11-0051_experimentguide

  • Upload
    pare1

  • View
    222

  • Download
    2

Embed Size (px)

Citation preview

  • 7/29/2019 11-0051_experimentguide

    1/10

    1

    TABLE OF CONTENTS

    INTRODUCTION 2

    STATIC ELECTRICITY 2

    ATOMS 2

    SOLAR SYSTEM MODEL 2

    ELECTRON CLOUD MODEL 2

    INSULATORS AND CONDUCTORS 3

    ELECTRONS INSIDE CONDUCTORS 3

    ELECTRONS INSIDE INSULATORS 3

    CARDBOARD AND PAPER 3

    WATER 3TRIBOELECTRIC CHARGE 4

    TRIBOELECTRIC SERIES 4

    FUN-FLY-STICK, INSIDE VIEW 4

    HOW FUN-FLY-STICK WORKS 5

    ELECTROSTATIC INDUCTION 5

    POLARIZATION 6

    CORONA DISCHARGE 7

    LEVITATION PRINCIPLES 8

    ARBOR SCIENTIFIC HAS ROYALTY FREE LICENSE TO USE THE WORK PRESENTED HERE

    IN COMMERCE.

  • 7/29/2019 11-0051_experimentguide

    2/10

    2

    Introduction

    Playing with the Fun-Fly-Stick is a great way to gain a deep

    understanding of static electricity. Fact:

    The American physicistRobert Jemison Van de

    Graa patented the

    Van de Graa genera-

    tor in 1931.

    The Fun-Fly-Stick is a portable version of the well-knownVan de Graa generator (VDG). Large VDG machines are

    often used in museums as a fun demo tool to make your

    hair stand on end. VDG machines produce electric elds

    which are strong enough to be measured, manipulated, felt

    directly, played with, and nally grasped at an intuitive level.

    Static electricityis the result of an articially or naturally created imbalance of charges.

    Since all matter around us is made up of atoms, which are usually neutral in charge, we

    need to understand how this imbalance can be created.

    Solar System Model(a.k.a Rutherfords Model ofAtom) is the most common way to picture an atom.

    The model describes electrons orbiting around the

    nucleus in a fashion similar to planets orbiting the

    Sun. Just like planets have their orbits and are

    located at dierent distances from the Sun, the

    electrons have their own trajectory and distance

    from the nucleus. This model is still popular in

    teaching physics as it is easier to visualize.

    The Electron Cloud Modelclaims that there are no

    orbitals. Instead, the electrons are located around

    the nucleus within certain boundaries or shells.

    These shells are described as the most probable

    locations for electrons to be found. The boundaries

    are fuzzy and the precise location of the electrons is

    unknown. This model is considered more advanced

    and is commonly used in chemistry and quantum

    mechanics.

    Rutherfords model of atom

    ( Solar System )

    Atoms:

    An atom encapsulates positive (protons), neutral (neutrons), and negative (electrons)

    charges within it. The positive and neutral charges make up the core or nucleus of the

    atom, while electrons carrying a negative charge surround the nucleus. There are several

    theories and corresponding models used to describe the structure of an atom. The most

    popular models are the Solar System Model and the Electron Cloud Model.

    Electron Cloud model of atom

  • 7/29/2019 11-0051_experimentguide

    3/10

    3

    Typically, the number of electrons equals the number of protons. The outer electrons are

    located farthest from nucleus and are held more loosely than the rest. On contact

    between two materials, electrons may migrate from one material to another. This migra-

    tion will create an imbalance of charges. The object whose atoms lost electrons will be left

    with a positive charge on it and the object that received or captured the electrons willhave a negative charge. This imbalance of charges is what creates static electricity.

    Insulators and Conductors

    Materials made of atoms that hold on to their electrons very tightly are called insulators.

    Materials made of atoms that have a weak attraction to their electrons are called conduc-

    tors. If you take a segment of electric wire, you will nd both types of materials in it. The

    silicon that wraps around the metal is an insulator, and the metal inside is a conductor.

    Electrons inside conductors are free to move as inuenced by various forces. They either

    move inside the conductor itself or can migrate to another conductor.

    Electrons inside insulators can only move within atoms themselves. They may

    stretch the atoms or rotate them but never leave the atoms under normal circumstances.

