16.810_L8_Optimization

Embed Size (px)

Citation preview

  • 7/31/2019 16.810_L8_Optimization

    1/58

    16.810 (16.682)16.810 (16.682)

    Engineering Design and Rapid PrototypingEngineering Design and Rapid Prototyping

    Instructor(s)

    Design Optimization- Structural Design Optimization

    January 23, 2004

    Prof. Olivier de Weck Dr. Il Yong Kim

    [email protected] [email protected]

  • 7/31/2019 16.810_L8_Optimization

    2/58

    16.810 (16.682) 2

    Course Concept

    today

  • 7/31/2019 16.810_L8_Optimization

    3/58

    16.810 (16.682) 3

    Course Flow Diagram

    CAD/CAM/CAE Intro

    FEM/Solid MechanicsOverview

    ManufacturingTraining

    Structural TestTraining

    Design Optimization

    Hand sketching

    CAD design

    FEM analysis

    Produce Part 1

    Test

    Produce Part 2

    Optimization

    Problem statement

    Final Review

    Test

    Learning/Review Deliverables

    Design Sketch v1

    Analysis output v1

    Part v1

    Experiment data v1

    Design/Analysisoutput v2

    Part v2

    Experiment data v2

    Drawing v1

    Design Intro

    today

    Wednesday

  • 7/31/2019 16.810_L8_Optimization

    4/58

    16.810 (16.682) 4

    What Is Design Optimization?

    Selecting the best design within the available means

    1. What is our criterion for best design?

    2. What are the available means?

    3. How do we describe different designs?

    Objective function

    Constraints

    (design requirements)

    Design Variables

  • 7/31/2019 16.810_L8_Optimization

    5/58

    16.810 (16.682) 5

    Minimize ( )

    Subject to ( ) 0

    ( ) 0

    f

    g

    h

    =

    x

    x

    x

    Optimization Statement

  • 7/31/2019 16.810_L8_Optimization

    6/5816.810 (16.682) 6

    Constraints

    - Design requirements

    Inequality constraints

    Equality constraints

  • 7/31/2019 16.810_L8_Optimization

    7/5816.810 (16.682) 7

    Objective Function

    - A criterion for best design (or goodness of a design)

    Objective function

  • 7/31/2019 16.810_L8_Optimization

    8/5816.810 (16.682) 8

    Design Variables

    Parameters that are chosen to describe the design of a system

    Design variables are controlled by the designers

    The position of upper holes along the design freedom line

  • 7/31/2019 16.810_L8_Optimization

    9/5816.810 (16.682) 9

    Design Variables

    For computational design optimization,

    Objective function and constraints must be expressedas a function of design variables (or design vector X)

    Objective function: ( )f x Constraints: ( ), ( )g hx x

    Cost = f(design)

    Displacement = f(design)

    Natural frequency = f(design)

    Mass = f(design)

    What is f for each case?

  • 7/31/2019 16.810_L8_Optimization

    10/5816.810 (16.682) 10

    f(x) : Objective function to be minimized

    g(x) : Inequality constraints

    h(x) : Equality constraints

    x : Design variables

    Minimize ( )

    ( ) 0

    ( ) 0

    f

    Subject to g

    h=

    x

    x

    x

    Optimization Statement

  • 7/31/2019 16.810_L8_Optimization

    11/5816.810 (16.682) 11

    Improve Design Computer Simulation

    START

    Converge ?

    Y

    N

    END

    Optimization Procedure

    Minimize ( )

    Subject to ( ) 0

    ( ) 0

    f

    g

    h

    =

    x

    x

    x

    Evaluate f(x), g(x), h(x)

    Change x

    Determine an initial design (x0)

    Does your design meet atermination criterion?

