45
Motion Relative to Point- Attached Reference Frame Relative Motion – Velocity Relative Motion - Acceleration Instantaneous Centre of Zero Velocity Wheel Rolling Without Slip Sliding Contact Between Two Bodies 2 Kinematics of a Rigid Body

2 Kinematics of a Rigid Body

Embed Size (px)

DESCRIPTION

2 Kinematics of a Rigid Body

Citation preview

  • Motion Relative to Point-Attached Reference Frame

    Relative Motion Velocity

    Relative Motion - Acceleration

    Instantaneous Centre of Zero

    Velocity

    Wheel Rolling Without Slip

    Sliding Contact Between Two

    Bodies

    2 KinematicsofaRigidBody

  • x i", "y j", "

    Bodyattachedframe

    Pointattachedframe

    x i' ,

    y j' ,

    O x i,

    y j,

    Basicfixedframe

    A( x yA A, )

    Referencepoint

    d.o.f = 3

    Independent coordinates: xA yA

  • Planar motion of a rigid slab

    (1) Translation

    (IF = constant)(2) Rotation about A

    (IF xA, yA are constant)

    Independent coordinates: xA yA

  • A-xytranslates

    with A

    Slab rotatesabout A-xy

    Absolute vel=Re + En

    A

    O

    BrBA

    x'

    y '

    x

    y

    v A

    Relative vel.

    Entrained vel.

    AB vv '

    v A

    Entraining point B on A-xy:

    B

    vBvB A/

  • AO

    BrBA

    x'

    y'

    x

    y

    v A

    AABB vvv /

    v A

    vB A/vB

  • RelativeMotionAnalysis:Velocity

    Velocity vB/A hasamagnitudeof vB/A =rB/A anda

    directionwhichisperpendiculartorB/AABAB /vvv

  • RelativeMotionAnalysis:VelocityVelocity vB isdeterminedbyconsideringtheentire

    bodytotranslatewithavelocityofvA,androtateaboutA withanangularvelocity

    Vectoradditionofthesetwoeffects,appliedtoB,yieldsvB

    vB/A representstheeffectofcircularmotion,aboutA.Itcanbeexpressedbythecrossproduct

    ABAB /rvv

  • RelativeMotionAnalysis:VelocityVelocity PointAonlinkABmustmovealonga

    horizontalpath,whereaspointBmovesonacircularpath

    Thewheelrolls withoutslippingwherepointAcanbeselectedattheground

  • AO

    y

    B

    aB A/aB

    x'

    y'

    a A

    a A

    x

    AABB aaa /

  • RelativeMotionAnalysis:Acceleration

    Thetermscanberepresentedgraphically

    = +

    ABABAB /2

    / rraa

  • v rB A BA/ a r rB A BA BA/ ( ) Relative motion: (Circular)

    Entrained motion

    Av

    Aa

    ,

    AABB vvv / AABB aaa /

    Absolute = Relative + Entrained

  • A wheel rolling without slip

    Example

  • Example

    G0.45 m

    0.3 m

    i

    j

    P v aGiven

    Determine

    Rolling without slipping

    C

    A

  • C

    G

    C

    Av

    0.45 m

    0.3 m

    i

    j

    Rolling without slipping vC = vC = 0

    ACr CCAA vvv /

    0 v

    A relative to C= 0.75=1.33v

    (AC)

    (ans)(CW)

    For the instant

  • ia janA iaG (AG) jAG 2GGAA aaa

    /i=

    C

    A

    (AG)t GAa /AGan GA 2/

    a 0.75=1.33a

    (ans)(CW)

    G iaG 45.0

    ? ??

  • ?Ca

    C

    A G iaG 45.0

  • Instantaneous center of zero velocity

    For a slab in general planar motion,

    there exists a point C on the slab

    at any instant

    with vC = 0.

    C : Instantaneous Center of Zero Velocity

  • GC

    A

    i

    j

    vC = 0

    Av

    ACr CCAA vvv /

    0

    Av (AC)

    Instant Center of zero vel.

    Pure rotationAbout I.C.

    Proportional to AC

    For the instant

  • GC

    A

    i

    j

    vC = 0

    ACr CCAA vvv /

    0

    Av

    Av (AC)Pure rotationAbout I.C.

    Instant Center of vel.

  • GC

    A

    i

    j

    vC = 0

    ACr CCAA vvv /

    0

    Av

    Av (AC)Pure rotationAbout I.C.

    Instant Center of vel.