    Nevertheless, every insulator has a maximum electric eld strength that is can withstand

    without a breakdown. At the breakdown, the electric eld frees bound electrons, thus

    turning the material into a conductor. The breakdown point depends on dierent factors

    which include humidity, temperature, thickness of the insulator, as well as the strength ofthe e-eld inuencing it.

    Cardboard and paper are normally insulators. Cardboard is made of layers of paper so

    that we do not have to make a distinction between the two as they are very similar. The

    voltage generated by Fun-Fly-Stick turns the paper that we use in the Fun-Fly-Stick and

    for the experiments into a conductor with high electrical resistance. This means conduc-

    tive paper gets to have free electrons. The number of free electrons is much lower than it

    would have been in a normal conductor and they move much slower within paper due

    to papers high electrical resistance. That is why when we touch the control tube of theFun-Fly-Stick, the electrons from our body run onto the cardboard/paper control tube

    very slowly, eliminating instant static discharge through an electric shock. If we were to

    touch metal under the same circumstances, we would be signicantly zapped.

    Water also deserves separate explanation. There is a theory that pure, distilled water is an

    insulator. It also has been said that impurities in tap water, (salts and minerals) make

    water conductive. In reality, even if you test triple distilled water free of salts and impuri-

    ties, it shows conductivity. Another theory, which we tend to support, says that water can

    ionize in an aqueous (liquid) form to H3O+ and OH- ions. This causes water to be a veryweak electrolyte no matter how many times it is boiled or deionized.

    Other liquids like sugar or car antifreeze, do not break down into ions in liquid

    form, therefore they do not conduct electricity unless they have impurities.

  • 7/29/2019 11-0051_experimentguide

    4/10

    4

    Triboelectric Charge

    Charge separation that happens due to rubbing or contact between materials is known

    as triboelectricity. The tendency for a material to acquire a net positive charge by rubbing

    or contact denes a place of the material in the triboelectric series. The triboelectricseries is often referred to as an electronegativity scale. A chemical property that describes

    the ability of an atom to attract electrons towards itself is called electronegativity.

    If a material is more apt to "capture" electrons when in contact

    with another material, it is more negative in the triboelectric

    series. If a material is more apt to give up electrons when in

    contact with another material, it is more positive in the tribo-

    electric series.

    To create static charge we want to choose materials on dierent

    ends of triboelectric table.

    Triboelectric series are widely used by those who work on

    preventing the triboelectric charge and by those who want to

    create it on purpose. For example, static charge buildup can

    damage semiconductor devices upon electrostatic discharge

    (ESD), thus companies use materials that do not charge each

    other upon contact when handling, packaging, and storing

    ESD-sensitive electronic devices.On the other hand, companies that utilize the triboelectric

    charge to create static electricity, like to build a Van de Graa

    generator, base selection of the materials that comprise the

    heart of the VDG machine on the triboelectric series.

    Triboelectric series

    Positive (gives up electrons)

    glass

    hair

    nylon

    wool

    fur

    silk

    aluminum

    paper

    cotton

    rubber

    copper

    polyesterpolystyrene

    PVC

    TeonNegative (captures

    electrons)

    Fun-Fly-Stick, Inside View

    Look at the inner workings of your Fun-Fly-Stick wand. There are two rollers Teon on

    the bottom and aluminum on top.

    A rubber belt runs over the rollers.

    There are two copper combs/brushes, one on top and one on the bottom. They come as

    close as possible to contact with the belt, but never actually touch the belt directly.

    Ground

    Teflon RollerMetal Roller

    Rubber Belt

    Upper Brush

    Lower Brush

    TOPBOTTOM

  • 7/29/2019 11-0051_experimentguide

    5/10

    5

    The Teon roller on the bottom is mounted on top of the axel

    of the motor powering the wand. Lastly, two AA batteries

    power the motor. A cardboard control tube snaps on top of

    the Fun-Fly-Stick coming into a tight contact with the exposed

    part of the upper brush. The cardboard tube of the Fun-Fly-Stick serves as an electric charge accumulator and eectively

    replaces the typical spherical metal dome of the Van de Graa

    generator. The standard VDG device looks like a big aluminum

    ball mounted on a pedestal. If you touch the aluminum ball, it

    will result in an electric shock discharge, unless you isolate

    yourself from the ground. With Fun-Fly-Stick you do not have

    to worry about that, you can touch it and nothing will happen

    because of the high electrical resistance of paper.

