37
Calculate the Velocity of Gas in 6" Pipeline (Pipeline Rules of Thumb Handbook) Min Max v = 1440 * Z * Q * T where : v = velocity of gas, ft/sec 5 30 d 2 * P Z = Compressibility 0.94 0.94 Q = Volume, MMSCFH T = Operating Temperatur, R 660 660 d = Inside diameter of pipe , inches 6.193 6.193 P = Operating Pressure, psia 600 600 Q = 0.128792073 MMSCFH 3.088538921 MMSCFD Minimum Q = 0.772752438 MMSCFH 18.53123352 MMSCFD Maksimum maksimum velocity should be limited to acceptable noise level (60 to 80 ft/s) minimum velocity should be limited to about 3 - 10 ft/s refer to API RP 14 E if there are solid particles Hasil perhitungan diatas menunjukan bahwa pipa 6" dapat mengalirkan gas dengan kapasitas maksimum sebesar 37 MMSCFD dan minimum sebesar 3 MMSCFD Sumur Makmur #25 berada pada satu area dengan sumur-sumur makmur 1, 2, 4, 6, 17 dan 23. Sumur-sumur tersebu mempunyai zona G-50 series yang kandungan gasnya sangat potensial dan apabila ke-6 sumur tersebut zona gasnya produksikan, maka fasilitas 6" trunkline yang diajukan akan dapat menampung gas dari ke-6 sumur tersebut.

15_pipe Thickness Calculations

Embed Size (px)

DESCRIPTION

piping

Citation preview

Page 1: 15_pipe Thickness Calculations

Calculate the Velocity of Gas in 6" Pipeline (Pipeline Rules of Thumb Handbook)

Min Max

v = 1440 * Z * Q * T where : v = velocity of gas, ft/sec 5 30

d2 * P Z = Compressibility 0.94 0.94

Q = Volume, MMSCFH

T = Operating Temperatur, R 660 660

d = Inside diameter of pipe , inches 6.193 6.193

P = Operating Pressure, psia 600 600

Q = 0.128792073 MMSCFH

3.088538921 MMSCFD Minimum

Q = 0.772752438 MMSCFH

18.53123352 MMSCFD Maksimum

maksimum velocity should be limited to acceptable noise level (60 to 80 ft/s)

minimum velocity should be limited to about 3 - 10 ft/s refer to API RP 14 E if there are solid particles

Hasil perhitungan diatas menunjukan bahwa pipa 6" dapat mengalirkan gas dengan kapasitas maksimum sebesar

37 MMSCFD dan minimum sebesar 3 MMSCFD

Sumur Makmur #25 berada pada satu area dengan sumur-sumur makmur 1, 2, 4, 6, 17 dan 23. Sumur-sumur tersebut

mempunyai zona G-50 series yang kandungan gasnya sangat potensial dan apabila ke-6 sumur tersebut zona gasnya di

produksikan, maka fasilitas 6" trunkline yang diajukan akan dapat menampung gas dari ke-6 sumur tersebut.

Page 2: 15_pipe Thickness Calculations

Sumur Makmur #25 berada pada satu area dengan sumur-sumur makmur 1, 2, 4, 6, 17 dan 23. Sumur-sumur tersebut

mempunyai zona G-50 series yang kandungan gasnya sangat potensial dan apabila ke-6 sumur tersebut zona gasnya di

produksikan, maka fasilitas 6" trunkline yang diajukan akan dapat menampung gas dari ke-6 sumur tersebut.

Page 3: 15_pipe Thickness Calculations

Sheet No. : 1 of 3

LINE NO : 121-6-GR-CCD-XXX REV : A

LEGENT : Trunkline Calculation

AFE NO : 08-1318 DATE : 05-Dec-08

TABLE OF CONTENTS

Hal.

1 GENERAL DATA 2

2 Pipe Thickness Calculation 3

Page 4: 15_pipe Thickness Calculations

0 Sheet No. : 2 of 3

LINE NO : 121-6-GR-CCD-XXX REV : A

LEGENT : Trunkline Calculation

AFE NO : 08-1318 DATE : 05-Dec-08

1. GENERAL DATA

Design Code = ASME B31.8

Design Pressure = 1350 Psi (ANSI 600)

Corrosion Allowance = 1.6 mm

Design Temperatur = 200 °F = 93.33 °C

MATERIAL = API 5L Gr B Sch 80

Basic Quality Factor For longitudinal weld joints = 0.85

Radiography = Spot

Diameter = NPS 6

Page 5: 15_pipe Thickness Calculations

Sheet No. : 3 of 3

LINE NO : 121-6-GR-CCD-XXX REV : A

LEGENT : Trunkline Calculation

AFE NO : 08-1318 DATE : 05-Dec-08

2 Thickness Calculation

tm = t + c

1 - u t = Pi × do

2 × Smys × E × F × T

where :

tm = minimum required thickness

t = pressure design thickness, mm

c = the sum of the mechanical allowance

Pi = internal design pressure, Psi

do = outside diameter of pipe, mm

Smys = Basic allowable Stres forValue

F = Design Factor

E' = longitudinal weld joint factor

T = temperature derating factor

Pi = 1350 Psi

do = 6.625 inch

c = 0.063 inch

= 0.0362 inch (Accumalation corrosion for 5 years operation) NORSOK-M506

S' = 35000 Psi

E' = 1

F = 0.72

u = 12.5%

T = 1 (Less than 250 F)

Pipe thickness caused by pressure

t = 0.177 inch

Minimum required thickness

tm = 0.316 inch

Sch 40 for NPS 6 = 0.280 inch

Sch 80 for NPS 6 = 0.432 inch

Conclusion

We choose Sch 80 NPS 6

Page 6: 15_pipe Thickness Calculations

Sheet No. : 1 of 3

LINE NO : REV : A

LEGENT : Wellhead Flowline Calculation

AFE NO : AFE 09-1333 DATE : 23-Feb-09

TABLE OF CONTENTS

Hal.

1 GENERAL DATA 2

2 Pipe Thickness Calculation 3

Page 7: 15_pipe Thickness Calculations

0 Sheet No. : 2 of 3

LINE NO : REV : A

LEGENT : Wellhead Flowline Calculation

AFE NO : AFE 09-1333 DATE : 23-Feb-09

1. GENERAL DATA

Design Code = ASME B31.3

Design Pressure = 1350 Psi (ANSI 600)

Corrosion Allowance = 0.063 inch

Design Temperatur = 200 °F = 93.33 °C

MATERIAL = A 106 Gr. B, Seamless

Basic Quality Factor For longitudinal weld joints = 1

Radiography = 100%

Diameter = NPS 3

Page 8: 15_pipe Thickness Calculations

Sheet No. : 3 of 3

LINE NO : REV : A

LEGENT : Wellhead Flowline Calculation

AFE NO : AFE 09-1333 DATE : 23-Feb-09

2 Thickness Calculation

tm = t + c

1 - u t = Pi × do

2 × (S . E + Pi . Y)

where :

tm = minimum required thickness

t = pressure design thickness, mm

c = the sum of the mechanical allowance

Pi = internal design pressure, Psi

do = outside diameter of pipe, mm

S' = Basic allowable Stres forValue

E' = longitudinal weld joint factor

Y' = coefficient having values ferritic steels

as follow 0.4 up to and including 480°C

0.5 for 510°C

0.7 for 540°C and above

u = mill tolerance

Pi = 1350 Psi

do = 3.5 inch

c = 0.063 inch

= 0.066 inch 2% of CO2 content

S' = 20000 Psi

E' = 1

Y = 0.4

u = 12.5%

Pipe thickness caused by pressure

t = 0.115 inch

Minimum required thickness

tm = 0.279 inch

Sch 40 for NPS 3 = 0.216 inch

Sch 80 for NPS 3 = 0.300 inch

Conclusion

We choose Sch 80 NPS 3

Page 9: 15_pipe Thickness Calculations

1 GENERAL DATA

Design Code = ASME B31.3

Operating Pressure = 1137 Psi

Working Allowable Pressure = 1350 Psi (ANSI 600)

Corrosion Allowance = 0.063 inch = 1.6 mm

Spesific Gravity = 0.74

Design Temperatur = 200 °F = 93.33 °C

MATERIAL = API 5L Gr 5 Sch 40

Basic Quality Factor For longitudinal weld joints = 1

Radiography = Spot

Diameter = NPS 4

Page 10: 15_pipe Thickness Calculations
Page 11: 15_pipe Thickness Calculations
Page 12: 15_pipe Thickness Calculations
Page 13: 15_pipe Thickness Calculations
Page 14: 15_pipe Thickness Calculations

Sheet No. : 1 of 3

LINE NO : REV : A

LEGENT : Wellhead Flowline Calculation

AFE NO : AFE 09-1306 DATE : 23-Feb-09

TABLE OF CONTENTS

Hal.

