40
2011 Vegetable Productivity Study AGGRAND Natural Fertilizer vs Leading Organic Fertilizer AGGRAND – A Division of AMSOIL INC., Superior, Wis., USA

2011 AGGRAND® Vegetable Productivity Study

Embed Size (px)

DESCRIPTION

2011 AGGRAND® Vegetable Productivity Study - G2957

Citation preview

Page 1: 2011 AGGRAND® Vegetable Productivity Study

2011 Vegetable Productivity Study

AGGRAND Natural Fertilizervs

Leading Organic Fertilizer

AGGRAND – A Division of AMSOIL INC., Superior, Wis., USA

Page 2: 2011 AGGRAND® Vegetable Productivity Study

2 AGGRAND Vegetable Productivity Study

Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . Page 3

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . Page 3

Materials and Methods. . . . . . . . . . . . . . . . . . . Page 4

Weather Data . . . . . . . . . . . . . . . . . . . . . . . Page 4

Soil Sampling . . . . . . . . . . . . . . . . . . . . . . . Page 5

Soil Respiration . . . . . . . . . . . . . . . . . . . . . . Page 6

Planting Plan . . . . . . . . . . . . . . . . . . . . . . . . Page 7

Tomato and Broccoli Starts and Transplants . . . . . . . Page 8

Potatoes: Preparation and Planting . . . . . . . . . . . .Page 10

Carrot Sowing . . . . . . . . . . . . . . . . . . . . . . .Page 10

Growth Plot Maintenance . . . . . . . . . . . . . . . . .Page 11

Plant Vigor . . . . . . . . . . . . . . . . . . . . . . . . .Page 16

Results and Discussion . . . . . . . . . . . . . . . . . .Page 17

Tomatoes . . . . . . . . . . . . . . . . . . . . . . .Page 17

Broccoli . . . . . . . . . . . . . . . . . . . . . . . .Page 21

Carrots . . . . . . . . . . . . . . . . . . . . . . . . .Page 25

Potatoes . . . . . . . . . . . . . . . . . . . . . . . .Page 28

Harvest Data Summary . . . . . . . . . . . . . . . . . .Page 32

Weather Observations . . . . . . . . . . . . . . . . . . .Page 32

Soil Analysis and Respiration . . . . . . . . . . . . . . .Page 35

Conclusions . . . . . . . . . . . . . . . . . . . . . . . .Page 38

References . . . . . . . . . . . . . . . . . . . . . . . . .Page 39

Page 3: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 3

Abstract / Introduction

Abstract: The 2011 AGGRAND Vegetable Productivity Study is part of an ongoing study of crop growth, crop yield and soil analysis over multiple growing seasons. In the second year of this work, soil nutrient levels and yield trends are clearer as a result of following sustainable growing techniques in the AGGRAND plot. This year’s program featured yield comparisons between a plot fertilized with AGGRAND fertilizers and soil amendments, a plot fertilized with a leading organic fertilizer, and an unfertilized control plot. The organic fertilizer manufacturer’s recommendations were followed. Water only was added to the control plot at the same time the organic fertilizer was applied to the experimental plots. Four common garden vegetables — tomatoes, potatoes, broccoli and carrots — were grown and compared for size, weight, total number and total weight. The AGGRAND fertilizer program, as in 2010, produced greater yields when compared to the plot fertilized with a leading organic fertilizer.

Plots fertilized with AGGRAND natural fertilizers outperformed the plots fertilized with the leading organic fertilizer and the control plots where no fertilizer, only water, was applied.

INTRODUCTIONThe report summarizing the results of the 2010 AGGRAND Growth Study (AMSOIL, 2011) provided a brief history of some of the researchers and proponents of organic/agriculture such as Dr. William Albrecht, J.I. Rodale, Aldo Leopold, Rudolf Steiner and Sir Albert Howard. During the past 30 years, organic farming techniques have developed as agricultural research discovered that agricultural fields are living systems with each component dependent on many variables within the environment. Environmental factors to consider include weather, soil type, soil chemistry, soil biology, past and current agricultural methods, and use of pesticides and herbicides. Researchers such as J.W Doran, Neal Kinsey, Jeff Moyer, and others, have brought a systems — or eco-agriculture — approach to an otherwise chemical-based agricultural system that is underpinned by short-term increase in yields. Numerous papers, books and publications provide important documentation of the organic/sustainable agriculture community as a viable force in the industry. The concepts presented by these researchers are incorporated in this study, along with crop growth and fertilizer recommendations by AGGRAND.

Doran recognized the need for traditional evaluation of soil nutrient levels as well as a systematic approach that includes evaluation of soil condition, including assessment of the soil’s physical, chemical and biological properties and processes. (Liebig, 1999)

Moyer conducts his own research at the Rodale Institute, where he has been employed for more than 28 years. Moyer’s approach to organic agriculture includes planting cover crops to provide weed control and organic matter to build the soil and allow soil biology to provide power to the system. Limited tillage of the cover crop meets the fertility needs of the system. Crop rotations reduce disease and infestations by insects. (Moyer, 2011)

Kinsey adopts the concept of providing a sustainable system from a slightly different approach. Using soil analysis as the main driver to maintain soil fertility in traditional and organic growing situations, Kinsey recognizes the value of alternative, organic-based fertilizers and soil amendments but stipulates the soil must have mineral and organic matter balance before soil and crop improvements are noticeable. (Kinsey, 2009)

AGGRAND natural fertilizers and soil amendments are formulated with natural materials such as emulsified fish, kelp, lime, fulvic and humic acids, sulfate of potash and others. These materials are recognized as part of a sustainable cropping system designed to build the soil by enhancing microbial growth and provide the necessary nutrients for plants to grow and thrive. (Albrecht, 1996, Kinsey, 2009, National Stone Association, 1986, Senn, 1987). The competitive organic fertilizer used in this study is formulated to deliver similar benefits but appears to be less highly formulated than AGGRAND products.

The following fertilizers and amendments were employed in this study:

Organic hydrolyzed fish seaweed-based product (2-3-1) commonly used by organic growers and the consumer market.

The objective of this research was to determine yield results, weight and maximum length or diameter of garden vegetables fertilized with the AGGRAND program in accordance with the AGGRAND Gardening Guide (AMSOIL, 2010) compared to similar plots fertilized with a leading organic fertilizer following the manufacturer’s mix ratios and application protocols. In addition, soil evaluations were continually executed to determine nutrient shifts for each system and the impact of each fertilization system.

