27
Introduc)on During the first half of the 20th century most syntheses were developed by selec;ng a commercially available star;ng material having a structural resemblance to the target molecule. Synthe;c planning in most of the cases was strongly dependent on an assumed star;ng point. A?er World War II the synthesis of a series of complex molecules was achieved, propelled by the availability of more powerful conceptual processes for the synthesis planning and by the use of new synthe;c methods. For instance the total syntheses of vitamin A (O. Isler, 1949), cor;sone (R.B. Woodward, R. Robinson, 1951), morphine (M. Gates, 1956), penicillin (J.C. Sheehan, 1957) and chlorophyll (R. B. Woodward, 1960) were achieved. The striking leap forward was recognized by the award of the Nobel Prize for chemistry to R. B. Woodward (1965) and later to E. J. Corey (1990), the father of retrosynthe;c analysis. Synthesis

10 Synthesis

Embed Size (px)

DESCRIPTION

synthesis chemical basics

Citation preview

Page 1: 10 Synthesis

Introduc)on

During  the  first  half  of  the  20th  century  most  syntheses  were  developed  by  selec;ng  acommercially  available  star;ng  material  having  a  structural  resemblance  to  the  targetmolecule.   Synthe;c   planning   in   most   of   the   cases   was   strongly   dependent   on   anassumed  star;ng  point.

A?er   World   War   II   the   synthesis   of   a   series   of   complex   molecules   was   achieved,propelled  by   the  availability  of  more  powerful   conceptual  processes   for   the   synthesisplanning  and  by  the  use  of  new  synthe;c  methods.    For  instance  the  total  syntheses  ofvitamin  A  (O.  Isler,  1949),  cor;sone  (R.B.  Woodward,  R.  Robinson,  1951),  morphine  (M.Gates,   1956),   penicillin   (J.C.   Sheehan,   1957)   and   chlorophyll   (R.   B.  Woodward,   1960)were  achieved.

The  striking  leap  forward  was  recognized  by  the  award  of  the  Nobel  Prize  for  chemistryto  R.  B.  Woodward   (1965)  and   later   to  E.   J.  Corey   (1990),   the   father  of   retrosynthe;canalysis.

Synthesis

Page 2: 10 Synthesis

Target  molecule:  the  molecule  to  be  synthesized  (o?en  abbreviated  as  TM)

Retrosynthe2c   analysis:   the   process   of   breaking   down   a   TM   into   available   star;ngmaterials.   The   first   step   in   a   retrosynthe;c   analysis   will   be   the   last   one   in   the   forwardsynthesis,  the  TM  and  the  precursors  are  connected  by  retrosynthe;c  arrows  (NO  reac;oncondi;ons  are  specified  on  the  arrow!)

Forward  synthesis:  the  actual  synthesis  from  the  star;ng  materials  to  the  TM.Disconnec5on:   the   reverse   opera;on   to   a   reac;on;   the   “cleavage”   of   bond   affording“synthons”.

Synthon:   an   idealized   fragment,   most   o?en   a   ca;on   or   anion,   resul;ng   from   thedisconnec;on  of  a  bond

Synthe2c  equivalent  (Reagent):  compound  used  in  prac;ce  for  a  synthon.

Page 3: 10 Synthesis

Linear  vs.  convergent  synthesis

Whenever  possible  one  should  try  to  use  a  convergent  synthesis  (bringing  bigger  buildingblocks   together   at   the   same  ;me)   to   increase   the   overall   yield.   If   the   yield   of   a   singletransforma;on   is   90%   (op;mis;c)   in   a   linear   synthesis   the   overall   yield   a?er   5   stepscan’t  exceed  59%.

With  the  same  assump;on  (90  %  yield  per  step)  a  convergent  synthesis  with  the  sameamount  of  steps  would  have  an  overall  yield  of  73  %.  Purely  convergent  synthesis  isidealized,  for  all  syntheses  un;l  some  degree  are  linear.

