5
8/21/2019 2. Raw Materials http://slidepdf.com/reader/full/2-raw-materials 1/5 Produced by: Fisheries and Aquaculture Department Title: Planning and engineering data. 2. Fish Canning...  More details 2. RAW MATERIALS 2.1 Fish and Other Marine Foods 2.2 Fish Handling 2.3 Ingredients and Additives 2.4 Packaging Materials 2.1 Fish and Other Marine Foods Many types of fish, and other marine foods are suitable for canning, the size of the individual fish varying from that of the smallest sardines to that of the largest tuna species. For some species like tuna and sardines canning is the most important processing method. Other species, suitable for canning are salmon, mackerel, herring, clams, oysters, shrimps, octopus, crab and white fish paste products. The Codex Alimentarius Commission recommends the following species of Tuna, Bonito, Salmon and Shrimps to be canned: Canned Tuna and Bonito (CODEX STAN 70-1981) Thunnus alalunga Euthynnus affinis Thunnus albacares Euthynnus alletteratus Thunnus atlanticus Euthunnus lineatus Thunnus obesus Euthynnus pelamis (syn: Katsuwonus pelamis) Thunnus thynnus maccoyii Sarda chiliensis Thunnus thynnus orientalis Sarda orientalis Thunnus thynnus thynnus Sarda Sarda Thunnus t ongol l S arda v el ox Canned Sardines (CODEX STAN 94-1981) Sardina pilchardus (Walbaum)  S ardi nops mel anos tic ta S ardi nell a auri ta S ardi nops neopi lc hardus S ardi nel la anc hov ia Sardinops oc ellata Sardinella bras iliens is or Sardinops Sagax or Sardinops caerulea Sardinella maderensis  Clupea harengus  Hyperlophus vittatus Clupea antipodum  Nematolosa vlaminghi Clupea bassensis or Etrumeus microps Clupea fuegensis Ethmidium maculatus Sprattus sprattus Engraulis anchoita (Clupea sprattus) Engraulis ringens Canned Pacific Salmon (CAC/RS 3-1969. Rev.1  ) Oncorhynchus nerka Oncorhynchus gorbuscha Oncorhynchus kisutch Oncorhynchus keta Oncorhynchus tschawytscha Oncorhynchus masou Species of the families Penaeidae Crangonidae and Pandalidae Palaemonidae  A variety of products can be made using minced fish as main raw material. Unutilized or underutilized species (so called trashfish) with a nutritional value comparable to that of valued food species can be an excellent source of raw material. To plan the handling and processing of fish and to manage problems connected with all operations from transport and processing through storage, it is essential to know the physical and chemical properties of the species involved; these properties include shape and size. thermal conductivity, chemical composition of fish and conditions regarding  post mortem changes. See Table 4.

2. Raw Materials

Embed Size (px)

Citation preview

Page 1: 2. Raw Materials

8/21/2019 2. Raw Materials

http://slidepdf.com/reader/full/2-raw-materials 1/5

Produced by: Fisheries and AquacultureDepartment

Title: Planning and engineering data. 2. Fish Canning... More details

2. RAW MATERIALS

2.1 Fish and Other Marine Foods2.2 Fish Handling2.3 Ingredients and Additives2.4 Packaging Materials

2.1 Fish and Other Marine Foods

Many types of fish, and other marine foods are suitable for canning, the size of the individual fish varying from that of thesmallest sardines to that of the largest tuna species. For some species like tuna and sardines canning is the most importantprocessing method. Other species, suitable for canning are salmon, mackerel, herring, clams, oysters, shrimps, octopus,crab and white fish paste products.