Page 4: 2011 AGGRAND® Vegetable Productivity Study

4 AGGRAND Vegetable Productivity Study

Weather Data Weather data collection is essential to document environmental conditions the plants encounter throughout their growth and development, and for comparison of the growing conditions historically found in the geographic area.

To aid in the collection of weather data, AGGRAND installed a weather station at the end of the 2010 growing season. Data was collected as early as October 2010. The components include instrumentation for data collection, display and storage. All components are sold by Davis Instruments of Hayward, Calif. and include the Solar-Powered Vantage Pro2 station (Part #6152) equipped with rain collector, anemometer, temperature and humidity sensors and a fan-aspirated radiation shield (Part #7747) to reduce temperature and humidity variations. (Figure 1)The data from the Vantage Pro2 station is transmitted to a Vantage Pro2 Console for viewing (Part #6312) (Figure 2) via two transmitters, solar (Part #7627) and AC powered (Part #7626). Weather information received at the console is transmitted to a PC (Figure 3) with WeatherLink (Part #6510) and Agricultural/Turf management software (Part #6511). This software provides instant weather observations at the garden plots and archives data every hour.

Materials and Methods/Weather Data

Figure 1: Weather data collection station

Figure 3: PC data display

Figure 2: Data display console

In April 2011, temperature (Part # 6470) and Watermark® moisture (Part # 6440) sensors were installed in the middle of the plots at a depth of 12 inches (30.5 cm) to monitor soil conditions. These sensors connect to a solar transmitter (Part # 6345) that transmits data to the console and PC. (Figure 4)

Page 5: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 5

Soil SamplingEach planter was tilled to a depth of approximately 8 inches. Soil samples were taken. Using a soil sampling probe, samples were obtained from the top 6 inches of the planting bed at nine evenly spaced points in each quadrant. See Figure 5.

Soil SamplingFigure 4: Measuring sensor depth and installation of sensors

Figure 5: Soil sampling plan

Page 6: 2011 AGGRAND® Vegetable Productivity Study

6 AGGRAND Vegetable Productivity Study

Soil samples were analyzed at Midwest Laboratories, Omaha, Neb., and evaluated for percent organic matter, available phosphorus (weak and strong Bray), exchangeable potassium, hydrogen, magnesium and calcium, pH, buffer index, cation exchange capacity (CEC), percent base saturation of cation elements and carryover nitrogen as nitrate. Micronutrient analysis of sulfur, manganese, boron, zinc, iron and copper, and evaluation of excess lime and soluble salts also was conducted. (See Graphs 7 -10 in the Results section for a summary of all soil analyses obtained during this study.)

Soil RespirationCarbon dioxide respiration is an indicator of soil health. It is a measure of the bacterial action within the soil that leads to mineralization of key soil nutrients such as nitrogen and phosphorus. (Haney, 2008) Use of the Solvita Soil Respiration Kit from Woods End Research of Mount Vernon, Maine is accepted by the U.S. Department of Agriculture. (United States Department of Agriculture, 1999, Haney, 2008)

The Solvita respiration system includes a Solvita Digital Color Reader, test jars and color-metric paddles (Part # DCR-soil). Soil samples from each plot quadrant were evaluated for CO2 respiration by weighing 105.00 grams of soil into a glass jar using an AND FX3000i digital balance. (Serial #: 15610355) The respiration indicator paddles (Serial #: 238210S, Expiration: 08/26/2011) were placed into the jar and sealed. (See Figure 7) Four samples for each growth plot were prepared. After 24 hours of incubation, the paddles were removed and placed in the Solvita color reader to determine the amount of CO2 respired. (See Figure 8) The paddles were again inserted into the jar, sealed and read again at 96 hours. See Graph 6 for data summary, page 35.

Soil Respiration

Figure 6 shows the relative position of each growth plot, the intended fertilization regimen and soil sample identification.

Figure 6: Soil sample identification and fertilizer designations

Figure 7: Test jars, soil & paddles Figure 8: Solvita color reader w/paddle inserted

Page 7: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 7

Planting PlanA growth plot sowing plan was established to use the area most efficiently while providing ample room for the vegetables to grow and develop, leaving enough room to water, fertilize and weed the plots. A two-foot walking path was established between the vegetable types. See figure 9.

To reduce wind, and maintain plot air and soil temperatures, a six-foot wide windscreen was attached to the existing fence around the perimeter of the site. SunBlocker Premium, 60 percent shade cloth was obtained from Farm-Tek Supplies, Dyersville, Iowa, (Part #103764).

The vegetables chosen in this study are popular hybrid varieties that produce good yields in cooler climates. Their seeds were established in Minnesota or Wisconsin. The following seeds and seed potatoes were planted in this study:

Variety: Kennebec Minnesota Certified Seed Potatoes From Dan’s Feed Bin, Superior, Wis.

Variety: Nelson Hybrid, 0157J Lot: 11-1657-A From Jung Seed, Co. of Randolph, Wis.

Variety: Packman Hybrid, 01430A Lot: 11-1430-A From Jung Seed, Co. of Randolph, Wis.

Variety: Celebrity Hybrid VFFNTASt, 00175A Lot: 11-175-A From Jung Seed, Co. of Randolph, Wis. Celebrity® plants from Dan’s Feed Bin of Superior, Wis. Plants were approximately 8 inches to 10 inches in height.

Planting Plan

Figure 9: Growth plot planting plan

Page 8: 2011 AGGRAND® Vegetable Productivity Study

8 AGGRAND Vegetable Productivity Study

Tomato and Broccoli Starts & Transplants On April 25, 2011 two tomato seeds were sown per pot in two flats of 3.5 inch x 3.5 inch pots filled with Pro-Mix (PGX) Professional Potting Soil Part # 0463 from Quakertown, Penn., for a total of 72 seeds. The plan was to thin to one plant per pot, (36 plants) and select the best 27 plants to be placed outdoors. Seeds were planted approximately 0.25 inches under the surface of the soil. Each flat received 3000 mL of water measured with a 2000 mL measuring pitcher. Water was absorbed into the planting medium by capillary action until moist. Flats were placed into the newly constructed growth table and illuminated by fluorescent growth lamps, with growth mats providing heat. To maintain soil moisture and heat, a plastic drape was placed over each flat. The same procedure was used for the broccoli seeds, with five flats, for a target of 90 plants after thinning to one plant per pot for a total of 72 of the best plants to be placed outdoors. See Figure 10.