Page 4: 10 Synthesis

General  guidelines  for  a  retrosynthe;c  analysis

•  The  synthesis  should  be  as  short  as  possible;•  Look  for  the  retrosynthe;c  steps  that  lead  to  known,  reliable  reac;ons;•  Disconnect  preferen;ally  C-­‐X  bonds,  because  they  are  generally  easier  to  makethan  C-­‐C  bonds;•  If  a  C-­‐C  disconnec;on  has  to  be  done,  analyze  the  func;onal  groups  and  theirrela;onship;•  Repeat  the  disconnec;ons  un;l  you  reach  available  star;ng  materials;•  Analyze  all  the  steps  in  the  forward  synthesis  and  detect  possible  problems:-­‐  func;onal  group  compa;bility  (use  of  protec;ng  groups);-­‐  chemo-­‐  and  stereoselec;vity.

Page 5: 10 Synthesis

Disconnec)on  approach

A   key   concept   in   Corey’s   disconnec;on   approach   is   the   synthon.   A   synthon   is   aconceptual   en;ty;   it   does   not   have   to   exist   as   a   chemical   structure,   but   can   bereconducted  to  reagents  with  the  corresponding  polarity.

Donor  Synthon  (dN)Func;onalized  nucleophile  with  the  heteroatom  of  the  func;onal  group  joined  to  the  Nth

carbon  atom.

Acceptor  Synthon  (aN)Func;onalized  electrophile  with  the  heteroatom  of  the  func;onal  group  joined  to  the  Nth

carbon  atom.

Page 6: 10 Synthesis

Examples  of  synthons  and  the  corresponding  reagents

Page 7: 10 Synthesis

How  to  select  a  disconnec)on

Even   for   very   simple   molecules   there   are   several   possible   retrosynthe;cdisconnec;ons.  Two  general  rules  can  be  applied:1)   Disconnect   the   molecule   in   the   center,   trying   to   obtain   two   about   equally   sizedfragments  (convergent  synthesis);2)  A  disconnec;on  at  a  branch-­‐point  is  most  likely  to  give  a  linear  (therefore  simpler)precursor.

Page 8: 10 Synthesis

Example  3

Example  2

Example  1

Page 9: 10 Synthesis

Classes  of  retrosynthe)c  disconnec)ons  for  bifunc)onal  compoundsIt  is  useful  to  recognize  the  rela;ve  posi;on  of  two  func;onal  groups  within  a  molecule  inorder  to  choose  the  best  retrosynthe;c  disconnec;on.

1,3-­‐bifunc)onal  compounds1,4-­‐bifunc)onal  compounds1,5-­‐bifunc)onal  compounds

Page 10: 10 Synthesis

1,3-­‐bifunc)onal  compoundsVarious  1,3-­‐bifunc;onal  compounds  can  be  made  from  ketone  1.

Disconnec;on  of  bond  2-­‐3  leads  to  synthons  which  have  synthe;c  equivalents  set  upfor  an  aldol  reac;on.

Page 11: 10 Synthesis

1,4-­‐bifunc)onal  compoundsDisconnec;on   between   2-­‐3   leads   us   to   synthons,   which   do   indeed   have   synthe;cequivalents,  but  are  not  compa;ble.  Alterna;ve  disconnec;on  between  1-­‐2  leads  to  a  1,4addi;on.

Simple  func;onal  group  interconversion  affords  alterna;ve  routes  for  1,4-­‐bifunc;onalcompounds

Page 12: 10 Synthesis

1,5-­‐bifunc)onal  compoundsDisconnec;on  between  2-­‐3  affords  synthons  set  up  for  a  1,4  addi;on.

The  same  subs;tu;on  pajern  can  be  obtained  from  subs;tuted  cyclopentadiene  withozonolysis.

Page 13: 10 Synthesis

Func)onal  Group  interconversion

Some;mes  adding  further  steps  to  the  synthesis  helps  solving  problems.

Page 14: 10 Synthesis

AminesMany  natural  products  and  synthe;c  targets  contain  amine  func;onality;  some  generalways  to  introduce  it  in  the  molecule  are  depicted  below.Amines   can   arise   from:   halides   via   displacement   with   an   azide   and   Staudingerreduc;on;   ketones   or   aldehydes   via   reduc;ve   amina;on;   reduc;on   of   a   nitrocompound  and  from  amides.

Page 15: 10 Synthesis

KetonesKetones  can  arise  from  alcohols  via  oxida;on,  Weinreb  amides  via  1,2  addi;ons,  oralkenes  via  ozonolysis.