  • 7/31/2019 16.810_L8_Optimization

    12/5816.810 (16.682) 12

    Structural Optimization

    - Size Optimization

    - Shape Optimization

    - Topology Optimization

    Selecting the beststructuraldesign

  • 7/31/2019 16.810_L8_Optimization

    13/58

    16.810 (16.682) 13

    minimize ( )subject to ( ) 0

    ( ) 0

    fg

    h

    =

    xx

    x

    BCs are given Loads are given

    1. To make the structure strong

    e.g. Minimize displacement at the tip

    2. Total mass MC

    Min. f(x)

    g(x) 0

    Structural Optimization

  • 7/31/2019 16.810_L8_Optimization

    14/58

    16.810 (16.682) 14

    f(x) : compliance

    g(x) : mass

    Design variables (x)

    x : thickness of each beam

    Beams

    Size Optimization

    minimize ( )

    subject to ( ) 0

    ( ) 0

    f

    g

    h

    =

    x

    x

    x

    Number of design variables (ndv)

    ndv = 5

  • 7/31/2019 16.810_L8_Optimization

    15/58

    16.810 (16.682) 15

    - Shape

    Topology

    - Optimize cross sections

    are given

    Size Optimization

  • 7/31/2019 16.810_L8_Optimization

    16/58

    16.810 (16.682) 16

    Design variables (x)

    x : control points of the B-spline

    (position of each control point)

    B-spline

    Shape Optimization

    minimize ( )

    subject to ( ) 0

    ( ) 0

    f

    g

    h

    =

    x

    x

    x

    f(x) : compliance

    g(x) : mass

    Hermite, Bezier, B-spline, NURBS, etc.

    Number of design variables (ndv)

    ndv = 8

  • 7/31/2019 16.810_L8_Optimization

    17/58

    16.810 (16.682) 17

    Fillet problem Hook problem Arm problem

    Shape Optimization

  • 7/31/2019 16.810_L8_Optimization

    18/58

    16.810 (16.682) 18

    Multiobjective & Multidisciplinary Shape OptimizationObjective function

    1. Drag coefficient, 2. Amplitude of backscattered wave

    Analysis

    1. Computational Fluid Dynamics Analysis

    2. Computational Electromagnetic Wave

    Field Analysis

    Obtain Pareto Front

    Raino A.E. Makinen et al., Multidisciplinary shape optimization in aerodynamics and electromagnetics using geneticalgorithms, International Journal for Numerical Methods in Fluids, Vol. 30, pp. 149-159, 1999

    Shape Optimization

  • 7/31/2019 16.810_L8_Optimization

    19/58

    16.810 (16.682) 19

    Design variables (x)

    x : density of each cell

    Cells

    Topology Optimization

    minimize ( )

    subject to ( ) 0

    ( ) 0

    f

    g

    h

    =

    x

    x

    x

    f(x) : compliance

    g(x) : mass

    Number of design variables (ndv)

    ndv = 27

  • 7/31/2019 16.810_L8_Optimization

    20/58

    16.810 (16.682) 20

    Short Cantilever problem

    Initial

    Optimized

    Topology Optimization

  • 7/31/2019 16.810_L8_Optimization

    21/58

    16.810 (16.682) 21

    Topology Optimization

  • 7/31/2019 16.810_L8_Optimization

    22/58

    16.810 (16.682) 22

    Bridge problem

    1)(0

    ,)(

    ,

    x

    MdxtoSubject

    dzFMinimize

    o

    ii

    Mass constraints: 35%

    Obj = 4.16 105

    Obj = 3.29 105

    Obj = 2.88 105

    Obj = 2.73 105

    Distributedloading

    Topology Optimization

  • 7/31/2019 16.810_L8_Optimization

    23/58

    16.810 (16.682) 23

    H

    L

    H

    DongJak Bridge in Seoul, Korea

    Topology Optimization

  • 7/31/2019 16.810_L8_Optimization

    24/58

    16.810 (16.682) 24

    What determines the type of structural optimization?

    Type of the design variable

    (How to describe the design?)