Growth Table Detail

Hydrofarm®, Petaluma, CA, Growth lamps configuration alternating, per side: Four: Sylvania 40W GRO-LUX F40 GRO Four: VitaLite® 40W duroLite® Light duration: 14 hours per day Soil Temperature, 1 inch (2.54 cm) beneath surface = 33.1°C (91.5°F) as measured by a Cooper digital thermometer (model # DFP450W).

Monitoring of soil temperature and moisture found soil temperatures from 90°F to 100°F (32.2°C to 37.8°C) on April 27. While there was concern the temperature was too high for proper germination of the tomato and broccoli seeds, on April 28 plants in 28 broccoli pots sprouted. The plastic covers were removed from all broccoli flats. The height of the growth light was increased to 9 inches (22.9 cm) and 1000 mL of water was added using a 1000 mL pouring pitcher to each tomato and broccoli flat. The relative dryness of each flat necessitated addition of 1000 mL of water to each flat on April 29. On May 2, tomatoes in four pots had germinated and 44 broccoli pots had germinated. The soil temperature ranged from 75°F to 89°F (23.9°C to 31.7°C) Lamp height was adjusted to 6 inches (15.2 cm) above the table. On May 5, 2000 mL of water was added to each flat. On May 6, another 1000 mL of water was added to each flat, while lamp height was increased to 7 inches (17.78 cm) above the table. At this time, 14 tomato pots and 46 broccoli pots had germinated.

After the weekend of May 7 and 8, tomato germination held steady at 14 pots. A probe found a lack of seed germination. Pots were replanted with 24 seeds and watered with 2000 mL in each tomato flat. Germinated tomato plants (14) were consolidated into one flat. Soil moisture was monitored and, on May 10, 3000 mL of water was added to each broccoli flat and the germinating broccoli plants were consolidated into separate flats. Plants showed increased vigor as a result of the additional watering. The heat lamp was terminated for the broccoli plants but maintained on the tomato plants. Tomato plants and seeds were given 3000 mL water on May 13.

On May 16, the germinated broccoli and tomatoes were segregated into three divisions: AGGRAND, Control and Leading Organic as follows:

with a 25 mL graduated cylinder. See Figure 11.

measured with a 1000 mL graduated cylinder)

distilled water measured with a 1000 mL graduated cylinder)

measured with a 1000 mL graduated cylinder)

distilled water measured with a 1000 mL graduated cylinder)

Tomato and Broccoli Starts & Transplants

Figure 10: Newly-seeded tomato and broccoli flats

Page 9: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 9

Figure 12: Fertilizing tomato seedlings

Figure 13: Planting tomato seedlings

Figure 11: Fertilizing broccoli seedlings

Figure 14: Fertilizing tomato plant w/AGGRAND

Segregated tomato plant flats were watered with 1000 mL of water on May 19. On May 20, 10 of the 18 replanted tomato pots exhibited germination. On May 23, 2000 mL of water was added to the tomato seed flat and 3000 mL of water was applied to the broccoli start flats. On May 24, the lamp height above the tomato plants was increased to 10 inches (25.4 cm). Another 200 mL of water was added to each established tomato plant pot using a graduated cylinder. Each tomato plant received 100 mL of water and each broccoli flat received 1000 mL of water. The tomato seedling flat received 1000 mL of water. The lamp height was increased to 14 inches (35.6 cm) above the table for tomatoes and 13.5 inches (34.3 cm) above the table for the broccoli plants on May 27. Hardening — preparation for outdoor planting — for tomatoes and broccoli included placing them in the AGGRAND laboratory’s entrance breezeway for about four hours a day from May 25 to May 27. On May 31, following the four hours of placement in the breezeway, the hardening process for these plants increased to include placement outdoors in direct sun for an hour and a half at a temperature of 76°F (24.4°C). Soil dryness was observed. Three AGGRAND broccoli plants and two broccoli plants fertilized with the leading organic product were watered with 100 mL of water using a graduated cylinder. The plants were then transferred to the breezeway.

On June 1, 12 Celebrity tomato plants were purchased from Dan’s Feed Bin of Superior, Wis. to supplement the tomatoes grown from seed. The target number of tomato plants per plot was nine with five plants raised from seed and four from Dan’s Feed Bin. On June 2, the broccoli and tomatoes were planted, fertilized or watered according to the 2011 Fertilization Plan. Tomatoes were fertilized or watered (Control plants) with a volume of 1000 mL measured with a 1000 mL graduated cylinder per the Fertilization Plan. The broccoli plants received fertilizer/water by applying 6000 mL of fertilizer mix or plain water, applied with a watering can per row. See Tables 1 and 3, on pages 11 and 13.

Page 10: 2011 AGGRAND® Vegetable Productivity Study

10 AGGRAND Vegetable Productivity Study

Figure 15: Planting broccoli seedlings

Figure 17: Planting potatoes

Figure 16: Watering control broccoli plants

Figure 18: Fertilizing AGGRAND potatoes

Potatoes: Preparation and Planting In preparation for potato planting, on May 5, Kennebec seed potatoes were cut into pieces to isolate two eyes. In order to have an adequate number of eyes for good sprouting, 26 seed potatoes were cut into 80 pieces. The potato pieces were stored in a cool, dry, dark area, and the cut surface was allowed to dry until planting. On May 11, the potato pieces were planted in the northeast quadrant of each growing plot, 8 inches (20.3 cm) deep and covered with 3 inches (7.6 cm) of soil. Each plant was fertilized or watered with a volume of 1000 mL measured with a 1000 mL graduated cylinder per the Fertilization Plan. See Figures 17-18 below Tables 1 and 3, pages 11-13. On June 1, potato plants in all growth plots had emerged.

Carrot Sowing Carrot seed is very small and difficult to plant evenly. On June 2, the carrot seed was weighed (7.32

planted per row (0.61 grams). After the plants were established, they were thinned according to the Planting Detail Plan. See Tables 1 and 2.

Potatoes: Preparation and Planting/Carrot Sowing

Page 11: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 11

Figure 19: Sowing carrot seed Figure 20: Fertilizing carrots, organic fertilizer

Growth Plot Maintenance After all plants and seeds were established, weeding, cultivating and watering were monitored and are summarized in Table 2. Weather observations are summarized in the Results and Discussion section of this paper, page 32.