    Fun-Fly-Stick Secret:

    The lower brush is connected to

    the metal rim of the power

    button by a wire. By pressing the

    power button the user touchesthe metal rim surrounding the

    button, thus grounding the

    Fun-Fly-Stick because the

    human body is a great conduc-

    tor. If an operator is not isolated

    from the ground by rubber-soled

    shoes or another insulator, the

    Fun-Fly-Stick will work the best!

    How Fun-Fly-Stick Works

    Press the power button on the Fun-Fly-Stick and observe the mechanism of the wand

    through the translucent walls.

    Below is the general explanation for students who begin learning the basics of static

    electricity and the Van de Graa generator.

    Electrical charges are separated at the point where the rubber belt and Teon rollerspaths separate. As we learned from the triboelectric series, Teon captures the electrons

    from the belt leaving the belt with a positive charge moving toward the aluminum roller.

    Immediately, the lower comb sweeps the excess electrons from the Teon roller and

    they ow to the ground via the operator. As the positive belt passes over the top metal

    roller, free electrons from the accumulator (control tube) are sucked in via the upper

    comb and onto the electrondecient belt. The electrons are carried down to the lower

    Teon roller where the cycle is repeated. The lower comb is connected to the operators

    nger (ground) through the metal rim of the button.

    A smart student will undoubtedly raise the question: How do combs sweep charges if

    they never come into contact with the belt or the rollers? To answer this question we

    should rst introduce electrostatic induction.

    Electrostatic induction is the redistribution of electrical charges in an object caused by

    the inuence of nearby charges. In other words, when charged and neutral objects have

    no direct contact but the neutral object is placed within the electric eld of the charged

    one, a separation of the internal charges occurs inside the neutral object.

    When a neutral object is a conductor, which means it has freely movable electrons, induc-tion is fairly simple. The electrons either move toward the positive eld of a charged

    object of move away from it if the object is negatively charged. The electrons concentrate

    on one side of the object leaving the opposite side electrondecient,

    and thus positively charged. This redistribution of charges is called induction.

  • 7/29/2019 11-0051_experimentguide

    6/10

    6

    Insulators hold on to their electrons very tightly.

    Charge redistribution still happens but on a much

    smaller scale. Electrons move only within atoms

    themselves, thus pointing in the same direction

    when placed within the e-eld of a charged object.

    If the charged object is positive, then the electrons

    face the object, while if it is negative then the

    electrons point away. This re-orientation of atoms iscalledpolarization.

    Lets look closely at the copper combs. First, we have to note that they are excellentconductors and their electrons move freely inside them. Second, the combs have sharp or

    pointy tips which are helpful to induce air ionization around them. Third, the

    comb tips are situated within the electric eld (e-eld) of the rollers.

    Induction in Conductors

    Insulator when no e-eld applied

    Polarized

  • 7/29/2019 11-0051_experimentguide

    7/10

    7

    When the e-eld of the negatively charged Teon

    roller reaches the tips of the comb, the electrons move

    away, leaving the tips of the comb with a positive

    charge. The strong e-eld of the roller also ionizes the

    surrounding air creating on a very small scale aneect known as corona discharge. The air breaks

    down into electrons and positive ions. The roller

    repels the electrons that are in the air and the posi-

    tively charged tip of the lower comb attracts the

    electrons, moving them toward the metal rim of the

    power switch to ground them though the operators

    body.

    The positive ions get attracted to the Teon roller,adding positive charge to the belt as it moves toward

    the roller. The belt carries the positive charge to the

    aluminum roller. The roller accumulates the charge.

    The pointy tip of the upper brush is situated within

    the e-eld of the aluminum roller. The other end of

    the upper brush is exposed and directly contacts the

    inside of the conducting cardboard tube. The positive

    e-eld of the aluminum roller induces a negative

    charge in the comb. The air around the roller becomesionized as a result of small scale corona discharge. The

    roller attracts electrons from the air while pushing

    away positive ions. At the same time, the negatively

    charged comb attracts positively charged ions and

    repels the electrons. The electrons moving toward the

    positive roller encounter the belt on the way. The

    electrons give the belt negative charge that gets

    carried on to the roller that captures electrons.

