 S22 S32 0 - 0 -

    03 S13 S23 S33 0 - 0 -

    Active configurationsActive configurations18

    Zero configurationsZero configurations3

  • 7/30/2019 1 Matrix Lecture

    6/11

    6

    Output Voltage and Input Current Space Vectors

    ov

    1,2,3

    4,5,6

    7,8,9

    o

    vo

    sector d

    h

    g

    f

    e cov

    Sectors and directions

    of the outputline-to-neutral

    voltage vectors.

    2,5,8

    3,6,9 1,4,7

    iii

    sector

    h

    c

    de

    f

    g

    Sectors and directions

    of the input current vectors.

  • 7/30/2019 1 Matrix Lecture

    7/11

    7

    At any sampling instantand i are known (reference quantities)

    is imposed by the source (known by measurements)

    ov

    iv

    SVM Algorithm

    SVM Algorithm is based on the selection of 4 activeconfigurations that are applied for suitable time intervals

    within each cycle period Tc.Thezero configurations are applied to complete Tc.

    The control ofi can be achieved by controlling the phase

    angle i of the input current vector.

  • 7/30/2019 1 Matrix Lecture

    8/11

    8

    SVM algorithm

    Selection of the active switching configurationsfor each combination of

    output voltage sector

    input current sector

    Sector of the output voltage vector (Kv)

    1 or 4 2 or 5 3 or 6

    1 or 4 +9 +7 +3 +1 +6 +4 +9 +7 +3 +1 +6 +4

    2 or 5 +8 +9 +2 +3 +5 +6 +8 +9 +2 +3 +5 +6

    Sectorofthe

    inputcurren

    t

    3 or 6 +7 +8 +1 +2 +4 +5 +7 +8 +1 +2 +4 +5

    I II III IV I II III IV I II III IV

  • 7/30/2019 1 Matrix Lecture

    9/11

    9

    ]//)K[(joo

    IIIIo

    IIo

    'o

    ve)~cos(vvvv331

    33

    2 +=+=

    ]/)K[(joo

    IVIVo

    IIIIIIo

    "o

    ve)~cos(vvvv31

    33

    2 +=+=

    ( ) ( ) 031 =+ ii Kj~

    jIIIIi

    IIi eejii

    ( ) ( ) 031 =+ ii Kj~

    jIVIVi

    IIIIIIi eejii

    SVM Algorithm

    Basic equations of the SVM algorithm

    To satisfy to the requirements of the

    reference output voltage vector

    input current displacement angle.

  • 7/30/2019 1 Matrix Lecture

    10/11

    10

    i

    ioKKI

    cos

    )/~

    cos()/~cos(q)( iv

    = +

    33

    3

    21

    i

    ioKKII

    cos

    )/~cos()/~cos(q)( iv

    += ++

    33

    3

    21

    1

    i

    ioKKIII

    cos

    )/~

    cos()/~cos(q)( iv

    += ++

    33

    3

    21

    1

    i

    ioKKIV

    cos

    )/~

    cos()/~cos(q)( iv

    ++= +

    33

    3

    21

    SVM Algorithm

    Solutions of the Basic Equations

    Applied for any combination of

    output voltage sectorKvinput current sectorKi

  • 7/30/2019 1 Matrix Lecture

    11/11

    11

    SVM Algorithm

    1+++ IVIIIIII

    For the feasibility of the control strategy.

    Otherwise: the instantaneous values of the input

    voltages do not allow to satisfy the requirementsof output voltage and input power factor.