The Codex Alimentarius Commission recommends the following species of Tuna, Bonito, Salmon and Shrimps to becanned:

Canned Tuna and Bonito (CODEX STAN 70-1981)

Thunnus alalunga Euthynnus affinis

Thunnus albacares Euthynnus alletteratus

Thunnus atlanticus Euthunnus lineatus

Thunnus obesus Euthynnus pelamis (syn: Katsuwonus pelamis)

Thunnus thynnus maccoyii Sarda chiliensis

Thunnus thynnus orientalis Sarda orientalis

Thunnus thynnus thynnus Sarda Sarda

Thunnus t ongol l Sarda velox

Canned Sardines (CODEX STAN 94-1981)

Sardina pilchardus (Walbaum)

Sardinops melanosticta Sardinella auri ta

Sardinops neopilchardus Sardinella anchovia

Sardinops oc ellata Sardinella bras iliens is or

Sardinops Sagax or Sardinops caerulea Sardinella maderensis

Clupea harengus Hyperlophus vittatus

Clupea antipodum Nematolosa vlaminghi

Clupea bassensis or Etrumeus microps

Clupea fuegensis Ethmidium maculatus

Sprattus sprattus Engraulis anchoita

(Clupea sprattus) E ngraul is ring ens

Canned Pacific Salmon (CAC/RS 3-1969. Rev.1 )

Oncorhynchus nerka Oncorhync hus gorbuscha

Oncorhynchus kisutch Oncorhync hus keta

Oncorhynchus tschawyts cha Oncorhynchus masou

Species of the families

Penaeidae Crangonidae and

Pandalidae Palaemonidae

A variety of products can be made using minced fish as main raw material.

Unutilized or underutilized species (so called trashfish) with a nutritional value comparable to that of valued food species canbe an excellent source of raw material.

To plan the handling and processing of fish and to manage problems connected with all operations from transport and

processing through storage, it is essential to know the physical and chemical properties of the species involved; theseproperties include shape and size. thermal conductivity, chemical composition of fish and conditions regarding post mortemchanges. See Table 4.

Page 2: 2. Raw Materials

8/21/2019 2. Raw Materials

http://slidepdf.com/reader/full/2-raw-materials 2/5

Table 4 Various parts of the fish expressed in percentage of total weight and total fish weight per cubic metre, for someimportant species used in canning

Species Percentage of total weight ton/m³

Head Skin & flesh Bones Fins Viscera

Atlantic herring 12.5 62.2 6.5 1.5 15.0 0.91

Sardines 21.0 58.0 6.5 2.5 9.5 0.85

Atlantic mackerel 22.5 52.0 8.0 1.0 19.5 0.96

Tuna 18.0 64.0 8.0 2.0 8.0

Pink salmon 16.0 71.0 1/ - 5.0 8.0 0.95

1/ Including bones and gonads

2.2 fish handling

2.2.1 General

Information about fish handling prior to canning is given in detail in Planning and Engineering Data, Fresh Fish Handling,FAO Fish. Circ. 735. In this context these data are of most value where they concern operations of special importance for canning.

2.2.2 Fish handling on board

After w ashing, the raw material should be chilled as soon as possible, and kept chilled until unloading. Depending on thetype of fishing vessel the catch can be iced in boxes, containers, or shallow bins.

In practice, however, methods for handling fish on board vary from doing little or nothing, to chilling or freezing, depending onthe type of vessels, area of catching and fish species.

With large fish like tuna the most common method of handling on board smaller vessels is washing and chilling with water and/or ice. Larger vessels are equipped with tanks in which the fish is chilled. These tanks are either chilled sea water (CSW) tanks or refrigerated sea water (RSW) tanks. The CSW- tanks are chilled with ice, and the RSW- tanks are chilledby refrigeration. Air blast and brine freezing methods are also commonly used. For more details concerning freezingmethods, see "Freezing in Fisheries". FAO Fisheries Technical Paper no. 167.

Smaller species are chilled in CSW or RSW- tanks, and when in small quantities, iced in boxes.

Industrial species intended for mincing must be handled (as with any high valued food fish) according to good handlingpractice. The fish must be washed, and if the raw material is by-catch from bottom trawling, all mud, sand, etc. must berinsed away. If possible, the fish must be sorted, but in some areas this is difficult as the catch consists of several species,

each in small quantities.

