24
“G ütlich,Bill,Trautw ein: Mössbauer S pectroscopy and T ransition Metal C hemistry@ Springer-Verlag 2009” 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * [email protected] gh.edu.pl

1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * [email protected]

Embed Size (px)

Citation preview

Page 1: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

1

-Phase in Fe-Cr and Fe-V Systems

-Phase in Fe-Cr and Fe-V Systems

Stanislaw M. Dubiel*

Faculty of Physics & Applied Computer Science, AGH University,

Kraków*[email protected]

Page 2: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

2

-Phase-PhaseThe -phase (tetragonal structure, space group D14

4h – P42/mnm) is known

to exist only in alloy systems. Among 53 members of the -phase family in binary alloys only two i.e. Fe-Cr and Fe-V have well documented magnetic properties [1]. The -FeCr seems to be the most known member of the family not only as the archetype, but also for technological reasons. The latter follows from a deteriorating effect of the phase precipitation on mechanical and corrosive properties of technologically important materials based on Fe-Cr alloys e. g. loss of corrosion resistance and reduction of ductility and toughness. Although the -FeCr and -FeV have been known since many years, their physical properties, and, in particular, magnetic ones, are not known satisfactorily, and the Debye temperature was determined for the first time only recently [2]. There are only very few theoretical papers on the issue available, which in a combination with a complex crystallographic structure (30 atoms distributed randomly over five different crystallographic sites with high coordination numbers) makes the interpretation of experimental results very difficult.

[1] E. O. Hall and S. H. Algie, Metall. Rev., 11 (1966) 61 [2] J. Cieslak et al., Phys. Rev. B, 65 (2002) 212301

The -phase (tetragonal structure, space group D144h – P42/mnm) is known

to exist only in alloy systems. Among 53 members of the -phase family in binary alloys only two i.e. Fe-Cr and Fe-V have well documented magnetic properties [1]. The -FeCr seems to be the most known member of the family not only as the archetype, but also for technological reasons. The latter follows from a deteriorating effect of the phase precipitation on mechanical and corrosive properties of technologically important materials based on Fe-Cr alloys e. g. loss of corrosion resistance and reduction of ductility and toughness. Although the -FeCr and -FeV have been known since many years, their physical properties, and, in particular, magnetic ones, are not known satisfactorily, and the Debye temperature was determined for the first time only recently [2]. There are only very few theoretical papers on the issue available, which in a combination with a complex crystallographic structure (30 atoms distributed randomly over five different crystallographic sites with high coordination numbers) makes the interpretation of experimental results very difficult.

[1] E. O. Hall and S. H. Algie, Metall. Rev., 11 (1966) 61 [2] J. Cieslak et al., Phys. Rev. B, 65 (2002) 212301

Page 3: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

3

OutlineOutline

• Crystallographic structure and -phase family • Short history of -FeCr • Formation and identification of -FeCr

• Debye temperature, D

• Curie temperature, TC

• Hyperfine field, B • Correlations between B and • Magnetism of -phase in Fe-Cr and Fe-V

systems

Page 4: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

4

Structure – Unit CellStructure – Unit Cell

A

C

E

D

E

B

Page 5: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

5

Structure – SitesStructure – Sites

Site

number

Site

code

CN ON <d>[nm]

1 A 12 2 0.2508

2 B 15 4 0.2701

3 C 14 8 0.2652

4 D 12 8 0.2526

5 E 14 8 0.2638

CN - coordination number; ON- occupation number; <d> -average nearest-neighbour distance

Page 6: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

6

Structure – SitesStructure – Sites

The plot shows all 5 sites with all their NN-neighbours. The geometry of the NN-atoms is preserved. Note that atoms at B, D and E sites have all 5 different atoms as their NN-neighbours, but atoms at A miss A and C NN-atoms, and those at C sites miss A NN-atoms.

The plot shows all 5 sites with all their NN-neighbours. The geometry of the NN-atoms is preserved. Note that atoms at B, D and E sites have all 5 different atoms as their NN-neighbours, but atoms at A miss A and C NN-atoms, and those at C sites miss A NN-atoms.