1 GENERAL DATA 2

2 Pipe Thickness Calculation 3

Page 15: 15_pipe Thickness Calculations

0 Sheet No. : 2 of 3

LINE NO : REV : A

LEGENT : Wellhead Flowline Calculation

AFE NO : AFE 09-1306 DATE : 23-Feb-09

1. GENERAL DATA

Design Code = ASME B31.4

Design Pressure = 1350 Psi (ANSI 600)

Corrosion Allowance = 0.063 inch

Design Temperatur = 200 °F = 93.33 °C

MATERIAL = API 5 L Gr.B, ERW

Basic Quality Factor For longitudinal weld joints = 1

Radiography = 100%

Diameter = NPS 4

Page 16: 15_pipe Thickness Calculations

Sheet No. : 3 of 3

LINE NO : REV : A

LEGENT : Wellhead Flowline Calculation

AFE NO : AFE 09-1306 DATE : 23-Feb-09

2 Thickness Calculation

tm = t + c Pi × do where :

1-u 2 × Smys × E × 0.72

tm = minimum required thickness

u = mill tolerances

c = the sum of the mechanical allowance

Pi = internal design pressure, kPa

do = outside diameter of pipe, mm

S' = Specific minimum yield strength

E' = longitudinal weld joint factor

P = 1350 Psi

do = 4.5 inch

c = 0.063 inch

S' = 35000 Psi (ASME B31.4 hal 12)

E' = 1 (ASME B31.4 hal 12)

Y' = 0.40

u = 12.50%

t = 0.120535714 inch

tm = 0.20976 inch

Thickness 4" Sch 40 = 0.237 inch

tm < tSch40…………………The 4" Sch 40 thickness is acceptable

To determine allowable internal working pressure for this wellhead flowline in accordance with ANSI B31.4, Code for pipline transportation systems, use the following :

t =

Page 17: 15_pipe Thickness Calculations

Pi × do

2 × (S . E + Pi . Y)

where :

tm = minimum required thickness

t = pressure design thickness, mm

c = the sum of the mechanical allowance

Pi = internal design pressure, kPa

do = outside diameter of pipe, mm

S' = Basic allowable Stres forValue

E' = longitudinal weld joint factor

Y' = coefficient having values ferritic steels

as follow 0.4 up to and including 480°C

0.5 for 510°C

0.7 for 540°C and above

Pi = 1350 Psi

do = 3.5 inch

c = 0.02 inch

S' = 16700 Psi

E' = 1

Y' = 0.4

u = 12.5% t

Pi × do = 0.137 inch

2 × (S . E + Pi . Y)

tm = 0.174 inch

sch 40 for NPS 4 = 0.237

and the calculation = 0.242 it shows that sch 40 is not adequate

Design thickness calculation indicates that Schedule 80 is appropriate

t =

To determine allowable internal working pressure for this wellhead flowline in accordance with ANSI B31.3, Code for pipline

transportation systems, use the following :

tm = t + c + u t =

Page 18: 15_pipe Thickness Calculations

To determine allowable internal working pressure for this wellhead flowline in accordance with ANSI B31.3, Code for pipline

transportation systems, use the following :

Page 19: 15_pipe Thickness Calculations
Page 20: 15_pipe Thickness Calculations

tm = t + ca Pi × do where :

1-a 2 × Smys × E × 0.72

tm = minimum required thickness

t = pressure design thickness, mm

a = mill tolerances

e = erosion allowance

c = the sum of the mechanical allowance

Pi = internal design pressure, kPa

do = outside diameter of pipe, mm

S' = Specific minimum yield strength

E' = longitudinal weld joint factor

Y' = coefficient having values ferritic steels

as follow

0.5 for 510°C

0.7 for 540°C and above

Pi = 1350 Psi

do = 3.5 inch

c = 0.063 inch

e = 0.02 inch

S' = 35000 Psi (ASME B31.4 hal 12)

E' = 1 (ASME B31.4 hal 12)