    Structural Optimization

  • 7/31/2019 16.810_L8_Optimization

    25/58

    16.810 (16.682) 25

    Optimum solution (x*)

    f(x)

    x

    Optimum Solution Graphical Representation

    f(x): displacement

    x: design variable

  • 7/31/2019 16.810_L8_Optimization

    26/58

    16.810 (16.682) 26

    Optimization Methods

    Gradient-based methods

    Heuristic methods

  • 7/31/2019 16.810_L8_Optimization

    27/58

    16.810 (16.682) 27

    Gradient-based Methods

    f(x)

    x

    Start

    Check gradient

    Move

    Check gradient

    Gradient=0

    No active constraints

    Stop!

    You do not know this function before optimization

    Optimum solution (x*)

    (Termination criterion: Gradient=0)

  • 7/31/2019 16.810_L8_Optimization

    28/58

    16.810 (16.682) 28

    Gradient-based Methods

  • 7/31/2019 16.810_L8_Optimization

    29/58

    16.810 (16.682) 29

    Global optimum vs. Local optimum

    f(x)

    x

    Termination criterion: Gradient=0

    No active constraints

    Local optimum

    Global optimum

    Local optimum

  • 7/31/2019 16.810_L8_Optimization

    30/58

    16.810 (16.682) 30

    A Heuristic is simply a rule of thumb that hopefully will find a

    good answer.

    Why use a Heuristic?

    Heuristics are typically used to solve complex optimization

    problems that are difficult to solve to optimality.

    Heuristics are good at dealing with local optima without

    getting stuck in them while searching for the global optimum.

    Heuristic Methods

    Schulz, A.S., Metaheuristics, 15.057 Systems Optimization Course Notes, MIT, 1999.

  • 7/31/2019 16.810_L8_Optimization

    31/58

    16.810 (16.682) 31

    Genetic Algorithm

    Principle by Charles Darwin - Natural Selection

  • 7/31/2019 16.810_L8_Optimization

    32/58

    16.810 (16.682) 32

    Heuristics Often Incorporate Randomization

    3 Most Common Heuristic Techniques

    Genetic Algorithms

    Simulated Annealing

    Tabu Search

    Heuristic Methods

  • 7/31/2019 16.810_L8_Optimization

    33/58

    16.810 (16.682) 33

    Optimization Software

    - iSIGHT

    - DOT

    - Matlab (fmincon)

  • 7/31/2019 16.810_L8_Optimization

    34/58

    16.810 (16.682) 34

    Topology Optimization Software

    ANSYS

    Design domain

    Static Topology Optimization

    Dynamic Topology Optimization

    Electromagnetic Topology Optimization

    Subproblem Approximation Method

    First Order Method

  • 7/31/2019 16.810_L8_Optimization

    35/58

    16.810 (16.682) 35

    MSC. Visual Nastran FEA

    Elements of lowest stress are removed gradually.

    Optimization results

    Optimization results illustration

    Topology Optimization Software

  • 7/31/2019 16.810_L8_Optimization

    36/58

    16.810 (16.682) 36

    Multidisciplinary Design Optimization

    MDO

  • 7/31/2019 16.810_L8_Optimization

    37/58

    16.810 (16.682) 37

    Multidisciplinary Design Optimization

    OTA

    0 1 2

    meters

    InstrumentModule

    Sunshield

    -60 -40 -20 0 20 40 60

    -60

    -40

    -20

    0

    20

    40

    60

    Centroid X [m]

    CentroidY[m]

    Centroid Jitter on Focal Plane [RSS LOS]

    T=5 sec

    14.97 m

    1 pixel

    Requirement: Jz,2=5 m

    Goal: Find a balanced system design, where the flexible structure, the optics and the control systems worktogether to achieve a desired pointing performance, given various constraints

    NASA Nexus Spacecraft Concept

  • 7/31/2019 16.810_L8_Optimization

    38/58

    16.810 (16.682) 38

    Aircraft ComparisonShown to Same Scale

    Approx. 480 passengers each

    Approx. 8,700 nm range each

    Maximum

    Takeoff

    Weight

    18%

    19%Total

    Sea-LevelStatic Thrust

    19%Operators

    Empty

    Weight

    Fuel

    Burn

    per Seat

    32%

    Boeing Blended Wing Body Concept

    Goal: Find a design for a family of blended wing aircraftthat will combine aerodynamics, structures, propulsion

    and controls such that a competitive system emerges - asmeasured by a set of operator metrics.

