27
16. Angular Momentum 1. Angular Momentum Operator 2. Angular Momentum Coupling 3. Spherical Tensors 4. Vector Spherical Harmonics

16. Angular Momentum

Embed Size (px)

DESCRIPTION

16. Angular Momentum. Angular Momentum Operator Angular Momentum Coupling Spherical Tensors Vector Spherical Harmonics. Principles of Quantum Mechanics. State of a particle is described by a wave function ( r , t ). - PowerPoint PPT Presentation

Citation preview

Page 1: 16. Angular Momentum

16. Angular Momentum

1. Angular Momentum Operator

2. Angular Momentum Coupling

3. Spherical Tensors

4. Vector Spherical Harmonics

Page 2: 16. Angular Momentum

Principles of Quantum Mechanics

, ,i t H tt

r r

Dynamics of particle is given by the time-dependent Schrodinger eq.

2

2 ,2

H V tm

r

341.05 10 J s SI units:

23 3, ,P t d r t d r r r

Probability of finding the particle at time t within volume d 3r around r is

State of a particle is described by a wave function (r,t).

H E r r

Hamiltonian

Stationary states satisfy the time-independent Schrodinger eq.

/, i E tE Et e r r

V V rwith

Page 3: 16. Angular Momentum

Operators A & B have a set of simultaneous eigenfunctions. , 0A B

A stationary state is specified by the eigenvalues

of the maximal set of operators commuting with H.

, xx p i uncertainty principle

Let be an eigenstate of A with eigenvalue a, i.e. A a

Measurement of A on a particle in state will give a and the particle will remain in afterwards.

Measurement of A on a particle in state will

give one of the eigenvalues a of A with probability

and the particle will be in a afterwards.

2

a

Page 4: 16. Angular Momentum

Kinetic energy of a particle of mass :

1. Angular Momentum Operator

22

2 2

1 1sin

sin sin

L2 2 2

2

1r r

L2

22

2r r r r

2 22

2 2T

p

Quantization rule :i

p

Rotational energy : 2 2

22 22 2RT

r r

L L

Angular momentum : i

L r p r

ˆ ˆ ˆ p r p r r p2

2 22rp

r

Lp

22 2 2 2 2

2r r

L

angular part of T

2 2 2 L L

Page 5: 16. Angular Momentum

i L r

i L r

ˆ ˆ ˆ

0 0

1 1

sin

r

ri

r r r

e e e

1ˆ ˆ

sini

L e e

2 2 2 2 2 2x y zL L L L L L L Ex.3.10.32

22

2 2

1 1sin

sin sin

L

2 , 1 ,m ml lY l l Y L 2 2, 1 ,m m

l lY l l Y L

with 0,1,2,l , 1, ,m l l l

Page 6: 16. Angular Momentum

Central Force

2

22rH T V rr

L

22

2 2

1 1sin

sin sin

L2 2 2L L

2 2

2 222 2r V r

r

L

sin cot cos

cos cot sin

x

y

z

Li

Li

Li

2, 0r L 2 , 0H L

eigenstates of H can be labeled by eigenvalues of L2 & Lz , i.e., by l,m.

Ex.3.10.31 : ,j k j k n nL L i L 2 , 0jL L Cartesian commonents

Ex.3.10.29-30

m mz l lL Y m Y

Page 7: 16. Angular Momentum

L are operators

is an eigenfunction of Lz with eigenvalue ( m 1) .

Ladder Operators

x yL L i L

RaisingLowering

, , ,z z x z yL L L L i L L y xi L L ,zL L L

Let lm be a normalized eigenfunction of L2 & Lz such that

2 2m ml l l L m m

z l lL m

, m mz l z z lL L L L L L

mlL m

z lL L L m

mlL

1m mz l lL L m L

Ladder operators

1m ml l l

l

L c

i.e.

Page 8: 16. Angular Momentum

2 , 0jL L 2 , 0L L

2 2m ml l lL L L

is an eigenfunction of L2 with eigenvalue l 2 . m

lL

1m ml l l

l

L c

m ml m l

m

L b

i.e. 1,m ml lL a l m

2,m m

l lL L a l m

†L L x yL L i L

lm normalized

x y x yL L L i L L i L 2 2x y x y y xL L i L L L L

2 2x y zL L L L L

2 21

2 zL L L L L L

, 2 zL L L

m ml lL L 2 2

l m m

2 2z zL L L L L

a real 11m ml l lL m m

Ylm thus generated agrees with the

Condon-Shortley phase convention.