Y' = 0.40

a = 12.50%

Pi × do = 0.09375 inch

2 × Smys × E × 0.72

tm = 0.202 inch

Thickness 4" Sch 80 = 0.337 inch

Thickness 4" Sch 40 = 0.237 inch

Thickness calculation = 0.184 inch

tm < tSch40…………………The 4" Sch 40 thickness is acceptable

To determine allowable internal working pressure for this wellhead flowline in accordance with ANSI B31.4, Code for pipline

transportation systems, use the following :

0.4 up to and including 480°C

t =

t =

Page 21: 15_pipe Thickness Calculations
Page 22: 15_pipe Thickness Calculations
Page 23: 15_pipe Thickness Calculations
Page 24: 15_pipe Thickness Calculations

pressure design thickness, mm

the sum of the mechanical allowance

Specific minimum yield strength

coefficient having values ferritic steels

0.7 for 540°C and above

To determine allowable internal working pressure for this wellhead flowline in accordance with ANSI B31.4, Code for pipline

transportation systems, use the following :

0.4 up to and including 480°C

Page 25: 15_pipe Thickness Calculations
Page 26: 15_pipe Thickness Calculations
Page 27: 15_pipe Thickness Calculations
Page 28: 15_pipe Thickness Calculations

tm = t + c Pi × do where :

1-u 2 × Smys × E × F × T

tm = minimum required thickness

t = pressure design thickness, mm

a = mill tolerances

e = erosion allowance

c = the sum of the mechanical allowance

Pi = internal design pressure, kPa

do = outside diameter of pipe, mm

S' = Specific minimum yield strength

E' = longitudinal weld joint factor

F = design factor

T = temperature derating factor

Pi = 1350 Psi

do = 6.25 inch

c = 0.063 inch

= 0.036 inch (Accumalation corrosion for 5 years operation) NORSOK-M506

e = inch

S' = 20000 Psi

E' = 1

F = 0.72

T = 1

a = 12.50%

Pi × do = 0.29296875 inch

2 × Smys × E × 0.72

tm = 0.448192857 inch

Thickness 4" Sch 80 = 0.337 inch

Thickness 4" Sch 40 = 0.237 inch

Thickness calculation = 0.184 inch

tm < tSch40…………………The 4" Sch 40 thickness is acceptable

To determine allowable internal working pressure for this wellhead flowline in accordance with ANSI B31.8, Code for Gas Trnamission

and distribution piping systems, use the following :

t =

t =

Page 29: 15_pipe Thickness Calculations
Page 30: 15_pipe Thickness Calculations
Page 31: 15_pipe Thickness Calculations
Page 32: 15_pipe Thickness Calculations

pressure design thickness, mm

the sum of the mechanical allowance

Specific minimum yield strength

To determine allowable internal working pressure for this wellhead flowline in accordance with ANSI B31.8, Code for Gas Trnamission

and distribution piping systems, use the following :

Page 33: 15_pipe Thickness Calculations
Page 34: 15_pipe Thickness Calculations
Page 35: 15_pipe Thickness Calculations
Page 36: 15_pipe Thickness Calculations

Gas Flowrate :35.9 Mscfd = 35900 Mscfd

Operating Pressure : 260 Psi

S1 : 0.858

Sg : 0.65

Fluid Flowrate : 200000 BFPD

Ve = c ρ = A =

ρ½

Where :

Ve : Fluid erosional velocity, feet/second

c : empirical constant, Solid-free Fluids 100 for continuous service,

125 for intermittent service

S1 : liquid specific gravity

Sg : gas specific gravity

ρ : Gas or liquid mixture density at flowing pressure and temperature, lbs/ft3

A : minimum pipe cross sectional flow area

R : gas/liquid ratio, ft/barrel at standard conditions. 0.1795 scfd/bfpd

T : operating temperatur, °R

Z : gas compressibility factor

Ve = 100 A = 9.367

7.314 13.673

= 13.67 = 0.685

= 137.0200476 inch2

D = 13.21165513 inch

This calculation describe that NPS 14 is appropriate

To determine internal diameter pipe for Walio pipeline in accordance with API RP 14 E (Multiphase Flow)

12409SlP + 2.7 RSgP

198.7P + RTZ

9.35 + (RTZ/21.25P)

Ve

Page 37: 15_pipe Thickness Calculations

To determine internal diameter pipe for Walio pipeline in accordance with API RP 14 E (Multiphase Flow)