A

B

C

D

E

Page 7: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

7

Structure – Site OccupancyStructure – Site Occupancy

• Mössbauer spectroscopy (-FeCr)Ba = 13.5 T; T = 4.2 K

Five different sites occupied by Fe atoms

J. Cieslak, M. Reissner, S. M. Dubiel, W. Steiner, 6th Seeheim Workshop on MS, 2006

Page 8: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

8

Structure - Site OccupancyStructure - Site Occupancy• Neutron diffraction (---- FexV; FexCr)

J. Cieslak et al., J. Alloys Comp., 460 (2008) 20

Page 9: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

9

-Phase Family-Phase Family

• 53 cases in binary alloys e.g. FeV, FeNb, FeTa, FeCr, FeMo, FeTc, FeRe

Page 10: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

10

Phase Diagram - FeV SystemPhase Diagram - FeV System

Page 11: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

11

History of -FeCrHistory of -FeCr

• 1923: Bain observed hard, brittle and nonmagnetic phase (B-constituent) in FeCrNi alloy

• 1936: Jette & Foote gave the name „sigma”

• 1943: Cook & Jones recorded first XRD pattern

• 1954: Bergmann & Shoemaker established its crystal structure

• 1981: Yakel determined site occupancy

• 1995: Kawazoe et al. published first theoretical paper

E. O. Hall and S. H. Algie, Metall. Rev., 11 (1966) 61

Page 12: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

12

Identification of -FeCr Identification of -FeCr• T = 295 K

XRD ME

NEUTRONS

J. Cieslak et al.. J. Alloys Comp., 460 (2008) 20

The difference in the isomer shift between and amounts to ca. -0.1 mm/sThe difference in the isomer shift between and amounts to ca. -0.1 mm/s

Page 13: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

13

Kinetics of Transformation Kinetics of Transformation

• Isothermal annealing at ~ 530 T ~ 830oC

)exp(RT

Ekk o ])(exp[1100 nktA

)exp(RT

Ekk o

E = 196 ± 2 kJ/mol

• -FeCr

Ta = 700oC

A. Blachowski, S. M. Dubiel and J. Zukrowski, Intermetallics, 9 (2001) 493

Page 14: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

14

Debye Temperature, ΘD Debye Temperature, ΘD T[K]

60

40

20

4.2

T

xD

DD

dxe

xT

Tmc

kTTIS

0

33

1

38

3

2

3)(

• -FeCr

Page 15: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

15

Debye Temperature, ΘDDebye Temperature, ΘD

• -FeV + -FeCr

J. Cieslak et al., J. Phys.: Condens. Matter., 17 (2005) 6889

There is a linear increase of TD with x for x 45 for both V and CrThere is a linear increase of TD with x for x 45 for both V and Cr

ΘD

[K]

Page 16: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

16

Curie Temperature, Tc Curie Temperature, Tc

• Mössbauer effect (-FeCr) - from line width, G

(a) x = 45.0, (b) x = 46.2 and (c) x = 48.0

(a) 4.2 K; (b) 295 K

J. Cieslak et al., J. Magn. Magn. Mater., 272-276 (2004) 534

Page 17: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

17

Curie Temperature, TcCurie Temperature, Tc

• Mössbauer effect (-FeV34) - from average hf. field

J. Cieslak, B. F. O. Costa, S. M. Dubiel, M. Reissner, W. Steiner, ICAME2008

TC = 323 K

Page 18: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

18

Curie Temperature, Tc Curie Temperature, Tc • -FeV

-FeCr

J. Cieslak, B. F. O. Costa, S. M. Dubiel, M. Reissner, W. Steiner, ICAME2008

There is a non-linear decrease of TC with vanadium contentThere is a non-linear decrease of TC with vanadium content

Page 19: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

19

<B> - Relationship<B> - Relationship

<B> a <B> = a + BCEP

J. Cieslak, B. F. O. Costa, S. M. Dubiel, M. Reissner, W. Steiner, ICAME2008

Lack of linearily speaks for important contribution from conduction electronsLack of linearily speaks for important contribution from conduction electrons

Page 20: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

20

Models of -FeCr Magnetism Models of -FeCr Magnetism

• Ferrimagnetism

1 = 2.0 B 2 = 1.5 B

B1 = 18 T B2 = 13 T

Bexp 4 T

• Band-magnetism

)( nnM B )( nnM B

Page 21: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

21

• Band-magnetismLack of saturation Rhodes - Wohlfarth plot

4K

Models of -FeCr Magnetism Models of -FeCr Magnetism

-FeCr

Both plots give evidence for itinerant magnetism in the -FeCrBoth plots give evidence for itinerant magnetism in the -FeCr

Page 22: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

22

Rhodes – Wohlfarth plot

Fe50.5Cr49.5

Fe53.8Cr46.2

µeff /µs

Models of -FeCr Magnetism Models of -FeCr Magnetism

Systems for which eff/s > 1 have itinerant character of magnetismSystems for which eff/s > 1 have itinerant character of magnetism

Page 23: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

23

ConclusionsConclusions Mössbauer spectroscopy is very useful to study magnetic and dynamic properties of the -phase in Fe-Cr and Fe-V systems, as well as the kinetics of -to- transformation.