2.2.3 Unloading fishing vessels

Care must be taken during unloading and handling in order to avoid bruised fish and/or skin abrasions. Allhough systems for unloading and handling fish depend on various factors, the most common methods are as follows:

i. Fresh fish is humped from the fish hold through scales or volume measuring equipment to rolling conveyors for further -transport, or directly to tanks, bins, etc.

ii. Fresh or frozen fish is loaded into baskets or cases, heaved to the quay, by either electrical dock hoists or by use of the vessel's own winch. and then tipped into containers, before transport, or into bins before gutting or transport.When the fish is iced into boxes, J or containers. on board. it is unloaded in a similar way. When the boxes are stackedon pallets the entire pallet load is heaved up.

iii. Fish kept in CSW or R SW-tanks is heaved from the fish tank by use of nets. Fish in bulk may also unloaded this way.iv. A conveyor system may be used for unloading fresh and frozen fish.

2.2.4 Fish handling on land

The processes and principles involved in preparing fresh fish for canning are, for the most part, similar to those that would beinvolved in preparing them for marketing as fresh fish. Therefore the general instructions described in the RecommendedInternational Code of Practice should be used as a guide for the handling and preparation of fresh fish for canning(CAC/RCP 9-1976 and CAC/RCP 10-1976).

For information concerning icing, CSW, RSW, chill storage, containers for raw materials, materials, freezing and frozenstorage, readers are referred to planning and Engineering Data I - Fresh Fish handling, FAO, Fish. Circ. 735, and freezing inFisheries, FAO Fisheries "-"' Technical Paper no. 167".

If the fish consists of industrial species, and sorting is not practical, the raw material can be stored in containers and mixedwith ice until use. If possible, the fish should be kept in the same boxes or containers, without emptying and reicing, as thiswill be the best means of maintaining quality;. sometimes however this is not possible, especially in cases where thefishermen want their catches weighed immediately after landing. The less the handling of the iced and boxed/containerizedraw material, the longer will quality be maintained.

It is not recommended to freeze fish which is to be used as a minced raw material.

Frozen fish can be thawed by immersion in chilled water (temperatures above 15 ºC are not advisable), water spraying or air current exposure. Thawing of frozen fish is an important step in canned fish manufacture. For larger species, like tuna,thawing up to 12 hours or more is not unusual. As thawing of the fish is progressive, smaller species, and exterior parts of larger species may reach the desired state of thaw while the inner parts of larger species remain frozen.

Deterioration of fresh fish, especially whole uneviscerated tuna, is rapid at temperatures sufficient to hasten thawing. Thequality of the fresh tuna begins to diminish before the last thawed portions have become unfrozen.

2.3 Ingredients and Additives

2.3.1 Quality requirements for water

All water available for use in those parts of an establishment where fish and shell fish are received, kept, processed,

Page 3: 2. Raw Materials

8/21/2019 2. Raw Materials

http://slidepdf.com/reader/full/2-raw-materials 3/5

packaged and stored should be potable water or clean sea water and should be supplied at pressure of no less than 1.4kg/cm².

An adequate supply of hot w ater of potable quality at a minimum temperature of 82°C should be available at all times duringthe plant operation (CAC/RCP 9-1976).

The cold water supply used for cleaning purposes should be fitted with an in-line chlorination system allowing the residualchlorine content of the water to be varied at will in order to reduce multiplication of micro-organisms and prevent the build-upof fish odours.

Water used for washing or conveying raw materials should not be recirculated unless it is restored to a level of potablequality.

Non-potable water may be used for such purposes as producing steam, cooling heat . exchangers and fire protection. It isvery important that both-systems of storage and distribution of potable and non-potable water are entirely separate and there

is no possibility for cross-contamination or for inadvertent usage of non-potable water in the fish or shellfish processingareas. Only potable water should be used for the supply of hot water. The same requirements for the separation of systemswould apply to clean sea water when it is used in the processing of fish (CAC/RCP 9-1976).