A   carbonyl   group   in   a   molecule   opens   up   many   possibili;es   to   introduce   otherfunc;onali;es   (α-­‐func;onaliza;on),   form   new   C-­‐C   bonds   and   bring   bigger   fragmenttogether  (cross  couplings).

Page 16: 10 Synthesis

OlefinsOlefins  can  be  made  from  ketones  or  aldehydes  via  Wimg  and  related  reac;ons,  alkynes(reduc;ons),  and  other  olefins  via  metathesis  or  cross  couplings.

Various   transforma;ons   can   also   be   preformed   with   olefins   such   as:   hydrobora;on-­‐oxida;on   sequence   to   afford   an   alcohol   which   can   be   transformed   into   a   ketone   orcarboxylic   acid;   epoxida;on   and   opening   with   a   nucleophile   affords   1,2   disubs;tutedcompounds;  Diels-­‐Alder  reac;ons  which  affords  cyclic  compounds  and  also  reduc;on  toafford  alkanes.

Page 17: 10 Synthesis

1.  The  importance  of  total  synthesis.Chemical  synthesis  of  complex  natural  products  is  in  many  cases  essen;al  for  biologicalstudies  and  structural  assignment.  The  target  molecules  are  o?en  very  ac;ve  compounds,which  are  present  in  nature  at  extremely  low  concentra;ons.An  example  is  the  insect  juvenile  hormone  of  Cecropia  (TM  in  the  scheme  below),  whichplays  a  central  role  in  insect  development  and  generated  immense  interest  in  the  1960’sbecause  of  the  poten;al  use  as  nontoxic  insect  control.  The  molecule  was  synthesized  inabout  20  chemical  steps  using  Corey’s  disconnec;on  approach.

Page 18: 10 Synthesis

2  Viagra®  (Sildenafil  Citrate)Sildenafil  is  a  drug  synthesized  by  pharmaceu;cal  company  Pfizer  used  to  treat  erec;ledysfunc;on  and  pulmonary  arterial  hypertension.  Viagra  is  one  of  the  top  selling  drugs  inrecent  years.  The  industrial  synthesis  of  Viagra  involves  very  simple  reac;ons.  It  is  a  goodexample  illustra;ng  bond  disconnec;ons  and  func;onal  group  transforma;ons.

Retrosynthesis

Page 19: 10 Synthesis

Synthesis:

Page 20: 10 Synthesis

3  α-­‐kainic  acidα-­‐kainic  acid  1  is  a  potent  agonist  for  glutamate  receptors  in  the  nervous  system  and  iswidely  used  in  neuroscience  as  neurodegenera;ve  agent  modeling  epilepsy,  Parkinsons’sdisease  and  Alzheimer’s  disease.

Retrosynthesis:

Page 21: 10 Synthesis

Synthesis:

Page 22: 10 Synthesis

4  Penicillin  VPenoxymethylpenicillin  (Penicillin  V)  is  a  penicillin  an;bio;c  which  is  orally  ac;ve  againstGram-­‐nega;ve  bacteria.  Its  total  synthesis  was  accomplished  in  the  late  1950’s  by  John  C.Sheehan.

Retrosynthesis:

Page 23: 10 Synthesis

Synthesis:

Page 24: 10 Synthesis

5  Prostaglandin  F2α  :The  first  total  synthesis  of  Prostaglandin  F2α  and  Prostaglandin  E2  was  reported  by  E.  J.Corey  in  1969  (J.  Am.  Chem.  Soc.  1969,  91,  5675)  and  has  become  an  all-­‐;me  classic  in  thetotal  synthesis  of  natural  products.  The  highly  stereoselec;ve  synthesis  of  the  five-­‐membered  core  was  accomplished  using  transforma;ons  on  a  norbornene  system.Retrosynthesis:

Page 25: 10 Synthesis

Synthesis:

Page 26: 10 Synthesis

6  Dil)azemDil;azem  is  a  calcium  channel  blocker  used  as  a  drug  for  the  treatment  of  angina  pectoris.It  reduces  the  heart  rate  without  affec;ng  the  force  of  contrac;on.  The  ability  of  thesedrugs  to  dilate  peripheral  blood  vessels  also  makes  them  agents  for  hypertension.

Retrosynthesis:

Page 27: 10 Synthesis

Synthesis: