27
Mining Asteroids Bakground Target asteroid Methods of Mining Important Parameters Equipment Returns

1986 asteroid a

Embed Size (px)

Citation preview

Page 1: 1986 asteroid a

Mining  Asteroids  

•  Bakground  •  Target  asteroid  •  Methods  of  Mining  

•  Important  Parameters  

•  Equipment  

•  Returns  

Page 2: 1986 asteroid a

Mining  the  Sky:    Untold  Riches  from  the  Asteroids,  Comets,  and  Planets  

•  Mining  the  Sky:  Untold  Riches  from  the  Asteroids,  Comets,  and  Planets  is  a  book  by  John  S.  Lewis    That  discusses  the  development  of  interplanetary  space  within  our  solar  system.  

•  Lewis  makes  a  predicEon  that  the  abundant  resources  of  the  solar  system,  including  effecEvely-­‐limitless  solar  energy,  could  support  a  vast  civilizaEon  of  1016  people.  (10  Million  Billion)  

•  He  argues  that  shortage  of  resources  is  "...an  illusion  born  of  ignorance."Lewis  calculated  the  value  of  M-­‐type  asteroid  3554  Amun  at  $20  trillion:  $8  trillion  worth  of  iron  and  nickel,  $6  trillion  worth  of  cobalt,  and  $6  trillion  in  plaEnum-­‐group  metals.  

•  Since  the  book  was  published,  the  price  ofpla@num,  for  example,  has  tripled  

Page 3: 1986 asteroid a

Mining  the  Sky:  Untold  Riches  from  the  Asteroids,  Comets,  and  Planets  

•  *  

Page 4: 1986 asteroid a

Asteroid  selec@on  

•  An  important  factor  to  consider  in  target  selec@on  is  orbital  economics,  in  par@cular  the  delta-­‐V(Δv)  and  travel  +me  to  and  from  the  target.  

•  Near-­‐Earth  asteroids  are  considered  likely  candidates  for  early  mining  ac+vity.  Their  low  Δv  loca+on  makes  them  suitable  for  use  in  extrac+ng  precious  metals  reducing  the  economic  cost  of  transpor+ng  supplies  into  Earth  orbit  

Page 5: 1986 asteroid a

Comparison  Requirements  Mission  Delta  V  

This  table  shows  a  comparison  of  Δv  requirements  for  various  missions.  In  terms  of  propulsion  energy  requirements,  a  mission  to  asteroid  1986  a  near-­‐earth  asteroid  compares  favorably  to  alterna+ve  mining  missions  

•  Earth  surface  to  LEO      8.0  km/s    •  LEO  to  near-­‐earth  asteroid  1986  7.1  km/s]    •  LEO  to  Lunar  surface  6.3    km/s  •  LEO  to  moons  of  Mars  8.0  km/s  

Page 6: 1986 asteroid a

Target:  Asteroid  1986  AD  

•  Asteroid  Appearance  •  Size  2km  •Metallic  Contents    Gold    Pla@num    Silver    Iron    Nickel    Various  Rare      Earths    

Page 7: 1986 asteroid a

1986  Orbit  

•  Near  Earth  •  220,000.000  MI  

•  6-­‐700  days  •  2  Round  Trips    annually  

•  Orbits  Sun  •  Follows  Earth  

Page 8: 1986 asteroid a

Asteroid  mining    

•      Asteroid  mining:The  act  of  exploiDng  raw  materials  from  asteroids  in  space.  

•  Minerals  mined  from  Asteroids  provide  Mega  profits  from  Gold,  PlaDnum,  Silver,  and  other  valuable  elements  returned  to  Earth.  

•  Our  first  target  asteroid  1986  DA  M  class  asteroid    •    At  todays  prices  this  relaDvely  small  metallic  asteroid  with  a  

diameter  of  2  km  contains  greater  than  $1  trillion  plus  of  the  plaDnum  group  in  US  dollars  worth  of  industrial  and  precious  metals.  

•   In  fact,  all  the  gold,  cobalt,  iron,  manganese,  molybdenum,  nickel,  osmium,  palladium,  plaDnum,  rhenium,  rhodium  and  ruthenium  that  we  now  mine  from  the  Earth's  crust,  and  that  are  essenDal  for  our  economic  and  technological  development,  came  originally  from  the  rain  of  asteroids  that  hit  the  Earth  aUer  the  crust  cooled  

Page 9: 1986 asteroid a
Page 10: 1986 asteroid a

Orbital  Characteris@cs  

•  Asteroid  1986  DA  has  a  4.7-­‐year  orbit  around  the  Sun  that  brings  it  nearly  as  far  out  as  the  orbit  of  Jupiter.  Although  it  periodically  approaches  Earth's  orbit,  it  never  crosses  it,  so  the  asteroid  does  not  endanger  Earth.  

Page 11: 1986 asteroid a

•  In  an  ar@cle  in  the  current  issue  of  the  journal  Science,  Dr.  Steven  Ostro  of  the  Jet  Propulsion  Laboratory  in  Pasadena,  Calif.,  and  colleagues  reported  that  the  reflec@on  was  far  brighter  than  that  received  from  any  of  the  five  dozen  other  asteroids  observed  from  Arecibo.  This  brightness  indicates  that  the  asteroid,  which  is  1.6  miles  wide,  is  made  of  metal  rather  than  stony  minerals.  

Page 12: 1986 asteroid a

•  Since  1986  DA  is  apparently  made  of  metal,  astronomers  assume  it  has  much  the  same  composi@on  as  metallic  meteorites  that  reach  Earth's  surface.  These  mainly  consist  of  iron,  with  some  nickel  and  traces  of  other  metals,  including  pla@num  and  gold.  The  Na@onal  Aeronau@cs  and  Space  Administra@on  said  that  Asteroid  1986  DA  is  a  poten@al  source  of  usable  metal.  

Page 13: 1986 asteroid a

•  Asteroid  1986  DA:  Radar  Evidence  for  a  Metallic  ComposiDon.Ostro,  S.  J.,  D.  B.  Campbell,  J.  F.  Chandler,  A.  A.  Hine,  R.  S.  Hudson,  K.  D.  Rosema,  and  I.  I.  Shapiro.Science  

•   252,  1399-­‐1404  (1991).Abstrac  tEchoes  from  the  near-­‐earth  object  1986  DA    

•   significantly  more  reflecEve  than  other  radar-­‐detected  asteroids.  This  result  supports  the  hypothesis  that  1986  DA  is  a  piece  of  NiFe  metal  derived  from  the  interior  of  a  much  larger  object  that  melted,  differenEated,  cooled,  and  subsequently  was  disrupted  in  a  catastrophic  collision.  

•   This  2-­‐kilometer  asteroid,  which  appears  smooth  at  cenEmeter  to  meter  scales  but  extremely  irregular  at  10-­‐  to  100-­‐meter  scales,  might  be  (or  have  been  a  part  of)  the  parent  body  of  some  iron  meteorites.  

Page 14: 1986 asteroid a

Mining  Op@ons  

•  There  are  three  op@ons  for  mining:  •  Bring  back  raw  asteroidal  material  

•  Transport  the  asteroid  to  a  safe  orbit  around  the  Moon  or  Earth  

•  .There  are  several  op+ons  for  material  extrac+on:  Material  is  successively  scraped  off  the  surface  in  a  process  comparable  to  Strip  mining  

Page 15: 1986 asteroid a

Asteroid  1986  DA:  Radar  Evidence  for  a  Metallic  

ComposiDon  

•  Echoes  from  the  near-­‐Earth  object  1986  DA  show  it  to  be  significantly  more  reflec@ve  than  other  radar-­‐detected  asteroids.  

•   This  result  supports  the  hypothesis  that  1986  DA  is  a  piece  of  NiFe  metal  derived  from  the  interior  of  a  much  larger  object  that  melted,  differen@ated,  cooled,  and  subsequently  was  disrupted  in  a  catastrophic  collision.  

•   This  2-­‐kilometer  asteroid,  which  appears  smooth  at  cen@meter  to  meter  scales  but  extremely  irregular  at  10-­‐  to  100-­‐meter  scale,  indicates  it  might  have  been  a  part  of  the  parent  body  of  some  iron  meteorites.  

Page 16: 1986 asteroid a

Research  ScienDsts  &  InsDtuDons  that  evaluated  DA1986  

•  Jet  Propulsion  Laboratory,  California  Ins@tute  of  Technology,  Pasadena,  CA  91109-­‐          S.  J.  OSTRO  ,  K.  D.  ROSEMA  

•  Na@onal  Astronomy  and  Ionosphere  Center,  Cornell  University,  Ithaca,  NY  14853-­‐      D.  B.  CAMPBELL  

•  Harvard-­‐Smithsonian  Center  for  Astrophysics,  Cambridge,  MA  02138-­‐,      J.  F.  CHANDLER,  I.  I.  SHAPIRO  

•  Na@onal  Astronomy  and  Ionosphere  Center,  Box  995,  Arecibo,  PR  00613-­‐,      A.  AHINE  

•  Electrical  and  Computer  Engineering  Department,  Washington  State  University,  Pullman,  WA  99164,  

           R.  S.  HUDSON    

Page 17: 1986 asteroid a

ASTROID  1986  DA-­‐CharacterisDcs  

•  M-­‐type  Mars  Crossover,  near  Earth  asteroid  •  2.3  kilometer  diameter  