2.3.2 Quality requirements for other ingredients and additives

Salt used for making brine or other purposes should be pure and not contain appreciable quantities of magnesium chloride, acommon contaminant of unrefined salt. If the salt contains too much magnesium chloride the risk of struvite formationincreases; this may concern consumers as struvite can form crystals resembling glass in the canned fish.

Salt should comply with the "Codex Alimentarius Specifications for Food Grade Salt" (being-developed by the CodexCommittee on Food Additives).

Olive oil intended for canning has to be one of the two following categories (Research Laboratory of the Norwegian CanningIndustry):

i. Virgin olive oil produced by mechanical processes, or:ii. Olive oil produced by blending of virgin olive oil with chemically refined virgin olive oil which is produced from pure

virgin olive oil.

Olive oil intended for canning Norwegian sardines may be blended to a maximum of 35 % with chemically refined oil. For canned fish other than Norwegian sardines, chemically refined virgin oil as such is accepted in addition to the olive oilspecified.

Olive oil should be extracted from sound olives, without any admixture of other oils (fat). Further, the oil must be free fromany admixture of refined solvent-extracted olive oil. Synthetic olive oil is strictly forbidden.

The oil shall be clear, free from mucilage, mould or other impurities. The oil shall also be free from moisture.

The colour of the oil shall be yellow to golden with only a slight tinge of green.

Odour and taste of the oil shall be pure, good and natural, not acrid, bitter or too strong.

The oil must be resistant to cold.

Soya bean oil should be free from foreign and rancid odour and taste. Colour additives are permitted for the purpose of restoring natural colour lost in processing or for the purpose of standardizing colour, as long as the added colour does notdeceive or mislead the consumer by concealing damage or inferiority or by making the product appear to be of greater thanactual value.

Maximum level of use is not limited for such additives.

Natural flavours and their identical synthetic equivalents, except those which are known to represent a toxic hazard, andother synthetic flavours approved by the Codex Alimentarius Commission, are permitted if they fullfill the limitationsmentioned in the text above.

Other additives as antioxidants, antioxidant synergists and crystallization inhibitors are permitted in soya bean oil.

Tomato sauce should be made from sound raw materials without any decomposition by mould, yeast or bacteria. Thecanned tomato sauce should not contain microbes which can develop at a normal storage temperature. The colour shouldbe red, even with a faint tinge of yellow, but never brownish. Odour and taste should be pure and natural. The tomato sauceshould be heterogeneous and not contain too much seeds or skin.

The total solids shall not exceed 30% (Tripple concentrated tomato sauces are not be permitted). The content of sugar is notpermitted to be reduced below 40% of. the total amount of solids.

The tomato sauce must not contain any extraneous matters (such as carrots etc.). Artificially colouring or any kind of preservatives, except salt are not permitted. (Research Laboratory of the Norwegian Canning Industry).

Examples of other ingredients and additives used in the canning process are:

Pepper (Piper nigrum l .)Cardemon (Elletria cardamomum)

Ginger (Zingiber officinale roscae)Onion ( Allium cepa allium ascalonicum)Spirit vinegar (Solution containing vinegar acid, CH3 COOH, concentrate from 4 to 12 %)Ground mustard seed (Brassica species)Curry powder Starch (potatoes flour)Mono Sodium Glutamate (MSG)Stabilizing agents as sodium alginate and gum tragacanthMilkSugar WineBeer

The ingredients should be suitable for human consumption and be free from abnormal taste, flavour and odour.

2.4 Packaging MaterialsThe most common material used for manufacturing containers for fish products are tin plate, aluminium and lacquered steel

Page 4: 2. Raw Materials

8/21/2019 2. Raw Materials

http://slidepdf.com/reader/full/2-raw-materials 4/5

plate (TFS). Flexible packaging as an alternative to metal cans has become more common during the last years and glass jars are sometimes used for speciality packs.

