29
No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. GATE SOLVED PAPER Electrical Engineering SIGNALS & SYSTEMS Copyright © By NODIA & COMPANY Information contained in this book has been obtained by authors, from sources believes to be reliable. However, neither Nodia nor its authors guarantee the accuracy or completeness of any information herein, and Nodia nor its authors shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that Nodia and its authors are supplying information but are not attempting to render engineering or other professional services. NODIA AND COMPANY B-8, Dhanshree Tower Ist, Central Spine, Vidyadhar Nagar, Jaipur 302039 Ph : +91 - 141 - 2101150 www.nodia.co.in email : [email protected]

155signals and Systems

Embed Size (px)

DESCRIPTION

khukh

Citation preview

No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author.GATE SOLVED PAPERElectrical EngineeringSIGNALS & SYSTEMSCopyright By NODIA & COMPANYInformation contained in this book has been obtained by authors, from sources believes to be reliable.However, neither Nodia nor its authors guarantee the accuracy or completeness of any information herein, and Nodia nor its authors shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that Nodia and its authors are supplying information but are not attempting to render engineeringor other professional services.NODI A AND COMPANYB-8, Dhanshree Tower Ist, Central Spine, Vidyadhar Nagar, J aipur 302039Ph :+91 - 141 - 2101150www.nodia.co.inemail : [email protected] SOLVED PAPER - EESI GNALS &SYSTEMS www.nodia.co.inYEAR 2013ONE MARKQ. 1Aband-limitedsignalwithamaximumfrequencyof5kHzistobesampled. According to the sampling theorem, the sampling frequency which is not valid is(A) 5kHz(B) 12kHz(C) 15kHz(D) 20kHzQ. 2Foraperiodicsignal/ sin cos sin v t t t t 30 100 10 300 6 500 4 p = + + + ^ ^ h h,the fundamental frequency in/ rad s(A) 100(B) 300(C) 500(D) 1500Q. 3Two systems with impulse responses h t1^ h and h t2^ h are connected in cascade. Then the overall impulse response of the cascaded system is given by(A) product of h t1^ h and h t2^ h(B) sum of h t1^ h and h t2^ h(C) convolution of h t1^ h and h t2^ h(D) subtraction of h t2^ h from h t1^ hQ. 4WhichoneofthefollowingstatementsisNOTTRUEforacontinuoustime causal and stable LTI system?(A) All the poles of the system must lie on the left side of thejw axis(B) Zeros of the system can lie anywhere in the s-plane(C) All the poles must lie withins 1 =(D) All the roots of the characteristic equation must be located on the left side of thejw axis.Q. 5Theimpulseresponseofasystemish t tu t = ^ ^ h h.Foraninputu t 1 - ^ h,the output is(A) t u t22^ h(B) t tu t211--^^hh(C) tu t2112--^^hh(D) tu t2112-- ^ hYEAR 2013TWO MARKSQ. 6The impulse response of a continuous time system is given by h t t t 1 3 d d = - + - ^ ^ ^ h h h. The value of the step response at t 2 =is(A) 0(B) 1(C) 2(D) 3 www.nodia.co.inGATE SOLVED PAPER - EESI GNALS &SYSTEMSYEAR 2012ONE MARKQ. 7If[ ] (1/ 3) (1/ 2) [ ], x n u nn n= - thentheregionofconvergence(ROC)ofitsz-transform in the z-plane will be(A)z313 < < (B)z3121< be( ) F s1 andtheLaplacetransformofitsdelayedversion( ) f t t - be( ) F s2.Let* ( ) F s1 bethecomplexconjugateof( ) F s1withtheLaplacevariablesets j s w = + .If ( )( )( ) * ( )G sF sF s F s122 1= , then the inverse Laplace transform of( ) G sis an ideal(A) impulse( ) t d (B) delayed impulse( ) t d t -(C) step function( ) u t (D) delayed step function( ) u t t -Q. 15Theresponse( ) h t ofalineartimeinvariantsystemtoanimpulse( ) t d ,under initially relaxed condition is( ) h t e et t 2= +- -. The response of this system for a unit step input( ) u tis(A)( ) u t e et t 2+ +- -(B) ( ) ( ) e e u tt t 2+- -(C) ( . . ) ( ) e e u t 15 05t t 2- -- -(D)( ) ( ) e t e u tt t 2d +- -YEAR 2010ONE MARKQ. 16For the system/ ( ) s 2 1 + , the approximate time taken for a step response to reach 98% of the final value is(A) 1 s(B) 2 s(C) 4 s(D) 8 sQ. 17The period of the signal( ) 0.8 sin x t t 84pp= +` j is(A) 0.4p s(B) 0.8p s(C) 1.25 s(D) 2.5 sQ. 18The system represented by the input-output relationship( ) y t ( ) , x d t 0 >t 5t t =3 -#is(A) Linear and causal(B) Linear but not causal(C) Causal but not linear(D) Neither liner nor causalQ. 19The second harmonic component of the periodic waveform given in the figure has an amplitude of(A) 0(B) 1(C)/ 2p(D)5 www.nodia.co.inGATE SOLVED PAPER - EESI GNALS &SYSTEMSYEAR 2010TWO MARKSQ. 20( ) x t isapositiverectangularpulsefrom1 1 t t to =- =+ withunitheightas showninthefigure.Thevalueof( ) ( ) X d X where2w w w33-" #istheFourier transform of( )} x tis.(A) 2(B) 2p(C) 4(D) 4pQ. 21Given the finite length input[ ] x n and the corresponding finite length output[ ] y n of an LTI system as shown below, the impulse response[ ] h n of the system is(A) -[ ] {1, 0, 0,1} h n= (B) -[ ] {1, 0,1} h n=(C) -[ ] {1,1,1,1} h n=(D) -[ ] {1,1,1} h n=Common Data Questions Q.22-23.Given( ) f tand( ) g tas show belowQ. 22( ) g tcan be expressed as(A)( ) ( ) g t ft 2 3 = - (B)( ) g t f t23 = -` j(C)( ) g t f t 223= -` j(D)( ) g t f t2 23= -` jQ. 23The Laplace transform of( ) g tis(A)( )s e e1 s s 3 5- (B)( )s e e1 s s 5 3-- -(C)(1 )seess32---(D)( )s e e1 s s 5 3-YEAR 2009ONE MARKQ. 24A Linear Time Invariant system with an impulse response( ) h tproduces output ( ) y twhen input( ) x tis applied. When the input( ) x t t -is applied to a system with impulse response( ) h t t - , the output will be(A)( ) yt (B)( ( )) y t 2 t -(C)( ) y t t - (D)( ) y t 2t -GATE SOLVED PAPER - EESI GNALS &SYSTEMS www.nodia.co.inYEAR 2009TWO MARKSQ. 25A cascade of three Linear Time Invariant systems is causal and unstable. From this, we conclude that(A) each system in the cascade is individually causal and unstable(B) at least on system is unstable and at least one system is causal(C) at least one system is causal and all systems are unstable(D) the majority are unstable and the majority are causalQ. 26TheFourierSeriescoefficientsofaperiodicsignal( ) x t expressedas ( ) x t a e/k j kt Tk2=33 p=-/ are given by2 1 a j2= --,0.5 0.2 a j1= +-, a j20= , . . a j 05 021= - , a j 2 12= +and a 0k=fork 2 >Which of the following is true ?(A)( ) x thas finite energy because only finitely many coefficients are non-zero(B)( ) x thas zero average value because it is periodic(C) The imaginary part of( ) x tis constant(D) The real part of( ) x tis evenQ. 27The z-transform of a signal[ ] x n is given byz z z z 4 3 2 6 23 1 2 3+ + - +- -It is applied to a system, with a transfer function( ) H z z 3 21= --Let the output be[ ] y n. Which of the following is true ?(A)[ ] y n is non causal with finite support(B)[ ] y n is causal with infinite support(C)[ ] ; y n n 0 3 > =(D)[ ( )] [ ( )][ ( )] [ ( )] ;Re ReIm ImY z Y zY z Y z = = = =-(B)[ ] ; , , [ ] , [ ] [ ] h n n n h h h 0 1 1 1 1 0 1 2 < > = - - = = =(C)[ ] 0; 0, 3, [0] 1, [1] 2, [2] 1 h n n n h h h < > = =- = =(D)[ ] ; , , [ ] [ ] [ ] [ ] h n n n h h h h 0 2 1 2 1 1 0 3 < > = - - = = - =- =Q. 49Thediscrete-timesignal[ ] ( ) x n X znz23nnn02=+3=/,wheredenotesa transform-pair relationship, is orthogonal to the signal(A)[ ] ( ) y n Y z z32 nnn1 10) =3=-`j/ (B)[ ] ( ) ( ) y n Y z n z 5( ) nnn2 202 1) = -3=- +/(C)[ ] ( ) y n Y z z 2 nnn3 3) =33 -=--/(D)[ ] ( ) y n Y z z z 2 3 14 44 2) = + +- -Q. 50A continuous-time system is described by( ) y t e( ) x t=-, where( ) y tis the output and( ) x tis the input.( ) y tis bounded(A) only when( ) x tis bounded(B) only when( ) x tis non-negative(C) only for t 0 #if( ) x tis bounded for t 0 $(D) even when( ) x tis not boundedQ. 51The running integration, given by( ) ( ) y t x t dt' 't=3 -#(A) has no finite singularities in its double sided Laplace Transform( ) Y s(B) produces a bounded output for every causal bounded input(C) produces a bounded output for every anticausal bounded input(D) has no finite zeroes in its double sided Laplace Transform( ) Y sYEAR 2005TWO MARKSQ. 52For the triangular wave from shown in the figure, the RMS value of the voltage is equal toGATE SOLVED PAPER - EESI GNALS &SYSTEMS www.nodia.co.in(A) 61(B) 31(C) 31(D) 32Q. 53The Laplace transform of a function( ) f tis( )( 2 2)F ss s ss s 5 23 622=+ ++ + as, ( ) t f t " 3approaches(A) 3(B) 5(C) 217(D) 3Q. 54The Fourier series for the function( ) sin f x x2=is(A) sin sin x x 2 + (B)cos x 1 2 -(C) sin cos x x 2 2 + (D). . cos x 05 05 2 -Q. 55If( ) u t istheunitstepand( ) t d istheunitimpulsefunction,theinversez-transform of( ) F z1 z1=+ for k 0 >is(A) ( ) ( ) k 1 kd - (B)( ) ( ) k 1 kd --(C) ( ) ( ) u k 1 k- (D)( ) ( ) u k 1 k--YEAR 2004TWO MARKSQ. 56The rms value of the resultant current in a wire which carries a dc current of 10 A and a sinusoidal alternating current of peak value 20 is(A) 14.1 A(B) 17.3 A(C) 22.4 A(D) 30.0 AQ. 57The rms value of the periodic waveform given in figure is(A) 2 6 A(B) 6 2 A(C)/ 4 3A(D) 1.5A*********** www.nodia.co.inGATE SOLVED PAPER - EESI GNALS &SYSTEMSSOLUTI ONSol . 1Option (A) is correct.Given, the maximum frequency of the band-limited signalfm5kHz =According to the Nyquist sampling theorem, the sampling frequency must be greater than the Nyquist frequency which is given asfN2 2 5 10kHz fm #= = =So, the sampling frequencyfs must satisfyfsfN$fs10kHz $only the option (A) does not satisfy the condition therefore,5kHz is not a valid sampling frequency.Sol . 