1_FUNDAMENTLE Protection Principles

  • Upload
    gmbugus

  • View
    228

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    1/36

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    2/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Power System Structure

    Generation Transmission / Sub transmission Distribution

    Extra High Voltage 765 kV400 kV220 kV

    High Voltage 132 kV110 kV66 kV

    Medium Voltage 33 kV22 kV11 kV

    Medium 24 kVVoltage 21 kV

    15 kV13.8 kV

    The purpose of an electrical power system is to generate and supply electrical energy toconsumers. The system should be designed and managed to deliver this energy to the

    utilisation points with both reliability and economy.

    The purpose of an electrical power system is to generate and supply electrical energy toconsumers. The system should be designed and managed to deliver this energy to the

    utilisation points with both reliability and economy.

    Many items of equipment are very expensive, and so the complete power systemrepresents a very large capital investment.

    .

    Many items of equipment are very expensive, and so the complete power systemrepresents a very large capital investment.

    .

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    3/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Owner of high voltage networks

    Public utility companies

    Interconnected system, National network, Regional system, Urban network

    Industrial companies

    Steel, Cement, Chemistry, Automobile . . .

    Power plantsRailways

    Special systems

     Airports, Hospitals, Testing stations, Ships . . .

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    4/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Protective Relaying is the most important

    feature of power system design aimed at

    minimising the damage to equipment and

    interruption to service in the event of faults. It

    is therefore a co-factor among other factors

    resorted to improve reliability of power system.

    Protective Relaying

    Role of Protection

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    5/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    The Purpose of Protection

    But it can:Limit the damage caused by shortcircuits

    While:Protecting people and plant fromdamage

    Selectively clearing faults inmiliseconds

    Protecting plant from overload

    conditions

    The protection can not prevent system faults,

    Power system must operate in a safe manner at all times.

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    6/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Causes and Probability of System Disturbances

    Causes§ Operator Mistakes

    § Pollution/Condensation

    § Equipment failures, e.g. P.T.'s, Isolators

    § Transient Overvoltages

    Probability

    § System faults (220/400 kV): 3p.a. and 100 km

    § 10-20 kV metal clad switchgear: 10-3 p.a. and feeder 

    § GIS switchgear: 5-10-2 p.a. and bus

    § outdoor switchgear: 110/132 kV 7*10-2 p.a. and bus

    220/275 kV 10-1

    p.a. and bus400 kV 2*10-1 p.a. and bus

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    7/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Since protective relaying comes into action at the time of

    equipment distress, a certain safeguard is necessary in the

    unlikely event of its failure to act at the hour of need.

    Hence, two groups of protective schemes are generally

    employed -

    a) Primary Protection

    b) Back-up Protection

    Primary Protection is the first line of defense, whereas back-up

    relaying takes over the protection of equipment, should the primary

    protection fail.

    Principles of Relaying

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    8/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    The Primary Protection has following characteristic features -

    1. It has always a defined zone of operation.

    2. It should operate before any back-up protection

    could operate, therefore, it should be faster in

    operation.

    3. It should be able to completely isolate the fault

    from all the current feeding sources.

    4. It should be stable for all operating conditions.

    Primary Protection

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    9/36

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    10/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Primary protections failure could be due to any of

    the following reasons -

    1. Current or Potential Transformer failure

    2. Loss of Auxiliary Control Voltage

    3. Defective Primary Relays

    4. Open Circuits in Control & Trip Coil

    5. Failure of Breaker

    It is therefore logical that back-up relays should not

    utilise any of the above items as common with

    primary relays.

    Reasons of Primary Protection Failure

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    11/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Protection Concept

    § The system is only as strong as the weakest link!

    DISTANCE RELAY

    Circuit Breaker CT / VT

    Protection Battery

    Cabling

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    12/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    System structure: meshed network

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    13/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    System structure: radial network for public supply

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    14/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    System structure: radial network in the industry

    G G

    M

    M

    M

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    15/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Neutral earthing

    Solid earthing Low-impedanceNeutral earthing

    Isolated neutralEarth fault-compensation

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    16/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Main components of electrical networks

    Bus coupler

    Generator Three-windingtransformer

    Cable

    Shunt reactorOverhead

    line

    Consumer

    MotorM

    Filter circuit

    Short-circuit currentlimiting reactor

    Switch

    Substation

    Doublebusbar

    Earth faultcompensation coil

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    17/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Protection target

    Selective Fast

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    18/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Basic Protection Requirements

    § Reliability dependability (availability)

    high dependability = low risk of failure to trip

    § Security stable for all operating conditions ,

    high security = low risk of over-trip

    § Speed high speed minimizes damage

    high speed reduces stability problems

    § Selectivity trip the minimum number of circuit breakers

    § Sensitivity notice smallest fault value

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    19/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Protected zone

    Circuit-breaker

    Current transformer

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    20/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Zones of Protection

    n To limit the extent of the power system that is disconnected when a faultoccurs, protection is arranged in zones

    n Zones of protection should overlap, so that no part of the power system isleft unprotected

    n Location of the CT connection to the protection usually defines the zone

    n Unit type protections have clear zones reach e.g Diff. Relay, REF relay

    n Zone reach depends on measurement of the system quantities e.g OC ,EF, distance relays . The start will be defined but the extent (or ‘reach’) issubject to variation, owing to changes in system conditions andmeasurement errors.

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    21/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Criteria indicating fault condition

    Current   I    I > >   I >>    I     I 

    Voltage U U< U>

    Impedance  Z Z<

    Phase angle  

    Power S S (t)

    Frequency f    f 

    r r

    P Q 

    U

     I 

    ddt

     I r

     I 

     I I (t) = sin t + e-

    t

    T×  

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    22/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Overcurrent-time protection

    Definite-time

    overcurrent-protection

    Inverse-time

    overcurrent-protection

    t

     I  I N   I >   I >>

    t2

    t1

    t

     I  I N

    t

     I  I N

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    23/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Differential protection

    Load condition

    Fault condition

    Load condition

    Fault condition

     I A  I B

     I C

     I A   I B

     I C

    Line

    Busbar

    Istart - Iend = 0   è   DI = 0

    Istart - Iend¹ 0   è   DI ¹ 0

    IA + IB + IC  ¹ 0   è   SI  ¹ 0

    IA + IB + IC = 0   è   SI = 0

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    24/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Overvoltage - Undervoltage

    U >

    UN

    U <

    Overvoltage

    Undervoltage

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    25/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Impedance protection

    Load

    Load

     I 

     I 

    U

    U

    LoadZ

    U=

    I

    FaultZ

    U=

    I

    LoadFaultZZ  

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    26/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Distance protection

    Load

    LineX

    R

    LineFaultZ'l=Z   ×

    Load

    2

    NLoad =

    U Z 

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    27/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Back-up protection I

    t = 700 ms

    t = 400 ms

    t = 100 ms

     I >   I >   I >

     I >   I >   I >

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    28/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Back-up protection II

    Z<

     I >   I >   I >

    t = 400 ms

    t = 100 ms

    t = 1000 ms

    Z< Z<

    t = 700 ms

    t = 300 ms

    t = 0 ms

     

     I  

     I  

     I 

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    29/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Survey Equipment - Type of protection

    Line

    TransformerHigh voltage - Medium voltage

    Busbar

    TransformerMedium voltage - Low voltage

    Motor

    Time-graded protectionDifferential protection

    Differential protection

    Time-graded protection

    Reverse interlockDifferential protection

    FuseTime-graded protection

    Time-graded protectionOverload protection

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    30/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    History

    1900Electromechanical relays

    1980Analog electronical relays

    1990Numerical relays

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    31/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    EquipmentSignal

    conversion

    Signal

    tailoring

    Processing(calculation)

    Signalanalysis

    Trippingsignal

    Trippingcoil

    Circuitbreaker

    Protection device

    Auxiliary supply Settings Annunciation

    Equipment : Lines, cables, transformers, machines Processing : Digital Filters,Numerical Methods,

    Measuring AlgorithmsSignal Conversion : CTs and VTs Signal Analysis : Comparisonwith

    Settings, gradingSignal Tailoring : Signal matching, Anti-Aliasing Filters, A/ D Conversion

    Binary Inputs

    General Structure of a Numerical Protection Device

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    32/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    PCPC--InterfaceInterfaceSystemSystem--InterfaceInterface

    Hardware for Digital RelaysHardware for Digital Relays

    100V/ 1A, 5A100V/ 1A, 5Aanalogueanalogue

    IInput/nput/OutputOutputPortsPorts

    32/16 Bit32/16 Bitprocessorprocessor--SystemSystem

    Memory :Memory :RAMRAMEEPROMEEPROM

    EPROMEPROM

    RS232/RS232/485/FO485/FOSerialSerial

    InterfacesInterfaces

    0001000101010101

    00110011

    AmplifierAmplifier

    A/DA/D--ConverterConverter

    FilterFilter

    Measur.inputMeasur.inputss(max. 11)(max. 11)

    max. 7max. 7VoltageVoltage--inputsinputs

    (140 V cont.)(140 V cont.)

    max. 11max. 11CurrentCurrent--InputsInputs(100/N. 1s)(100/N. 1s)

    10V10Vanalogueanalogue

    digitaldigital InputInput--/Output/Outputcontactscontacts

    Input/OutputInput/Output--

    unitunit

    2....112....11binarybinaryInputsInputs

    5....115....11AlarmAlarmRelaysRelays

    2....52....5TripTripRelaysRelays

    8....168....16LEDLED

    IndicatorsIndicators

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    33/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Analog to Digital ( A / D ) Conversion of Measuring Signals

    IL1

    Filter

    1 kHz

    S & H

    MUX

    ME

    IL2 ; IL3 ; IE

    UL1 ; UL2 ; UL3

    UE•

    1 kHz

    ME Measuring Input S & H Sample u. Hold

    MUX Multiplexer

    PGA

    1 1 10 00A

    D

    PGA Programmable Gain Ampliflier

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    34/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Analog to Digital ( A / D ) Conversion of Measuring Signals

    Example of an A/D Conversion of a Sinusoidal Signal.

    A voltage signal 10 sinω

    t is sampled at a rate of 1 kHz (Sampling time Δ

    T = 1 ms) .ω = 2πf, with f being the power frequency = 50 Hz..

    How does the output of a 12 bit (11 bits + sign) ADC look like ?

    Note : 1 ms for a 50 Hz system corresponds to 18 electrical degrees

    t t

    Input of ADC Output of ADC

    10 sin  ω t

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    35/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Sampling Rates used in Siemens Numerical Protection

    S.No Relay Designation Sampling Rate

    1. 7UT612 12 Samples / Cycle

    600 Hz for 50 Hz system

    2. 7UT613 16 Samples / Cycle

    800 Hz for 50 Hz system

    3. 7UT63 16 Samples / Cycle

    800 Hz for 50 Hz system

    4. 7SJ61-64 16 Samples / Cycle

    800 Hz for 50 Hz system

    5. 7SA... 20 Samples / Cycle

    1000 Hz for 50 Hz system

    6. 7SD... 20 Samples / Cycle

    1000 Hz for 50 Hz system

    7. 7SS... 20 Samples / Cycle

    1000 Hz for 50 Hz system

    8. 7UM Depends on network frequency

  • 8/18/2019 1_FUNDAMENTLE Protection Principles

    36/36

    Energy Sector Energy Automation

    © Siemens AG 2009

    Further Readings

    The Art & Science of Protective RelayingBy : C Russel Mason