2.4.1 Tin plate

Tin plate is steel sheet coated with a thin layer of tin on each surface. Because of its strength and rigidity tin plate forms anideal material for food containers. In addition to the benefits of its bright appearance and ease of soldering, the major function of the tin layer is to protect the base steel from corrosion. Mechanical properties such as strength, stiffness, etc., arecontrolled in the manufacturing process to suit the specifications of the can maker. Minimum thickness of tin plate for canmaking is 0.15 mm (Palling, 1980). The main factors of importance are chemical composition and physical properties of thebase plate, thickness of tin coating, application of protective coatings and relative corrosivity of the product which is to becanned.

Low carbon steel is used for can manufacture. The chemical composition of the base steel plate is of primary importance inobtaining adequate service-life for corrosive, products; the most critical element is phosphorus, but other elements such ascopper nickel, chromium and silicon may also affect the corrosion resistance of the plate. 'Two basic types of stell (L andMR) are used for different food products and a third type (D) is used for unusual drawing operations. For low-acid products,such as fish the steel type has no important influence on corrosion and any of the available types may be used, neverthelessMR steel is usually required. Originally tin plate coating weight specifications were expressed in terms of the "base box"which was an industry measure. Tin plate was sold in only one size sheet (356 x 508 mm), and bundled 112 sheets to apackage. The total area of plate in such a package (20.22 m2) came to be known as a base box, the weight of which variedwith the thickness of the steel (Ellis, 1979).

Formerly, tin plate was made by immersing sheets of "black" plate in molten tin (hence this plate was known as hot dip plate).Nowadays electrolytic plating techniques are used to apply tin to the base steel plate. This method permits thinner tincoatings (0.38 to 2.03 microns) on each side of the plate surface. The electrolytic tinning process permits also a close controlover deposition of the tin coating layer. The most common coating weights are 0.25, 0.50, 0.75 and 1.00 lb per base boxwhich corresponds to 5.6, 11.2, 16.8 and 22.4 g/m², respectively (when considering both plate surfaces). In the metricsystem coating weight is expressed as the weight of tin on each surface. Thus a total tin coating weight of 5.6 g/m² is listedas 2.8/2.8 g/m² (Ellis 1979), which signifies that on each surface the tin coating weight is 2.8 g/m². Differentially coated tin

plate has different tin coating weights on each surface; the heavier coating usually being on the inside of the container.

2.4.2 Tin-free steel (TFS)

The tin-free steel is one of the newer can-making materials. Untinned steel on which very thin layers of chromium-oxide havebeen electrodeposited is resistance to corrosion and discolouration. Disadvantages are that the plate must be, coated onboth sides and that it cannot be soldered. It is principally used for the ends of the cans.

2.4.3 Aluminium alloys

Aluminium alloys are finding increasing use in the can making industry. Advantages of aluminium include the light weight of the material resistance to atmospheric corrosion and to sulfide-bearing products (commonly found in fish products) andversatility for making containers by different methods. Disadvantages include difficulties in closing the body seam bysoldering and the necessity for heavier gauges which are required to obtain strength comparable with tin plate. Sheet madewith pure aluminium has mechanical and physical properties which limit its use as a can-making material. Increased strengthis obtained by alloying aluminium with one or more other metals such magnesium and manganese. Minimum thickness of aluminium for use in fish cans is 0.28 mm.

2.4.4 Enamel coatings

Enamel coatings are used to protect tin plate, aluminium alloys and TFS, The coatings can be applied to sheets and coilseither before and after cans are made. In some cases, coatings make it possible to use more lightly coated grades of tinplate or tin-free steel. The enamels or lacquers were originally prepared from polymerized fish oil but today lacquers aremade from synthetic materials which provide better performance.