    Boeing

    Multidisciplinary Design Optimization

  • 7/31/2019 16.810_L8_Optimization

    39/58

    16.810 (16.682) 39

    Goal: High end vehicle shape optimization while

    improving car safety for fixed performance leveland given geometric constraints

    Reference: G. Lombardi, A. Vicere, H. Paap, G. Manacorda,Optimized Aerodynamic Design for High Performance Cars, AIAA-98-

    4789, MAO Conference, St. Louis, 1998

    Ferrari 360 Spider

    Multidisciplinary Design Optimization

  • 7/31/2019 16.810_L8_Optimization

    40/58

    16.810 (16.682) 40

    Multidisciplinary Design Optimization

  • 7/31/2019 16.810_L8_Optimization

    41/58

    16.810 (16.682) 41

    Multidisciplinary Design Optimization

  • 7/31/2019 16.810_L8_Optimization

    42/58

    16.810 (16.682) 42

    Multidisciplinary Design Optimization

    Multidisciplinary SystemDesign Optimization (MSDO)

    Take this course!

    Prof. Olivier de Weck

    Prof. Karen Willcox

    16.888/ESD.77

    Do you want to learn more about MDO?

  • 7/31/2019 16.810_L8_Optimization

    43/58

    16.810 (16.682) 43

    Take part in this GA

    game experiment!

    Genetic Algorithm

    Do you want to learn

    more about GA?

  • 7/31/2019 16.810_L8_Optimization

    44/58

    16.810 (16.682) 44

    Baseline Design

    Performance

    Natural frequency analysis

    Design requirements

  • 7/31/2019 16.810_L8_Optimization

    45/58

    16.810 (16.682) 45

    1

    2

    0.070

    0.011

    245

    0.224

    5.16 $

    mm

    mm

    f Hz

    m lbs

    C

    =

    ==

    ==

    Baseline Design

    Performance and cost

  • 7/31/2019 16.810_L8_Optimization

    46/58

    16.810 (16.682) 46

    245 Hz

    f1=245 Hz

    f2=490 Hzf3=1656 Hz

    f1=0f2=0

    f3=0f4=0f5=0f6=0f7=421 Hzf8=1284 Hzf9=1310 Hz

    421 Hz

    Baseline Design

  • 7/31/2019 16.810_L8_Optimization

    47/58

    16.810 (16.682) 47

    mcf100755030%-20%-20%10%50%Motorbike

    9

    cmf100100100550%-10%-10%100%-30%Acrobatic8

    cmf7510075440%-15%-15%65%0%BMX7

    cmf5010050430%-20%-20%30%30%Mountain6

    cfm50100100520%0%0%50%-30%Racing5

    fmc75755030%0%0%-20%-20%City bike4

    fcm757550420%-15%-15%0%20%Crossover

    3

    fcm1005050410%-10%-10%-10%10%Familydeluxe

    2

    fmc10050502-20%10%10%-30%20%Family

    economy1

    fmc10050503245Hz

    0.011mm

    0.070mm

    5.16$

    0.224lbs

    Baseline

    0

    AccOptimConstF3

    (lbs)F2

    (lbs)F1

    (lbs)Quality

    NatFreq

    (f)

    Disp( 2)

    Disp( 1)

    Cost(c)

    mass(m)

    Productname

    #

    Design Requirement for Each Team

  • 7/31/2019 16.810_L8_Optimization

    48/58

    16.810 (16.682) 48

    Design Optimization

    Design domain

    Topology optimization

    Shape optimization

  • 7/31/2019 16.810_L8_Optimization

    49/58

    16.810 (16.682) 49

    Design Freedom

    Volume is the same.