•  Composi@on  from  radar  reflec@vity  include:  – 100,000  Tons  of  Pla@num  =    $1  Trillion*  – 10,000  tons  of  Gold  -­‐  $90B  – 10,000,000,000  tons  of  Iron@  $10,000/ton=  100T  

– 1,000,000,000  tons  of  Nickel@$12,133/ton=$12T  *1990  Prices  Total  Asteroid  =  $114  Trillion  

Page 18: 1986 asteroid a

Total  Time  

•  Total  trips  =  97,630  •  2  per  year  =  48,814  years  •  Revenue  at  

Page 19: 1986 asteroid a

Phase I System Timeline

2012  

Asteroid Mining System

SOS 1 Operation AMS 1 Production

Increasing market acceptance $

Loan Approval Process

Design Engineering, & Performance

Demonstration

Assembly, Integration,

& Test Launch

Ops On - Orbit Check - ou

& Demo - Production

ATP Launch Demo

Complete CDR

Design Engineering, & Performance

Demonstration

Assembly, Integration,

& Test

Launch

Ops

On Orbit

Check out & Demo

- Production

2014 2012 Today

Production Program

Pre Production Phase LC&D Phase (Launch, Check-out

& Demo Phase)

Ops Phase (On-orbit

Operations Phase)

DP & Phase (Design, Production, & Test Phase)

Engineering & Funding Activities On Orbit

Operations

Page 20: 1986 asteroid a

Technical  Requirements  

•  Required  Delta  V  =  7’1km/sec  •  Development  of  Tools  

– Drilling  core  samples  and  returning  to  Earth  -­‐  Shuole  Gold      1,215lbs    $22m  per  Cu  p=  $597M    

Pla@num    1,219lb                    $33m  per  cu  p=  $893M  Silver      650lbs    $185K  per  cu  p=  $9.3M  

*Limit  of  33,000  lbs  per  trip  using  current  Shuole  –  Alternate  New  Earth  return  would  increase  returns  and  lower  cost  

Page 21: 1986 asteroid a

IOSTAR  Space  Tug  

Grappler!Propellant Tank"

Reactor!

www.iostarcorp.com  IOSTAR™ Doc. 1058-04!

IOSTAR CONFIDENTIAL INFORMATION"

Radiator!

Commercial Space Transportation System!Enormous ∆V, Very High Power"

Primary Function: !Rescue Satellites"" "Augment Launches"" "Deorbit (LEO, MEO, GEO)"" "Rendevous/Reconnaissance"

Secondary Function: "High Power Communications """ "Space Based Radars"" "Specialized High Power Payloads"" "Power Generation and Delivery"

Page 22: 1986 asteroid a

Even  Distribu@on  

•  Cu  p  of  mixed  METAL  =  32.1  cubit  p  •  Weight  of  ore  =  33,000  lbs  

•   Composite  Price  =  $500  Million  per  cu  p  

•  Price  per  load  =  $16,050  Million  

•  Two  Trips  per  year  =  $32,100  Million    

Page 23: 1986 asteroid a

ROUGH  FINANCIALS  

•  REVENUE  PER  TRIP  =  $16,050M  PER    •  NUMBER  OF  TRIPS  PER  YEAR  =  2  

•  TOTAL  REVENUE  PER  YEAR  =  *$32,100  M  

•  SUNK  COST  =  $5,000M  PER  IOSTAR  +  $500M  

•  RECURRING  COST  =  $2,000M  

•  AMORTIZATION  COST  =  $334M  PER  YEAR  FIRST  15  YS  

Page 24: 1986 asteroid a

Revenue  Summary  Depends  on  Mining  Op@on  

REVENUE  PER  YR            $32,100M  MISSION  COST    TOTAL  COST    RC    Fixed  IOSTAR  &  $5,100M    ($354)M    RETURN  S/C                        

FIXED  COST                $354M  VARIABLE  COST              $140M  TOTAL  COST  PER  MISSION      $494M  COST  PER  YR                $988M  

Page 25: 1986 asteroid a

Asteroid  Itokawa  

                   

     •  Launched  2003  •  Size  of  Asteroid  1782p,  .34mi    •  Distance  to  Asteroid  RD  Trip  =  3  Billion  miles,~  2x  Sun  300Mmi  •  Time  seven  years  Rd  trip  •  Sample  Return  Date  June  13,2010  •  Australian  Outback  (Woomera  TR)  •  Mission  Cost  $138  Million,  12.7  Billion  Yen  

Page 26: 1986 asteroid a

Caterpillar  –  Lunabo@cs  Mining  Equip.    

Page 27: 1986 asteroid a

HAYABUSA  REENTRY  PLAN