2.4.5 Retortable pouches

Retortable pouches for thermoprocessed food as an alternative to metal cans and glass jars have found increased useduring recent years. The pouches are heat sterilized in retorts and the sterility maintained by the impermeability of the

material and the hermetic seals of the pouches. Characteristics for their use include (Lampi, 1979) convenience fore-heatingby immersion in boiling water. rapid sterilization as the flat. thin cross section of the pouch permits rapid heat transfer to thecontents. energy conservation. and space utilization.

Retortable pouches are made from rigid or flexible materials. Rigid pouches are constructed with high density polyethylene(HDPE), whereas flexible pouches may be made from a lamination which consists of an outer polyester ply, an aluminiumfoil, as the primary material. and an inner ply which is made of modified polyolefin (medium to high density polyethylenemodified with polyisobutylene) or cast polypropylene. Products are being commercially packed in a film described as 12microns polyester, 9 microns aluminium oil, 15 microns nylon and 50 microns polypropylene, and processed at temperaturesup to 135 ºC for times ranging from 2.7 to 9 minutes (Lampi, 1979).

2.4.6 Glass

The principles of processing with glass are substantially the same as for cans, except that there are some modificationsnecessary because of the sealing mechanism used and the thermal characteristics of the glass. As with cans, glass

containers must be hermetically sealed; this is achieved by using a metal closure into which has been placed a plastisol liningcompound that acts as a sealant between the glass and the metal cap.

Glass containers are processed under water in a counter-balanced retort. The water prevents thermal shock breakage assteam enters the retort while the counter-balancing air transmits pressure through the water ensuring that at all times thepressure in the retort is greater than that in the sealed container.

As glass is resistant to all food products no internal surface treatment is required. The metal closures however must beprotected from corrosion and for this reason are internally and externally lacquered.

Table 5 Size of 2-piece cans for different types of the most important fish products

Type of can Material Volumeml

Lengthmm

Widthmm

Heightmm

Product Net weightg

Fish weightg

1/4 dingley aluminium tin plate 112 105 76 21.5 sardines, small fish 106 85

1/4 club * aluminium tin plate 115 105 60 29 sardines, small fish, tuna 125 95

Page 5: 2. Raw Materials

8/21/2019 2. Raw Materials

http://slidepdf.com/reader/full/2-raw-materials 5/5

1/2 hansa * aluminium tin plate 200 148 81 26 herrings 195 130

1/2 oblong aluminium tin plate 212 154.7 61 30 kippers 225 225

1/3 oval tin plate 200 149 81 25 mackerel 195 130

1/2 oval tin plate 270 149 81 25 mackerel 250 180

* Noblikk-Sannem A/S standards.

Table 6 Size of 2- and 3-piece cans for different types of the most important fish products

Type of can Material Volumeml

Diameter mm

Heightmm

Product Netweight

g

Fishweight

g

2-piece round aluminium 225 90 40 shrimp 217 150

2-piece round aluminium 115 78 32 shrimp 111 75

2-piece 1/2 poundround

aluminium tinplate

245 90 44 fish with vegetables, herring,tuna

230 *

2-piec e 1 pound round t in plat e 490 120 49 f is h w it h veget ables , herring,tuna

460 *

3-piece round tin plate 212 83.8 46 tuna 200 155

3-piece round tin plate 400 99.5 60 tuna 377 292

3-piece round tin plate 450 72 119 cod roe in brine 425 300

3-piece round tin plate 450 101 64 fish cakes 400 260

3-piece round tin plate 900 101 121 fish balls 800 520

3-piece 5 kg round tin plate 4 250 218 123 tuna, sardine 4 000 3 100

3-piece 10 kg round tin plate 8 500 218 245 tuna 8 000 6 200

* Depends on amount of vegetables.

2.4.7 Construction of metal containers

Metal containers are normally divided into two groups:

2-piece cans (square, oval or round).3-piece cans with soldered or welded body (square, oval or round).

Specifications for the most common metal containers are shown in Tables 5 and 6.