Growth Plot Maintenance

Crop Row Spacing (ft) Plant Spacing (in) Plant/Row Plants/Plot Plant Total

Broccolli 1.5 from border2 from center

9 from border18 from center

6 24 72

Carrots 1.5 from border2 from center

2 from border4 from center

Sow 54Thin to 27

108 324

Tomatoes 1.5 from border3 from center

18 from border36 from center

3 9 27

Potatoes 1.5 from border2 from center

9 from border18 from center

6 24 72

Table 1: Planting detail

Page 12: 2011 AGGRAND® Vegetable Productivity Study

12 AGGRAND Vegetable Productivity Study

Date Procedure/Observation

6/6/2011 20 of 24 potato plants emerged in the AGGRAND and Control plots, while all 24 plants have emerged in the Organic plot.

6/6/2011 One broccoli plant in the Control plot severed; tomato plants in all plots are slightly sun scalded.

6/7/2011 Planted one AGGRAND tomato and one AGGRAND broccoli plant to replace plants that appeared to be bit off by cut worms. Replaced three damaged broccoli plants in the Organic plot. All replace-ment plants were fertilized with 1000 mL of the appropriate fertilizer mixture based on initial planting formulations.

6/8/2011 Two broccoli plants in the AGGRAND plot appear nipped off by cut worms. Replanted and fertilized using 1000 mL of AGGRAND planting mixture. One tomato plant in the Control plant cut by worms; replanted and watered with a volume of 1000 mL.

6/9/2011 One tomato plant in the Control plot cut by worms; replanted and watered with a volume of 1000 mL.

6/13/2011 One Control tomato plant cut off; replanted and watered with approximately 1000 mL .

6/15/2011 Two Control tomato plants, one Control broccoli and one Organic broccoli nipped off by cut worms; replanted. Fertilized Organic plants and applied same amount of water to the Control plants. Fertil-ized AGGRAND potatoes and broccoli, and watered AGGRAND carrots and tomatoes. To control cut worms, cut the top and bottom off of plastic vials and slipped around base of plant about one inch beneath the top of the soil.

6/16/2011 Placed plastic vials around all broccoli and tomato plants. Cultivated and weeded plots.

6/20/2011 One broccoli plant nipped off by a cut worm; replaced plant.

6/24/2011 Determined plant vigor by measuring chlorophyll levels in the potato and broccoli plots of each plant.

6/29/2011 Fertilized all Organic plants with 6000 mL of mixture per row. Applied 6000 mL of water in each Control row of vegetables. Fertilized AGGRAND potatoes and carrots with 6000 mL of solution per row. Applied 6000 mL per row on the AGGRAND tomatoes and broccoli.

7/1/2011 Weeded and tilled all plots.

7/5/2011 Supported all tomato plants by placing three tomato cages around the plant.

7/5/2011 Hilled potatoes in all plots.

7/7/2011 Thinned carrots for each row in each plot. 27 plants per row with spacing of approximately 4 inches between each plant.

7/7/2011 Weeded and tilled all plots.

7/11/2011

7/13/2011

7/20/2011 Fertilized AGGRAND carrots per fertilization plan.

7/25/2011

8/1/2011 Photographed growth plots.

8/29/2011 Watered tomatoes, all plots, with approximately 50 gallons each plot.

8/30/2011 Cultivated carrots, all plots, made slight mounds to cover carrot tops.

Table 3 summarizes fertilizer applications and mix ratios for each plot; 6000 mL of fertilizer mix or water was applied with a watering can per row on all plants after initial planting and fertilizer application. The application date is shown in red. Control applications, containing only tap water, followed the same timing and volume as the leading organic fertilizer applications. The leading organic fertilizer was applied at regular two-week intervals after the initial planting and establishment of the plants. Tables 4, 5 and 6 summarize the fertilizer formulations that were employed on the growth plots.

Page 13: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 13

Table 3: Fertilizer application timing and formulations

* Recommendations per Gardening Guide and Cabbage study.

NOF: Natural Organic FertilizerNBM: Natural BonemealNKP: Natural Kelp & Sulfate of PotashNLL: Natural Liquid Lime

At Planting: Soil Application Second Application: Foliar Feeding

Crop AGGRAND Leading Organic Control AGGRAND Leading Organic Control

Potato 5/11 3% NOF 2% NBM 1% NKP

5/11 5/11 Water same volume & time as fertilizer

6/15 3% NOF 1% NLL @ 2 weeks

6/15

@ 2 weeks

6/15Water same volume & time as fertilizer

Tomato 6/2 3% NOF 2% NBM 1% NKP

6/2 6/2 Water same volume as fertilizer

7/13 2% NOF 2% NB @ 1st bloom

6/15

@ 2 weeks

6/15Water same volume & time as fertilizer

Broccoli* 6/2 3% NOF 2% NBM 1% NKP

6/2 6/2 Water same volume as fertilizer

6/15 1.54% NOF @ 2weeks

6/15

@ 2 weeks

6/15 Water same volume & time as fertilizer

Carrots 6/2 3% NOF 2% NBM 1% NKP

6/2 6/2 Water same volume as fertilizer

6/29 1.54% NOF @ 4 weeks

6/15

@ 2 weeks

6/15 Water same volume & time as fertilizer

Third Application: Foliar Feeding Fourth Application: Foliar Feeding

Crop AGGRAND Leading Organic Control AGGRAND Leading Organic Control

Potato 6/29 3% NOF 1% NLL @ 4 weeks

6/29

@ 4 weeks

6/29 Water same volume & time as fertilizer

7/13 3% NOF w1% NLL @ 6 weeks

7/13

@ 6 weeks

7/13 Water same volume & time as fertilizer

Tomato 7/25 2% NOF 2% NLL @ full bloom

6/29

@ 4 weeks

6/29 Water same volume & time as fertilizer

8/3 2% NKP during

7/13

@ 6 weeks

7/13 Water same volume & time as fertilizer

Broccoli* 7/11 .54% NOF @ heading

6/29

@ 4 weeks

6/29 Water same volume & time as fertilizer

None None None

Carrots 7/20 1.54% NOF @ 7 weeks

6/29

@ 4 weeks

6/29 Water same volume & time as fertilizer

None None None

Page 14: 2011 AGGRAND® Vegetable Productivity Study

14 AGGRAND Vegetable Productivity Study

Table 4: AGGRAND fertilizer application timing and formulations

Table 5: Leading organic fertilizer application timing and formulations

Page 15: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 15

Soil samples were obtained on Sept. 26, when the harvest was nearly completed and before tilling all of the planters. Soil samples, 6 inches deep from nine evenly spaced points, were obtained, mixed and forwarded to Midwest Laboratories for analysis that included percent organic matter; available phosphorus (weak and strong Bray); exchangeable potassium, hydrogen, magnesium and calcium; pH; buffer index; cation exchange capacity (CEC); percent base saturation of cation elements; carryover nitrogen as nitrate; micronutrient analysis of sulfur, manganese, boron, zinc, iron and copper; and evaluation of excess lime and soluble salts. (See sampling plan in Figure 21) Three post-harvest samples were tested and all soil samples are summarized in Graphs 7 to 10, on pages 36 and 37.