2Option (A) is correct.Given, the signalv t ^ hsin cos sin t t t 30 100 10 300 6 5004= + + +p^ hSo we have 1w 100 / rad s = ; 2w 00 / rad s 3 =and 3w 00 / rad s 5 =Therefore, the respective time periods areT1sec210021wp p= =T2sec230022wp p= =T3sec5002p=So, the fundamental time period of the signal isL.C.M., T T T1 2 3 ^ h , ,2 ,2 ,2HCFLCM100 300 500p p p=^ ^hhor, T0 1002p=Thus, the fundamental frequency in rad/ sec is 0w 100 / rad s102p= =Sol . 3Option (C) is correct.Ifthetwosystemswithimpulseresponseh t1^ handh t2^ hareconnectedin cascaded configuration as shown in figure, then the overall response of the system is the convolution of the individual impulse responses.GATE SOLVED PAPER - EESI GNALS &SYSTEMS www.nodia.co.inSol . 4Option (C) is correct.For a system to be casual, the R.O.C of system transfer function H s ^ h which is rational should be in the right half plane and to the right of the right most pole.For the stability of LTIsystem. All poles of the system should lie in the lefthalfofS-planeandnorepeatedpoleshouldbeonimaginaryaxis.Hence, options (A), (B), (D) satisfies both stability and causality an LTIsystem.But, Option (C) is not true for the stable system as,S 1 =have one pole in right hand plane also.Sol . 5Option (C) is correct.Given, the inputx t ^ hu t 1 = - ^ hIts Laplace transform isX s ^ h se s=-The impulse response of system is givenh t ^ ht u t = ^ hIts Laplace transform isH s ^ h s12=Hence, the overall response at the output isY s ^ hX s H s = ^ ^ h h se s3=-Its inverse Laplace transform isy t ^ h tu t2112=--^^hhSol . 6Option (B) is correct.Given, the impulse response of continuous time systemh t ^ ht t 1 3 d d = - + - ^ ^ h hFrom the convolution property, we knowx t t t0d -*^ ^ h hx t t0= - ^ hSo, for the inputx t ^ hu t =^ h (Unit step funn)The output of the system is obtained asy t ^ hu t h t =*^ ^ h hu t t t 1 3 d d = - + -*^ ^ ^ h h h6 @u t u t 1 3 = - + - ^ ^ h hAt t 2 = y 2 ^ hu u 2 1 2 3 = - + - ^ ^ h h1 =Sol . 7Option (C) is correct.[ ] x n[ ] u n3121n n= -b b l l[ ] [ 1] ( ) u n u n u n313121n n n= + - - --b b b l l lTaking z-transformX z6 @[ ] [ ] z u n z u n31311nnnnn n= + - -3333---=- =-b b l l/ / www.nodia.co.inGATE SOLVED PAPER - EESI GNALS &SYSTEMS[ ] z u n21 nnn-33-=-bl/ z z z313121nnnnnnnnn 010= + -333-=--=---=b b b l l l/ / / zzz 313121I II IIInnmmnn 0 1 0= + -3 3 3= = =b b b l l l1 2 3 44 44 1 2 3 44 44 1 2 3 44 44/ / /Taking m n =-Series I converges if z 311 Series I I converges ifz311 t 5t t =3 -#Causality :( ) y tdepends on( ), x t t 5 0 >system is non-causal.For example t 2 =( ) y 2depends on( ) x 10(future value of input)Linearity :Output is integration of input which is a linear function, so system is linear.Sol . 19Option (A) is correct.Fourier series of given function( ) x t cos sin A a n t b n tnn n 010 0w w = + +3=/( ) x t a ( ) x t =-odd functionSo,A 00=a 0n=bn( )sinTx t n t dt2T00w =# www.nodia.co.inGATE SOLVED PAPER - EESI GNALS &SYSTEMS( ) ( ) sin sinTn t dt n t dt21 1//TTT0 02 02w w = + -= G # # cos cosT nn tnn t 2//TTT0002002wwww=---c c m m = G( ) ( ) cos cos cosn Tn n n21 20wp p p = - + -6 @( )n21 1 np= -- 6 @bn ,,nnn40oddevenp =*So only odd harmonic will be present in( ) x tFor second harmonic component ( ) n 2 =amplitude is zero.Sol . 20Option (D) is correct.By parsvals theorem( ) X d21 2pw w33-#( ) x t dt2=33-#( ) X d2w w33-#2 2 # p = 4p =Sol . 