    1 bar

    2.50 mm =

    2 bars

    0.80 mm =

    17 bars

    0.63 mm =

  • 7/31/2019 16.810_L8_Optimization

    50/58

    16.810 (16.682) 50

    Design Freedom

    1 bar

    2.50 mm =

    2 bars

    0.80 mm =

    17 bars

    0.63 mm =

    More design freedom

    (Better performance)

    More complex

    (More difficult to optimize)

  • 7/31/2019 16.810_L8_Optimization

    51/58

    16.810 (16.682) 51

    Cost versus Performance

    01

    2

    3

    4

    5

    6

    7

    8

    9

    0 0.5 1 1.5 2 2.5 3

    Displacement [mm]

    Cost[$]

    1 bar2 bars

    17 bars

  • 7/31/2019 16.810_L8_Optimization

    52/58

    16.810 (16.682) 52

    Plan for the rest of the course

    Manufacturing Bicycle Frames (Version 2)Jan 28 (Wednesday) : 9 am 4:30 pm

    Jan 29 (Thursday) : 9 am 12 pm

    GA Games

    Jan 29 (Thursday) : 1 pm 5 pm

    Company tour

    Jan 26 (Monday) : 1 pm 4 pm

    Guest Lecture, Student Presentation (5~10 min/team)

    Jan 30 (Friday) : 1 pm 4 pm

    Guest Lecture (Prof. Wilson, Bicycle Science)

    Jan 28 (Wednesday) : 2 pm 3:30 pm

    Class Survey

    Jan 24 (Saturday) 7 am Jan 26 (Monday) 11am

    Testing

    Jan 29 (Thursday) : 10 am 2 pm

  • 7/31/2019 16.810_L8_Optimization

    53/58

    16.810 (16.682) 53

    P. Y. Papalambros, Principles of optimal design, Cambridge University Press, 2000

    O. de Weck and K. Willcox, Multidisciplinary System Design Optimization, MIT lecture note, 2003

    M. O. Bendsoe and N. Kikuchi, Generating optimal topologies in structural design using ahomogenization method, comp. Meth. Appl. Mech. Engng, Vol. 71, pp. 197-224, 1988

    Raino A.E. Makinen et al., Multidisciplinary shape optimization in aerodynamics and

    electromagnetics using genetic algorithms, International Journal for Numerical Methods in Fluids,Vol. 30, pp. 149-159, 1999

    Il Yong Kim and Byung Man Kwak, Design space optimization using a numerical designcontinuation method, International Journal for Numerical Methods in Engineering, Vol. 53, Issue 8,pp. 1979-2002, March 20, 2002.

    References

  • 7/31/2019 16.810_L8_Optimization

    54/58

    16.810 (16.682) 54

    Developed and maintained by Dmitri Tcherniak, Ole Sigmund,

    Thomas A. Poulsen and Thomas Buhl.

    Features:

    1.2-D

    2.Rectangular design domain

    3.1000 design variables (1000 square elements)

    4. Objective function: compliance (F)5. Constraint: volume

    Web-based topology optimization program

  • 7/31/2019 16.810_L8_Optimization

    55/58

    16.810 (16.682) 55

    Web-based topology optimization program

    Objective function

    -Compliance (F)

    Constraint

    -Volume

    Design variables

    - Density of each design cell

  • 7/31/2019 16.810_L8_Optimization

    56/58

    16.810 (16.682) 56

    Web-based topology optimization program

    No numerical results are obtained.

    Optimum layout is obtained.

  • 7/31/2019 16.810_L8_Optimization

    57/58

    16.810 (16.682) 57

    Web-based topology optimization program

    Absolute magnitude of load does not affect optimum solution

    P 2P 3P

  • 7/31/2019 16.810_L8_Optimization

    58/58

    Web-based topology optimization program

    http://www.topopt.dtu.dk