    The cardboard control tube is a conductor with high

    electrical resistance. The control tube and the exposed

    end of the upper comb have tight contact when the

    control tube is mounted on top of the Fun-Fly-Stick.

    Charge Concentration:

    Once the charges inside the Fun-Fly-Stick

    begin separating, all the charged

    components become surrounded by an

    electric eld or e-eld. The more chargethe component has or accumulates on it,

    the more signicant its electric eld

    becomes. The cardboard tube is the

    largest charged component with a strong

    positive electric eld surrounding it. Each

    of the rollers has the second largest

    concentration of the charge and the belt

    has the weakest electric eld of all.

    Charge on the Belt:

    The belt in a VDG generator carries both

    charges at the same time. Half of the

    belt carries positive charge toward the

    roller that gives up electrons and the

    other half carries negative charge to the

    roller that acquires electrons.

    + + + + + + + + + + +

    - - - - - - - - - - - - - - - -

    Corona Discharge:

    Take the cardboard tube o and power

    the Fun-Fly-Stick in a completely dark

    room. Observe the insides of the wand.

    The discharge will be so insignicant

    that you may not even see it. However,

    touch the exposed end of the copper

    comb and you should see a glow around

    the rollers. Now, put the cardboard top

    back on and power the wand. You may

    observe corona discharge around the

    wand so bright that the glowing around

    the rollers will be seen but visually

    disrupted by explosive reworksaround the wand.

    This allows the control tube to become an extension of

    the comb as two conductors join.

    On the other hand, the control tube presents itself not

    just as a conductor, but

    also as a conductive container. When a charged objecttouches a conductive container on the inside, the

    container receives all the charge. The excess of the

    charge concentrates on the outside of the container

    and begins dissipating into the air.

  • 7/29/2019 11-0051_experimentguide

    8/10

    8

    Levitation Principles

    Make a Mylar shape oat following the Quick Start Instructions on the rst page. The

    shape oats due to the repelling electric eld of the Fun-Fly-Stick.

    When you turn the Fun-Fly-Stick on, it begins separating positive and negative charges.

    The positive charge gets accumulated on the control tube the cardboard tube mounted

    on top of the wand. When the shape touches the control tube, it acquires positive charge

    and immediately repels from the control tube because they now have the same charge.

    The shape opens up because it repels within itself due to the same charge being distrib-

    uted along the entire surface of the shape.

    To levitate shapes you need to have two things: a statically charged object (either Fun-

    Fly-Stick, latex balloon, or PVC pipe) and a shape able to oat on an electric eld.

    To oat, the material has to be lightweight and conductive. For example, a shape made ofthe thinnest paper tissue, Christmas tree tinsel, or a metallic thread will oat because it is

    both lightweight and conductive.

    Gravity is stronger than the e-eld of the charged object. The material has to be light-

    weight to be able to defy gravity. The more weight it has, the lower it sinks (if it even takes

    o the wand at all). But why do we choose conductive materials?

    A conductive material gets charged almost instantly either on contact or through induc-

    tion. Within conductors the charge is free to move about. Thus the excess charges will

    move within the conductor until they can no longer move and that will be when they

    reach the surface and can go no farther. Therefore, the excess charge on a conductive

    shape will be located on the entire surface, causing every part of the shape to repel from

    every other part due to repulsion of like charges.

    In the insulator the charge is forced to stay where it is located. It does not get redistrib-

    uted on the entire surface. Therefore there is little localized repulsion between the insula-

    tor and the charged object.

    A shape consisting of strands tied together on both ends opens

    up into a oating orb, much like a globe with meridians. The

    repulsion of like charges within the shape itself causes the shapeto open up and become 3-dimensional.