Page 9: 16. Angular Momentum

2 2m ml l lL L m m

max

11 1 4

2 lm

11m ml l lL m m

0 ,m ml lL L l m 2 0 ,l m m l m

2 0l m m For m 0 : 0

For m 0 : 2 0l m m min

11 1 4

2 lm 0

1 4 1l n

1l l l , ,m l l

max min integerm m m = 1

212

4l n n 12 2

n n

1l l

0n

2

nl

max

1

2m n l min

1

2m n l

1 30, ,1, ,

2 2l Multiplicity = 2l+1

Page 10: 16. Angular Momentum

Example 16.1.1.Spherical Harmonics Ladder

sin cot cos

cos cot sin

x

y

z

Li

Li

Li

x yL L i L cotiL e i

01

11

3, cos

4

3, sin

8i

Y

Y e

0

1

3, cot cos

4iL Y e i

3sin

4ie

112 ,Y

11m ml l lL m m

0 11 12L

m m

l lY

for l = 0,1,2,…

Page 11: 16. Angular Momentum

Spinors

Intrinsic angular momenta (spin) S of fermions have s = half integers.

E.g., for electrons

1

2s 2 3

14

s s S1 1

or 2 2sm

Eigenspace is 2-D with basis1 1

,2 2

,

Or in matrix form :1 0

,0 1

spinors

S are proportional to the Pauli matrices.

Page 12: 16. Angular Momentum

Example 16.1.2. Spinor Ladder

0 1

1 02x

S

0

02y

i

i

S

1 0

0 12z

S

Fundamental relations that define an angular momentum, i.e.,

can be verified by direct matrix calculation.

,j k j k n ni S S S 2 21Eigenvalue of s s S

1

2s

1/21/2 Spinors:

1

0

1/2

1/2 0

1

0 1

0 02

S

0 0

1 02

S

0

0

S

S

S

S

3 1

1 1 0 14 4

s s m m or

Mathematica

Page 13: 16. Angular Momentum

Summary, Angular Momentum Formulas

,k l k l n nJ J i J

, ,x y zJ J JJGeneral angular momentum :

2 , 0kJ J

2 21M MJ JJ J J

Eigenstates JM :

M Mz J JJ M

J = 0, 1/2, 1, 3/2, 2, …

M = J, …, J

M MJ J J J M M

x yJ J i J

11 1M MJ JJ J J m m

2 2z zJ J J J J , 2 zJ J J

Page 14: 16. Angular Momentum

2. Angular Momentum Coupling

Let 1 1 1 1, ,x y zj j jj

1 2 , ,x y zJ J J J j j

2 2 2 2, ,x y zj j jj

1 2 1 2 1 2, ,x x y y z zj j j j j j

2 2 21 2 1 22 J j j j j

,k l k l n nj j i j

, 1, 2

,k l k l n nJ J i J

, , , ,k l n x y z2 , 0kj j

2 21 2, , 0k k kJ j j J J

2 2 2x y zJ J J 1 2 2 1 j j j j

Implicit summation applies only to the k,l,n indices

Page 15: 16. Angular Momentum

Example 16.2.1.Commutation Rules for J Components

1 22 , kj j j

2 ,l l kj j j

2 l k n l ni j j 2 , 2k kj i J j j

2 1

1 2

2 2 21 2 1 22 J j j j j

,k l k l n nj j i j

,k l k l n nJ J i J

2 , 0kj j2 , 0kJ J

21 1 2, 2z zj i J j je.g. 1 2 1 22 x y y xi j j j j

2 2 21 2 1 2, 2 ,k kj j J j j j j

2 2 2 2 21 2 1 2, 2 , J j j j j j j 22 ,k kj j j

2 2, 0 J j21 22 , j j j

2 21 2, ,k k kJ j j j j 2 , 0kJ j

Page 16: 16. Angular Momentum

Solution always exists & unique since is complete.