  • InstantaneousCenterofZeroVelocity VelocityofanypointB locatedonarigidbodycan

    beobtainedifbasepointA haszerovelocity SincevA =0,thereforevB = xrB/A. PointA iscalledtheinstantaneouscenterofzero

    velocity (IC)anditliesontheinstantaneousaxisofzerovelocity

    Magnitude ofvB isrB/IC Duetocircularmotion,

    direction ofvB mustbeperpendicular torB/IC

  • InstantaneousCenterofZeroVelocity

    Forwheelrollingwithoutslipping,thepointofcontactwiththegroundhaszerovelocity

    HencethispointrepresentstheIC forthewheelLocationoftheIC Velocity ofapointonthebodyisalways

    perpendicular totherelativepositionvectorextendingfromtheIC tothepoint

    ICislocatedalongthelinedrawnperpendiculartovA,distancefromA totheICisrA/IC =vA/

  • InstantaneousCenterofZeroVelocityLocationoftheIC ConstructAand Blinesegmentsthatare

    perpendiculartovA andvB. Extendingtheseperpendiculartotheirpointof

    intersection asshownlocatesthe IC ICisdeterminedbyproportionaltriangles

  • f fixed P vP

    P

    Sliding contact of a point along the boundary of a rigid slab

    P fixed

    f moves P

    vP

    f moves f moves

    Velocity of P tangential to the curve

    Velocity of P tangential to the curve,tooNo penetration

  • BC

    200 mm

    600 mm

    G 30

    = 0.5 rad/s

    700 mm

    D on the wall

    D on AB

    Example

    AB?A

  • BC

    600 mm

    G 30

    = 0.5 rad/sD on AB

    D on the wall

    vDA

    = ?

    Example

  • P

    f

    P fixed

    P vP

    f

    P movesvP

    vP

    vP/P

    Condition of sliding contact

    vP/P nvP/P tangential to the curve

    nNo penetration

  • fP vP/P

    P

    If f and P are both moving

    f f

    vP/P tangential to the curve always

  • BC

    600 mm

    G 30

    = 0.5 rad/sD on AB

    Example 2-5

    D on the wall

    vDA

    I.C.

    Sliding contact

    Example

  • AB

    C

    200 mm

    400 mm

    G

    D

    30

    0.5 rad/s AB

    vA

    vD

    E

    45

    15 D

    27.4 27.4

    700 mm

    I.C. of rod AB

    AEvA

    AB

    )(BEv ABB

    Example

  • Motion Relative to a Body-Attached

    Reference Frame

    Relative Motion Velocity

    Relative Motion -

    Acceleration

    2 KinematicsofaRigidBody

  • P belongs to the Body fA

    O

    x

    y

    x

    y

    Av

    Pv

    P Coincideswith P

    at the instant

    PfP vv /P

    PAAP rvv '

    f

    PAr

    P Entraining pointP'Pv

    ?

  • '/ PPv PfP vv / 'Pv

    Relative to f Relative to P=

    '/ PfPP vvv

    Abs. = Rel. + Ent.

    Principle of Velocity Combination

  • A point / particle relative to a body

    Acceleration of

  • AO x

    y

    A body f

    f

    f

    P A particle P

    GivenPa

    Pa

    f

    f

    Aa

    Aa

    f

  • AO

    P

    x

    y

    f

    Pa

    fAa

    APAP aaa /

    P relative to A

    point A attachedTrans. Frame A-xy

    x

    y

  • AO

    f

    x

    y

    Pa

    What is accel. of Prelative to f ?

    fPa /

    x

    y

    Body attachedFrame A-xy

    P

    f

    Aaf

    AP aa

    If f is in translation+ rotation

  • AO x

    y

    Pa

    x

    y

    Body attachedFrame A-xy

    Pf

    Aa

    Introduce

    P Entraining pointP

    ff

  • fPP vv / 'Pv

    Abs = Rel + Ent

    Do we also have a aP P f / 'Pa ?Abs = Rel + Ent

    Since

  • xy

    P

    O

    erererera PrPPrPP 2 2

    fPa /

    xUsing Body attached Ref.

    (O- x,y)

    yPr

    Relative accel.

    rPer

  • xy

    P

    O

    erP

    rP er 2

    erererera PrPPrPP 2 2 aP'

    tPa '

    nPa 'Entrained Accel.

    P entraining point

  • xy

    P

    O

    erererera PrPPrPP 2 2

    CPa

    erP 2

    Coriolis Accel. fPf v /2

  • Acceleration of P

    a aP P f / 'PaAbs = Relative + Entrained

    fPf v /2

    + Coriolis

    Principle of Acceleration Combination