21Option (C) is correct.Given sequences[ ] x n -{ , }, n 1 1 0 1 # # = -[ ] y n -{ , , , , }, n 1 0 0 0 1 0 4 # # = -If impulse response is[ ] h n then[ ] y n[ ]* [ ] h n x n =Length of convolution ( [ ]) y nis 0 to 4,[ ] x n is of length 0 to 1 so length of[ ] h n will be 0 to 3.Let[ ] h n -{ , , , } a b c d =Convolution[ ] y n -{ , , , , } a ab b c c d d = - + - + - + -By comparinga1 =ab - + b a 0 1 & = = =b c - + c b 0 1 & = = =c d - + d c 0 1 & = = =So,[ ] h n -{ , , , } 1 1 1 1 =GATE SOLVED PAPER - EESI GNALS &SYSTEMS www.nodia.co.inSol . 22Option (D) is correct.We can observe thatif we scale( ) f tby a factor of 21 and then shift, we will get ( ) g t .First scale( ) f tby a factor of 21( ) g t1( / 2) f t =Shift( ) g t1 by 3,( ) g t ( ) g t f t3231= - =-` j( ) g t f t2 23= -` jSol . 23Option (C) is correct.( ) g tcan be expressed as( ) g t ( 3) ( 5) u t u t = - - -By shifting property we can write Laplace transform of( ) g t( ) G ssese1 1 s s 3 5= -- -(1 )seess32= ---Sol . 24Option (D) is correct.Let( ) ( ) x t X sL( ) ( ) y t Y sL( ) ( ) h t H sLSo output of the system is given as( ) Y s ( ) ( ) X s H s =Now for input( ) x t t - ( ) e X s (shiftingproperty)sLt -( ) h t t - ( ) e H ssLt -So now output is'( ) Y s ( ) ( ) e X s e H ss s$ =t t - -( ) ( ) e X s H ss 2=t -( ) e Y ss 2=t -'( ) y t ( 2 ) y t t = -Sol . 25Option (B) is correct.Let three LTI systems having response( ), ( ) H z H z1 2 and( ) H z3 areCascaded as showing belowAssume( ) H z11 z z2 1= + +(non-causal)( ) H z21 z z3 2= + +(non-causal) www.nodia.co.inGATE SOLVED PAPER - EESI GNALS &SYSTEMSOverall response of the system( ) H z ( ) ( ) ( ) H z H z H z1 2 3=( ) H z ( )( ) ( ) z z z z H z 1 12 1 3 23= + + + +To make( ) H zcausal we have to take( ) H z3 also causal.Let( ) H z3z z 16 4= + +- -( )( )( ) z z z z z z 1 1 12 1 3 2 6 4= + + + + + +- -( ) H z causal "Similarly to make( ) H zunstable atleast one of the system should be unstable.Sol . 26Option (C) is correct.Given signal( ) x t a e/k j kt Tk2=33p=-/Let 0wis the fundamental frequency of signal( ) x t( ) x t a ek jk tk0=33w=-/ T20apw =( ) x t a e a e a a e a ej t jt jt j t221 0 1 22 0 0 0 0= + + + +w w w w----(2 ) (0.5 0.2) 2 j e j e jjt jt 2 0 0= - + + + +w w - - (0.5 0.2) (2 ) e j ejt j t 2 0 0+ - + +w w2e e j e ej t j t j t j t 2 2 2 2 0 0 0 0= + + - +w w w w - -6 6 @ @ 0.5 0.2 2 e e j e e jjt jt jt jt 0 0 0 0+ - - +w w w w - + -6 6 @ @2(2 2 ) (2 2 ) 0.5(2 ) cos sin cos t jj t t0 0 0w w w = + + - 0.2 (2 ) 2 sin jj t j0w +4 2 2 2 . 2 cos sin cos sin t t t t j 040 0 0 0w w w w = - + + + 6 @[ ( )] Imx t 2 (constant) =Sol . 27Option (A) is correct.Z-transform of[ ] x n is( ) X z z z z z 4 3 2 6 23 1 2 3= + + - +- -Transfer function of the system( ) H z z 3 21= --Output( ) Y z ( ) ( ) H z X z =( ) Y z (3 2)(4 3 2 6 2 ) z z z z z1 3 1 2 3= - + + - +- - -12 9 6 18 6 8 6 4 12 4 z z z z z z z z z4 2 1 2 3 1 2 3= + + - + - - - + -- - - - -z z z z z z 12 8 9 4 18 18 44 3 2 2 3= - + - - + -- - -Or sequence[ ] y n is[ ] y n[ ] [ ] [ ] [ ] n n n n 12 4 8 3 9 2 4 d d d d = - - - + - - - 18 [ 1] 18 [ 2] 4 [ 3] n n n d d d + + + - +[ ] y n0 =Y ,0 n