2 , 2k kj i J j j

2 , 0kj j

2 , 0kJ J 2 2, 0 J j

2 , 0kJ j

2 21 2, , , zJj j J

Maximal commuting set of operators :

2 21 2 1 2, , ,z zj jj jor

eigen states : 1 2, ;j j J M

Adding (coupling) means finding1 2 j j J

1 2

1 2

1 2 1 1 2 2,

, ; ,m mm m

j j J M C j m j m

1 1 2 2,j m j m

1 1 2 2 1 1 2 2,j m j m j m j m

Page 17: 16. Angular Momentum

Vector Model 2 2

1 2, , , zJj j J 2 21 2 1 2, , ,z zj jj j

1 2, ;j j J M

1 2z z zJ j j

1 2M m m max 1 2M j j

max 1 2J j j 1 2

3 2 1

2 1 1

2 2 0

1 0 1

1 1 0

1 2 1

0 1 1

0 0 0

0 1 1

1 2 1

1 1 0

1 0 1

2 2 0

2 1 1

3 2 1

M m m

1 2;2 1j j

Mathematica

Total number of states :

max

min

1 22 1 2 1 2 1J

J J

j j J

min 1 2J j j

i.e. 1 2 1 2 1 2, 1 , ,J j j j j j j

max min max min1 1J J J J

1 2 min 1 2 min1 1j j J j j J

22min 1 2 1 21 2 1 2 1J j j j j

min 0J

2

1 2j j

Triangle rule

1 1 2 2,j m j m

Page 18: 16. Angular Momentum

Clebsch-Gordan Coefficients 2 2

1 2, , , zJj j J 2 21 2 1 2, , ,z zj jj j

1 2, ;j j J M 1 1 2 2,j m j m

max 1 2J j j min 1 2J j j

For a given j1 & j2 , we can write the basis as J M 1 2,m m&

1 2

1 1 2 2

1 2 1 2, ,j j

m j m j

J M m m m m J M

Both set of basis are complete :

1 2

1 2

1 2 1 2, ,j j J

M JJ j j

m m J M J M m m

*

1 2 1 2, ,m m J M J M m m Clebsch-Gordan Coefficients (CGC)

1 2M m m

Condon-Shortley phase convention 1 2 1 2, ,m m J M J M m m

1 1, 0j J j J J

Page 19: 16. Angular Momentum

Ladder Operation Construction

max 1 2 1 2,J j j j j

1

1 1

1 1 1 1, ,j

m j

J M m M m m M m J M

1 1 1j jm j j m m j m

max 1 2 1 2 1 2,J J j j j j j j

max 1 2J j j

1 2 max 1 2 1 1 2 2 1 22 1 2 1 , 2 , 1j j J j j j j j j j j

1 2max 1 2 1 2 1 2

1 2 1 2

1 1 , , 1j j

J j j j j j jj j j j

Repeated applications of J then give the rest of the multiplet

max max max; , ,J M M J J

Orthonormality : 1 2max 1 2 1 2 1 2

1 2 1 2

1 1 1 , , 1j j

J j j j j j jj j j j

1 1, 0j J j J J

Page 20: 16. Angular Momentum

Clebsch-Gordan Coefficients

Full notations :

1 1 2 2,j m j m J M 1 2 1 2, , | , ,C j j J m m M real1 2 3F F F

1 2 1 2 2 1

1

1 2

! ! ! 2 1

1 !

j j J J j j J j j JF

j j J

2 1 1 1 1 2 2 2 2! ! ! ! ! !F J M J M j m j m j m j m

3

1 1 2 2 2 1 1 2 1 2! ! ! ! !

s

s

Fj m s j m s J j m s J j m s j j J s

Only terms with no negative factorials are included in sum.

1

1 1

1 1 1 1, ,j

m j

J M m M m m M m J M

Page 21: 16. Angular Momentum

Table of Clebsch-Gordan Coefficients

Ref: W.K.Tung, “Group Theory in Physics”, World Scientific (1985)

, , | , ,C j j J m m M

Page 22: 16. Angular Momentum

Wigner 3 j - Symbols

1 2 3

1 2 3

1 2 3 1 2 31 2 3 3

, , | , ,2 1

j j mj j jC j j j m m m

m m m j

Advantage : more symmetric

1 2 3

1 2 3

1 2 3

1,2,3 , , is even

1,2,3 , , is odd

k l n

k l n

j j j k l n

k l n

j j jk l n

m m mj j j

m m m j j jk l n

m m m

1 2 31 2 3 1 2 3

1 2 3 1 2 3

j j jj j j j j j

m m m m m m

2 1 1 2

1 2 1 21 2

, , | , , 2 1j j M j j J

C j j J m m M Jm m M

Page 23: 16. Angular Momentum

Table 16.1 Wigner 3j-Symbols

1 1, ,1 :