Table 6: Control plot fertilizer application timing and formulations

Figure 21: Post-harvest soil sampling plan

Page 16: 2011 AGGRAND® Vegetable Productivity Study

16 AGGRAND Vegetable Productivity Study

Plant VigorAs reported in the 2010 Vegetable Productivity Study (G2851, AMSOIL, 2011), crop vigor was determined by measuring the plants’ height, reproductive stage and leaf color. Like crops in the other growth plots were examined in the same way and the results were compared. To provide objective data, a Field Scout CM1000 Chlorophyll Meter was obtained from Spectrum Laboratories of Plainfield, Ill. (Part # 2950, Serial # 539). The CM1000 was generated from technology developed by NASA starting in the 1990s. During this period and into the 21st century, NASA launched a number of satellites that measured the Earth’s natural processes. One of the parameters evaluated by these Earth Observing Systems satellites was the density, health and distribution of the Earth’s vegetation. In order to make plant health measurable, scientists at the NASA Stennis Space Center invented a device that measures the amount of light absorbed and reflected by the Earth’s vegetation. The ratio of the percentage of reflectance at the differing wavelengths of light provides a relative number that correlates to the amount of chlorophyll in the plant’s leaves. (NASA, 2011) Chlorophyll levels are an indicator of the amount of nitrogen in plants and are directly related to plants’ vigor and — in cases of plant stress — nitrogen needed for optimal growth. (Murdock, et.al. 2004) This technology, developed by Spectrum as a handheld device, effectively monitors the growth of cotton, corn, wheat, turf grasses and many other crops. (Carson, 2004) Factors such as chlorophyll levels, leaf texture and the amount of pubescence of each leaf species account for data variability.

On June 24, levels of chlorophyll were measured in the broccoli and potato plants. On August 22, tomato plants and carrots were tested for relative chlorophyll levels. The readings were taken in full sun, between the hours of 10 a.m. and 2 p.m. for optimal intensity. See Figure 24.

Table 11

Figure 22: Compost on soil surface Figure 23: Tilling in vegetation and compost

On Oct. 10, the remaining vegetation was mulched into the soil to maintain acceptable organic material and nutrient levels. Composted manure (0.05-0.05-0.05) (American Countryside: Infinity Fertilizers, Milan, Ill.) also was incorporated into the soil, with twenty, 30-pound (13.6 kg) bags, five bags in each growth quadrant. The compost was raked to evenly disperse on the surface and then tilled to a depth of approximately 8 inches. The soil temperature and moisture probes were reset.

Plant Vigor

Page 17: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 17

CM1000 measuring a potato plant

Figure 24:

Figure 25: Protective sleeve

Absorbing & reflected beam

Figure 26: Tomato plant with protective sleeve

RESULTS AND DISCUSSIONTomatoesThe focus of this study was to determine total yield by weight and number of tomatoes from each plot, but other parameters, such as plant vigor and appearance, are helpful in developing the history of why plants under certain fertilization programs yield more fruit than others.

Tomato plants were started from seed, but only 18 plants emerged out of 72 seeds sown. This is a 25 percent success rate. The low germination rate could be attributed to the high temperatures of the heating mats causing a high rate of evaporation for low moisture levels and rapid accumulation of residual salts in close proximity to the seed. As a result, four additional plants were purchased for each plot. The number of plant starts was reduced to nine to provide more spacing for ease of harvest, less fruit on the ground and better air movement through the plot.

The tomato plants encountered slow initial growth because of unseasonably cold temperatures throughout the month of June. Cut worms also were a problem and six plants were replaced after damage from this pest. Small sleeves were cut from sample bottles to protect the plant when the main stem was at the most succulent stage in its development. See Figures 25 and 26.

Results and Discussion/Tomatoes

Page 18: 2011 AGGRAND® Vegetable Productivity Study

18 AGGRAND Vegetable Productivity Study

Tomato growth rate rapidly increased during July because of warmer temperatures. Tomato support cages were installed on July 5, and plot comparison pictures were taken from late June through the month of August. Figure 27 shows the comparison between fertilizer programs.

On July 13, most of the AGGRAND-fertilized tomato plants were blooming. A lesser number of the Leading Organic plants were in bloom and only a few of the Control plants were blooming.

To determine plant vigor, chlorophyll readings were taken of the tomato plants in each plot on July 20. Five plants on the south and west sides of each plot were evaluated with the aim of obtaining the best sun angle for maximum light intensity. Eighteen data points were taken at random for the AGGRAND and Leading Organic plants with 17 readings obtained for the Control plot. See Table 7.

The data shows the AGGRAND-fertilized plants had more measurable chlorophyll, and, hence, more nitrogen in the leaves correlating to increased vigor. This also substantiates observations that the plants subjected to the AGGRAND fertilization program yielded larger plants, earlier; more blooms; and earlier, more prolific fruiting when compared to the other growth plots.

AGGRAND Leading Organic Control

Figure 27: Tomato Plants, July 13

Table 7: Relative chlorophyll readings - tomato plants

Plot # Data Points Ave. Chlorophyll Index Standard Deviation

AGGRAND 18 344 34

Leading Organic 18 322 37

Control 17 289 28

Page 19: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 19

Tomato plants were photographed on August 22 and documented exceptional growth in AGGRAND plots and the bottom leaf die-back on the Leading Organic and Control plants. See Figure 28.

The lower leaves in all plots began turning brown. The moisture levels in AGGRAND, Control and Leading Organic plots being 79, 30 and 54 centibars, respectively. On Aug. 29, tomato plants in all plots were watered by spraying the leaves and allowing the water to wet the entire soil layer. The flow rate of the watering system was determined to be 3.33 gallons/minute. After 15 minutes of watering, the total volume added to each 9-foot by 9-foot tomato plot was approximately 50 gallons.