    The shape, when aoat, is surrounded by an e-eld of the same charge as the Fun-Fly-

    Stick. It repels only from the control tube of the Fun-Fly-Stick or any other object charged

    with the same charge. That is why oating two yers at the same time is a challenge; they

    repel each other. When you press the button on the Fun-Fly-Stick you increase the charge

    on the control tube and thus expand the e-eld. When the oating shape rises higher

    and higher, some people try reaching it with the charged Fun-Fly-Stick. This causes the

    oating shape rise even higher and escape the e-eld.All the objects surrounding us are mostly neutral. An e-eld approaching a neutral object

    causes electrostatic induction in conductors and polarization in insulators. Thus,

    when the oating shape nears a wall, a person, furniture, or any other object, its

    e-eld causes redistribution of charge in that object. The positive e-eld

  • 7/29/2019 11-0051_experimentguide

    9/10

    9

    surrounding the oating shape induces negative charge in generally neutral objects. This

    in turn causes the oating shape to attract to those neutral objects. If it touches the

    object a discharge occurs and the yer loses its charge.

    This is why instead of chasing the oating shape that has risen too high with the Fun-Fly-

    Stick and repelling it, the best way to get it down is simply to extend your free handtoward it. The Beckoning Hand magic trick when you oat a shape and then make it

    follow your hand by approaching its e-eld and moving the hand away with the same

    speed the shape attracts to it, makes people think that your hand has some magnetic

    powers. Now we know that it really gains those magnetic powers by induction!

    Experiment: Launch a shape and let it rise up to your

    eye level. Touch the oating shape with the index

    nger of your free hand. It collapses and drops down

    lifelessly. Catch it with the control tube of your

    activated Fun-Fly-Stick. The shape will expand againand spring back to life. Repeat several times.

    Why does this happen? You body is a conductor. Once

    your nger touches a positively charged conductive

    shape, the electrons from your body instantly migrate

    on to the ying shape, causing it to lose the charge and collapse. Touching it with the

    Fun-Fly-Stick charges the shape again. Once the shape has the charge, it repels within

    itself and from the wand, creating a feeling of magic.

    Experiment: Launch any small shape and put the

    palm of your free hand above it. Trapping the shape

    between the control tube of the Fun-Fly-Stick and

    your palm causes the shape to bounce back and forth.

    The process repeats itself creating a vision of a jump-

    ing shape.

    Why? Touching the control tube of the activated Fun-Fly-Stick causes the shape to

    become charged with the same charge as the Fun-Fly-Stick and repel. On the way up the

    shape meets your hand, touches it, and instantly discharges because your body and the

    shape are conductors.

    The e-eld of the Fun-Fly-Stick pulls the shape toward the wand where it gets recharged

    upon contact (or by induction) and repels again, moving up toward your hand. You can

    also do the same trick bouncing the shape horizontally.

    Experiment: Isolate a person from the ground by having him or her stand on an insulator.

    For insulation, you can use interlocking foam oor tiles, rubber-soled shoes, a plastic

    sheet, or another insulating material.Have the person extend one hand with an open palm facing up. Place the Mylar shape on

    the open palm. Have the person hold the control tube of the Fun-Fly-Stick with the

    other hand. Turn on the Fun-Fly-Stick and observe the Mylar shape slowly expand

    and take o.

  • 7/29/2019 11-0051_experimentguide

    10/10

    10

    Why? Isolating the person from the ground is the same as isolating a large conductive

    object from the ground. When the person holds the control tube of the activated wand,

    all the charge created by the Fun-Fly-Stick gets transferred onto the conductive object the person. The contact between the wand and the isolated person drains the electrons

    from the persons body leaving him/her positively charged. This gives the charged person

    the power to levitate the shapes with his/her hands instead of using the Fun-Fly-Stick.

    If the charged person, who is being isolated touches another person who is not charged,

    this will produce a spark or a zap caused by the electrons owing from the non-charged

    person into the charged person through the point of contact. If the point of contact is the

    nose of one person and index nger of another, the spark may be very visible and will

    often makes students laugh.

    When you charge the person isolated from the ground with the Fun-Fly-Stick, they

    receive a positive charge. However, you can also charge yourself with the opposite

    charge. To do so you have to also be isolated and hold the Fun-Fly-Stick while charging

    another person. Alternatively, you can isolate yourself from the ground and touch a large

    conductive object (a door knob, a conductive wall). The positively charged control tube

    attracts electrons from the conductive object it touches and transfers them onto you via

    the belt and the metal rim of the button.