2 2

1,2,3 :

Mathematica

1 1, ,0 :

2 2

Page 24: 16. Angular Momentum

Example 16.2.2.Two Spinors

1 2

1

2j j 1, 0J

1 111 ,

2 2

1 1 1 12 1 0 , ,

2 2 2 2

1 1 1 1 1 11 0 , ,

2 2 2 22 2

1 1 1 1 1 12 1 1 , ,

2 2 2 22 2

1 111 ,

2 2

1 1 1 1 1 10 0 , ,

2 2 2 22 2

1 1 1 1, ,1 , ,1 1

2 2 2 2C

1 1 1 1 1 1 1 1 1, ,1 , ,0 , ,1 , ,0

2 2 2 2 2 2 2 2 2C C

1 1 1 1, ,1 , , 1 1

2 2 2 2C

1 1 1 1 1 1 1 1 1, ,0 , ,0 , ,0 , ,0

2 2 2 2 2 2 2 22C C

1 11

2 231 1

12 2

1 1 1 11 1

2 2 2 23 31 1 1 1

0 02 2 2 2

1 11

2 231 1

12 2

1 1 1 10 0

2 2 2 21 1 1 1

0 02 2 2 2

2 1 1 2

1 2 1 21 2

, , | , , 2 1j j M j j J

C j j J m m M Jm m M

1 1 1j jm j j m m j m

1 1, 0j J j J J

1

1 1

1 1 1 1, ,j

m j

J M m M m m M m J M

Page 25: 16. Angular Momentum

Simpler Notations

1 111 ,

2 2

1

2

1 1 1 1 1 11 0 , ,

2 2 2 22 2

1 1

2 2

1 111 ,

2 2

1 1 1 1 1 10 0 , ,

2 2 2 22 2 1 1

2 2

Page 26: 16. Angular Momentum

Simpler notations : where

Example 16.2.3.Coupling of p & d Electrons

1 21 , 2j j 3,2,1J

mlm l 0 1 2 3

s p d f

3 3 1 , 21 2p d

3 2 1,2,3 0, 2, 2 0 , 2 1,2,3 1,1, 2 1 ,1C C

0 2 1 1

1 2

3 3p d p d

1 2 3 1 2 37 0 , 2 7 1 ,1

0 2 2 1 1 2

31 1,2,3 1, 2,1 1 , 2 1,2,3 0,1,1 0 ,1 1,2,3 1, 0,1 1 , 0C C C

1 2 0 1 1 0

1 8 2

15 15 5p d p d p d

1 2 3 1 2 3 1 2 37 1 , 2 7 0 ,1 7 1 , 0

1 2 1 0 1 1 1 0 1

2 1 1 2

1 2 1 21 2

, , | , , 2 1j j M j j J

C j j J m m M Jm m M

1

1 1

1 1 1 1, ,j

m j

J M m M m m M m J M

Mathematica

Page 27: 16. Angular Momentum

2 1 1 2

1 2 1 21 2

, , | , , 2 1j j M j j J

C j j J m m M Jm m M

2 2 1,2,2 0, 2, 2 0 , 2 1,2,2 1,1, 2 1 ,1C C

0 2 1 1

2 1

3 3p d p d

1 2 2 1 2 25 0 , 2 5 1 ,1

0 2 2 1 1 2

2 1 1,2,2 1,2,1 1 , 2 1,2,2 0,1,1 0 ,1 1,2,2 1, 0,1 1 , 0C C C

1 2 0 1 1 0

1 1 1

3 6 2p d p d p d

1 2 2 1 2 2 1 2 25 1 , 2 5 0 ,1 5 1 , 0

1 2 1 0 1 1 1 0 1

1

1 1

1 1 1 1, ,j

m j

J M m M m m M m J M

11 1,2,1 1,2,1 1 , 2 1,2,1 0,1,1 0 ,1 1,2,1 1, 0,1 1 , 0C C C

1 2 0 1 1 0

3 3 1

5 10 10p d p d p d

1 2 1 1 2 1 1 2 13 1 , 2 3 0 ,1 3 1 , 0

1 2 1 0 1 1 1 0 1

Mathematica