On September 13, the tomato harvest commenced according to established criteria as follows:

Determine the weight and maximum diameter for each tomato per plot

AGGRAND Leading Organic Control

Figure 28: Tomato plants, August 22

Figure 29: Tomatoes at various ripening stages

Page 20: 2011 AGGRAND® Vegetable Productivity Study

20 AGGRAND Vegetable Productivity Study

the maximum diameter was measured with a Mitutoyo Corporation Digimatic Caliper, Model CD-6 CSX, Serial #: 07435188. The diameter was measured perpendicular to the axis of the stem and

Tomatoes were harvested on Sept. 13, 15, 16, 19, 20, 22, 23, 26, 28 and 30, as well as Oct. 3 and 5 when all remaining tomatoes on all plots were picked. Table 8 summarizes the harvest results.

Tomatoes fertilized with the AGGRAND fertiliztion system produced heavier fruit in greater numbers for more total weight when compared to plants that were fertilized with the Leading Organic product. As expected, the Control plants fared the worst as far as quantity and total weight.

Figure 30: Weighing procedure

Table 8

Figure 31: Measuring maximum diameter

Fertilizer Total Number Total Weight (g)

Total Weight (lbs)

Ave. Weight (g)

Ave. Diameter (mm)

AGGRAND 794 102,458.12 225.68 129.04 61.44

Leading Organic 629 74,715.28 164.67 118.78 63.09

Control 406 41,769.36 92.00 102.88 61.72

Page 21: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 21

BroccoliBroccoli is considered a cooler-climate vegetable and was expected to grow well in Superior. With 85 plants emerging out of the 180 seeds planted, the germination rate was 47.2 percent. This low success rate was most likely caused by the high temperature of the plant starter heating mats. In the first few days after planting — when the plants are most vulnerable — cut worms severed one plant in the Control plot and three plants in the Leading Organic plot. The four damaged broccoli plants were replaced and fertilized with 1000 mL of the appropriate mixture based on the initial planting formulations. Fortunately, there were excess broccoli starts to curb some of the cut worm damage. On June 8, two broccoli plants in the AGGRAND plot were nipped off by worms. They were replaced and fertilized using 1000 mL of AGGRAND planting mixture. One Control broccoli plant and one Leading Organic broccoli plant was nipped off by cut worms on June 15. They were replaced and the Leading Organic plants were fertilized, while the appropriate amount of water was applied to the Control plants.

In the effort to control cut worms, plastic vials with the top and bottom cut off were slipped around the base of the plants and stuck into the soil on June 16. (See Figures 25 and 26) On June 20, the final cut worm casualty was observed. The plant was replaced and fertilized. Plant totals for each plot were 24 in the AGGRAND plot, 23 in the Leading Organic plot and 22 in the Control plot.

On June 24 plant vigor was determined by measuring chlorophyll levels of the broccoli plants. Each plant was scanned, and the data was downloaded into a spreadsheet. The data was averaged and standard deviation was determined to arrive at the final, relative chlorophyll reading. See Table 9.

The data above shows the AGGRAND-fertilized plants had more measurable chlorophyll, and, hence, more nitrogen in the leaves translating to increased vigor. This also substantiates the observations that the plants subjected to the AGGRAND fertilization program yielded larger plants, earlier, with more blooms, for earlier and more prolific fruiting when compared to the other growth plots. Images obtained of broccoli plants on June 29 revealed exceptional growth in the AGGRAND plants when compared to the Leading Organic and Control plants. See Figure 32.

Table 9: Relative chlorophyll readings - broccoli plants

Plot No.Data Points Ave. Chlorophyll Index Standard Deviation

AGGRAND 24 223 33

Leading Organic 23 200 22

Control 22 183 28

Broccoli

Page 22: 2011 AGGRAND® Vegetable Productivity Study

22 AGGRAND Vegetable Productivity Study

On July 13, heads were forming on 20 of 24 broccoli plants in the AGGRAND plot. The Leading Organic plot had heads forming on 12 of 23 plants, and the Control plot had heads on three of 22 plants.

Leading organic

Control

Figure 32: Broccoli plant comparison, June 29

AGGRAND

Page 23: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 23

Figure 33: Broccoli plant comparison, July 13

AGGRAND

Leading Organic

Control

Page 24: 2011 AGGRAND® Vegetable Productivity Study

24 AGGRAND Vegetable Productivity Study

Harvest of AGGRAND broccoli commenced on July 20. Superior development of plants fertilized with AGGRAND was observed in comparison to the Leading Organic and Control plots. The broccoli stems were cut so the entire length of harvested head was 4 inches (10.2 cm) long. Each broccoli head was weighed using an AND FX3000i digital balance, serial #: 15610355 and the head maximum diameter was measured with a Mitutoyo Corporation Digimatic Caliper, Model: CD-6” CSX, Serial #: 07435188. See Figure 34.

The broccoli harvest occurred over the following days: July 20, 22, 25; Aug. 1, 4, 8, 12, 16, 19, 22, 26, 29 and September 1, 6 and 9. Many of the broccoli plants continued to produce after September 9, but the vegetables exhibited stem toughness and the propensity to flower very quickly.

Measuring & cutting to length Measuring head diameter

Figure 34

Figure 35: AGGRAND broccoli harvest on August 22

Weighing

Page 25: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 25

The AGGRAND fertilization system broccoli plot produced heavier heads and higher per-plant quantities than the produce grown with the Leading Organic fertilizer. As expected, the Control plants fared the worst as far as quantity, total weight and the number of cuttings per plant.

CarrotsCarrots are a popular, easy-to-grow garden vegetable that provide excellent food value. Because of the loose soil in the planting beds, all plots provided an excellent yield. The carrots were sown in each plot on June 2, with the rate of seeding exceeding the target number of plants expected per row. To provide proper spacing, plant density was projected to be 27 carrots per row.

The seed took approximately one month to germinate, which is longer than anticipated and the result of cold June temperatures. The carrots were not affected by the cut worms that caused problems in the broccoli and tomato plots. On July 7, the plants were thinned to approximately 27 plants per row, about 4 inches (10.2 cm) apart to provide ample room for growth. See Figure 36.