All measured quantities (TD, TC, and <B>) depend sensitively on Cr, V content, x);

• TD increases at the rate of ~15 K/at% (x 45) for both systems

• TC and <B> decrease non-linearly with x

• <B> is non-lineraly correlated with

Magnetism of -FeCr (V) seems to obey itinerant model due to;

• lack of saturation

• Rhodes - Wohlfarth plot

• non-linear relationship <B> - .

Mössbauer spectroscopy is very useful to study magnetic and dynamic properties of the -phase in Fe-Cr and Fe-V systems, as well as the kinetics of -to- transformation.

All measured quantities (TD, TC, and <B>) depend sensitively on Cr, V content, x);

• TD increases at the rate of ~15 K/at% (x 45) for both systems

• TC and <B> decrease non-linearly with x

• <B> is non-lineraly correlated with

Magnetism of -FeCr (V) seems to obey itinerant model due to;

• lack of saturation

• Rhodes - Wohlfarth plot

• non-linear relationship <B> - .

Page 24: 1 -Phase in Fe-Cr and Fe-V Systems Stanislaw M. Dubiel * Faculty of Physics & Applied Computer Science, AGH University, Kraków * dubiel@novell.ftj.agh.edu.pl

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

24

More to readMore to read• G. Bergman and D. P. Shoemaker, Acta Cryst., 7 (1954) 857

• H. L. Yakel, Acta Cryst., B39 (1983) 20; ibid, B39 (1983) 28

• H. H. Ettwig and W. Pepperhoff, Arch. Eisenhuttenwes., 43 (1972) 271

• Y. Sumimoto et al., J. Phys. Soc. Jpn., 35 (1973) 461

• A. M. van der Kraan et al., Phys. Stat. Sol. (a), 88 (1985) 231

• R. Vilar and G. Cizeron, Acta Metall., 35 (1987) 1229

• A. Gupta et al., Hyper. Inter., 54 (1990) 805 • B. F. O. Costa and S. M. Dubiel, Phys. Stat. Sol.

(a), 139 (1993) 83 • B. F. O. Costa et al., Phys. Stat. Sol. (a),

161 (1997) 349 • J. Cieslak, S. M. Dubiel and B.

Sepiol, Sol. Stat. Commun., 111 (1999) 613 • J. Cieslak, S. M. Dubiel

and B. Sepiol, Hyper. Inter., 126 (2000) 187 • A. Blachowski et

al., J. Alloys Comp., 308 (2000) 189; ibid, 313 (2000) 182 • A.

Blachowski et al., Intermetallics, 8 (2000) 963 • J.

Cieslak et al., J. Alloys Comp., 460 (2008) 20 • J. Cieslak et al., J. Phys.: Condens Matter., 20 (2008) 235234

• G. Bergman and D. P. Shoemaker, Acta Cryst., 7 (1954) 857

• H. L. Yakel, Acta Cryst., B39 (1983) 20; ibid, B39 (1983) 28

• H. H. Ettwig and W. Pepperhoff, Arch. Eisenhuttenwes., 43 (1972) 271

• Y. Sumimoto et al., J. Phys. Soc. Jpn., 35 (1973) 461

• A. M. van der Kraan et al., Phys. Stat. Sol. (a), 88 (1985) 231

• R. Vilar and G. Cizeron, Acta Metall., 35 (1987) 1229

• A. Gupta et al., Hyper. Inter., 54 (1990) 805 • B. F. O. Costa and S. M. Dubiel, Phys. Stat. Sol.

(a), 139 (1993) 83 • B. F. O. Costa et al., Phys. Stat. Sol. (a),

161 (1997) 349 • J. Cieslak, S. M. Dubiel and B.

Sepiol, Sol. Stat. Commun., 111 (1999) 613 • J. Cieslak, S. M. Dubiel

and B. Sepiol, Hyper. Inter., 126 (2000) 187 • A. Blachowski et

al., J. Alloys Comp., 308 (2000) 189; ibid, 313 (2000) 182 • A.

Blachowski et al., Intermetallics, 8 (2000) 963 • J.

Cieslak et al., J. Alloys Comp., 460 (2008) 20 • J. Cieslak et al., J. Phys.: Condens Matter., 20 (2008) 235234