Table 10

Figure 36Carrot thinning, July 7

Carrots

Plot # of Plants # Heads Harvested

Total Wt. (lbs)

Wt. (lbs) per plant

Ave. Head Wt. (g)

Number Cuttings/Plant

AGGRAND 24.00 306.00 26.66 1.11 39.56 12.8

Leading Organic 23.00 251.00 19.32 0.84 34.94 10.9

Control 22.00 177.00 14.02 0.64 35.95 8.0

Page 26: 2011 AGGRAND® Vegetable Productivity Study

26 AGGRAND Vegetable Productivity Study

On Aug. 22, plant vigor was determined by measuring chlorophyll levels of the carrots in each plot. Ten readings were obtained per fertilizer plot, and the data was downloaded into a spreadsheet. The average and standard deviation was determined to arrive at the final relative chlorophyll reading. Obtaining meaningful readings was a challenge because of the small surface area of the carrot leaf. See Table 11.

The data above shows the AGGRAND-fertilized carrots had more measurable chlorophyll, and, hence, more nitrogen in the leaves, translating to increased vigor. This also substantiates the observations that the plants subjected to the AGGRAND fertilization program yielded larger plants and increased productivity.

On Aug. 30, the tops of the carrot plants were emerging from the soil and turning green. The soil was raked to cover the carrot tops. The AGGRAND carrots showed exceptional growth when compared to the Leading Organic and Control plants. On Sept. 6, all carrots were harvested in all plots. See Figure 32.

At the time of harvest, the leaves were cut off at the crown where the leaf stem entered the orange tap root. The carrots were stored overnight, then weighed the next day using an AND FX3000i digital balance, serial #: 1561035. The length of the carrot was measured using a straight edge and ruler. See Figure 33.

Plot # Data Points Ave. Chlorophyll Index Standard Deviation

AGGRAND 10 311.9 59.0

Leading Organic 10 239.8 39.9

Control 10 270.0 49.1

Table 11: Relative chlorophyll readings - carrots

Figure 32AGGRAND carrots Control carrots

Page 27: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 27

Figure 33

Figure 34

Table 12

Determining carrot weight

AGGRAND

Leading Organic

Carrot Harvest: Row 1 results - AGGRAND and Leading Organic fertilizer

Measuring carrot length

Plot Total # Total Wt. (g)

Total Wt. (lbs)

Max. wt (g)

Ave. Weight (g)

Ave. Length (cm)

AGGRAND 116 16,892.00 37.21 390.01 145.62 19.57

Control 114 16,122.31 35.51 272.00 141.42 19.85

Leading Organic 108 12,280.89 27.05 260.00 113.71 16.93

Page 28: 2011 AGGRAND® Vegetable Productivity Study

28 AGGRAND Vegetable Productivity Study

The AGGRAND fertilization system plot produced heavier carrots than the Leading Organic fertilizer plot and the Control plot; however, the Control plants unexpectedly produced more and heavier carrots than the Leading Organic plot.

PotatoesPotatoes also produce well in cooler climates and are of considerable interest to many growers. Considering the small plot size, the 2010 yield was excellent, with the AGGRAND plot being the most productive. In 2011, the study was repeated with changes in the specific location within the planting beds and the cultivar grown (Kennebec). The seed potatoes were planted on May 11. On June 1, plants had emerged in all plots. On June 6, 20 of 24 seed potatoes had emerged in the AGGRAND and Control plots, while all 24 plants had emerged in the Leading Organic plot.

No cut worm infestation appeared in these plots as was experienced in the broccoli and tomato growth areas. By June 24, all potato plants had emerged, totaling 24 in the Leading Organic and Control plots, and 23 plants in the AGGRAND plot. Plant vigor was determined on June 24 by measuring chlorophyll levels of the potato leaves. Each plant per fertilizer plot was scanned, and the data was downloaded to a spreadsheet. The data was averaged and the standard deviation was determined to arrive at the final, relative chlorophyll reading. See Table 13.

The data above shows the AGGRAND-fertilized plants had more measurable chlorophyll, and, hence, more nitrogen in the leaves, translating to increased vigor. This also substantiates observations that the plants subjected to the AGGRAND fertilization program yielded larger plants, earlier and more blooms, with earlier and more prolific fruiting in comparison to the other growth plots. The plants were flowering throughout the month of July. The potato rows were mounded or hilled on July 5 to facilitate potato formation higher on the stem, enhance potato formation in loose soil, reduce the green alkaloid formation on the potatoes and reduce weeds. Hilling was done in all plots.

Potatoes

Plot # Data Points Ave. Chlorophyll Index Standard Deviation

AGGRAND 23 209 24

Leading Organic 24 158 26

Control 23 153 20

Table 13: Relative chlorophyll readings - potato plants

Figure 35: “Hilled” AGGRAND potato plants

Page 29: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 29

Figure 36

AGGRAND potatoes

Leading organic

Control

Photos taken on July 13 show exceptional growth of AGGRAND-fertilized plants in comparison to the Leading Organic and Control plants. See Figure 36.

Page 30: 2011 AGGRAND® Vegetable Productivity Study

30 AGGRAND Vegetable Productivity Study

As the days shortened, some plants showed yellowing, but were overall prolific up to harvest. On Sept. 9, potatoes were harvested in all plots. See Figure 37.

The potatoes were weighed on Sept. 12 using an AND FX3000i digital balance, serial # 1561035. Maximum length was determined using a straight edge and ruler. See Figure 38.

Figure 37: AGGRAND potato harvest plot

Page 31: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 31

Figure 38Potato weighing

Table 13

Table 13 summarizes the potato harvest.

Measuring maximum length

Plot No. of Plants

Total Potato No.

Total Wt. (g)

Total Wt. (lbs)

Max. wt (lbs)

Ave. Wt. (lbs)

Yield/plant (lbs)

AGGRAND 23 228 41,375.02 91.13 1.58 0.40 3.96

Leading Organic 24 177 24,703.78 54.41 1.11 0.31 2.27

Control 24 168 31,575.95 69.55 1.22 0.41 2.90

Compared to the two competitive plots, the AGGRAND plot produced a substantially greater number of tubers and higher total potato weight. The Leading Organic fertilizer produced a greater number of potatoes than the Control plot, but produced on the average smaller potatoes, to finish last in total harvest weight. It was unexpected that the Control plants would produce on average slightly heavier, larger potatoes than both plots.

Page 32: 2011 AGGRAND® Vegetable Productivity Study

32 AGGRAND Vegetable Productivity Study

Harvest Data SummaryTables 14 and 15 summarize the entire harvest by number of vegetables and total harvest weight and compares the production of AGGRAND fertilizers with that of the Leading Organic fertilizer.

Weather ObservationsWith the installation of the Davis Instruments weather station, growing conditions were documented on a per-hour basis and compared with historical data to obtain an understanding of why plants are more or less responsive from year to year.

Historical weather data for the period from 1909 to 2010 was obtained from Dr. Edward J. Hopkins, assistant Wisconsin state climatologist. The data was acquired by observations in Superior, Wis. at position 46.70°N, 92.02°W, approximately 4.25 miles (6.84 km) southeast of the AGGRAND growth plots, which are located at 46.73°N, 92.11°W. Temperature and precipitation comparisons covered a period from May through September where these parameters have the most influence on plant growth. See Graphs 1, 2 and 3.

Harvest Data/Weather Observations

Fertilizer Broccoli* Carrots Tomatoes Potatoes**

AGGRAND 306 116 794 228

Leading Organic 251 108 629 177

Control 177 114 406 168

AGGRAND Advantage 18% 7% 21% 22%

* Broccoli Plant #: AGGRAND 24, Leading Organic 23, Control 22 ** Potato Plant #: AGGRAND 23, Leading Organic 24, Control 24

Fertilizer Broccoli* Carrots Tomatoes Potatoes**

AGGRAND 26.66 37.21 225.62 91.13

Leading Organic 19.32 27.05 164.57 54.41

Control 14.02 35.51 92.00 69.55

AGGRAND Advantage 28% 27% 27% 40%

* Broccoli Plant #: AGGRAND 24, Leading Organic 23, Control 22 ** Potato Plant #: AGGRAND 23, Leading Organic 24, Control 24

Table 14: Harvest summary by number

Table 15: Harvest summary by weight (lbs)

Graph 1

Page 33: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 33

Graph 2

Graph 3

Page 34: 2011 AGGRAND® Vegetable Productivity Study

34 AGGRAND Vegetable Productivity Study

Growing conditions in 2011 were initially cooler compared to the average; in fact, May and June’s average maximum temperatures were markedly less and growth was limited during this period. Average minimum temperatures were higher than the long-term average. The overall temperature during the period from May through September was slightly higher, which allowed the crops to make up for the lagging growth earlier in the season.

As revealed in Graphs 4 and 5 below, precipitation during the 2011 growing season was substantially less than in 2010 when a number of heavy downpours marked the growing season and contributed to the excess. Nevertheless, watering was required on only two occasions in 2011 because rain fell at timely intervals. The period from mid-August through the end of September received little rain and substantially less than the average amount since 1909. Overall, however, precipitation during the 2011 growing season was slightly above average.

Graph 4

Graph 5

Page 35: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 35

Soil Analysis and RespirationSoil respiration is an indicator of microbial activity and soil health. This was measured to determine if one fertilizing regimen was more effective in obtaining a response from the soil microbial community. On April 22, a 96-hour respiration study was conducted to measure the microbial activity of the freshly tilled growth plot soil. Samples from each quadrant were measured and recorded and are summarized in Graph 6. After 24 hours, the AGGRAND samples demonstrated increased respiration over the other plots and substantially higher than the Leading Organic fertilizer. The Control plot was slightly lower after 24 hours, but exceeded the AGGRAND plot by a small amount after 96 hours. See Graph 6.

With any cropping system, there is removal of vegetation in the form of fruit and/or supporting plant materials. After each growing season, most of the vegetative materials were introduced back into the plot. Soil analyses are conducted at the beginning and end of every growing season to determine the relative health of the soil, the impact of the crops on the plot and whether the fertilization programs maintain or enhance nutrient levels.

Since April 2010, the soil in all plots has not received any inputs with the exception of the fertilizer application in the AGGRAND and competitive plots. Only water has been introduced to the Control plot. Soil samples were taken in April 2010 before inputs had been introduced and in October 2010 after a complete growing season. Similarly, soil samples were taken in April 2011 and September 2011.

Comparing the virgin soil sample taken during April 2010 and the latest soil samples from September 2011, all plots exhibited slight increases in organic matter, pH, bicarbonate phosphorus and cation exchange capacity (CEC). On the other hand, because of the mechanisms of plant growth and natural weathering processes, a number of soil nutrients decreased in all plots. Nitrate nitrogen and sulfur were reduced along with the micronutrients, iron, copper and boron. Sodium, which is highly leachable, also was reduced, most likely because of precipitation and water movement through the soil. Levels of phosphorus, potassium, magnesium and zinc increased in the AGGRAND plot compared to the soil in the Control and competitive plots. See Graphs 7 - 10.

Graph 6

Soil Analysis and Respiration

Page 36: 2011 AGGRAND® Vegetable Productivity Study

36 AGGRAND Vegetable Productivity Study

Graph 7

Graph 8

Page 37: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 37

Graph 9

Graph 10

Page 38: 2011 AGGRAND® Vegetable Productivity Study

38 AGGRAND Vegetable Productivity Study

CONCLUSIONSThe AGGRAND fertilization program, as outlined in The Gardening Guide (AMSOIL, 2010) increases vegetable yield in terms of number and total weight when compared to the Leading Organic fertilizer and the Control plot with no fertilizer inputs. Some of the AGGRAND vegetables were slightly smaller in terms of weight and size than the Control and Leading Organic produce, but not significantly.

The Leading Organic product used in this study is comprised of a blend of liquid hydrolyzed fish and seaweed that readily mixes with water and is easily applied. Application frequency is also straightforward by the addition of the product every two weeks during the growing season. The AGGRAND system enhances the soil environment and provides necessary nutrients, and requires the grower to monitor plant growth, flower bloom and fruit development for timely fertilizer applications.

Nitrogen, phosphorus, and potassium ratios (N,P,K) of the fertilizers employed in this study were 4-3-3, 0-12-0, and 0-0-8 for the AGGRAND program, and (2-3-1) for the Leading Organic fertilizer. Both fertilizer systems publicize the products as natural or organic. Both are said to influence the soil in similar ways. The Leading Organic product recommends a dilution significantly lower than the AGGRAND products, which is apparent when the products are mixed with water. The Leading Organic produces a translucent liquid; while the AGGRAND product yields an opaque mixture that provides more nutrients to the plants and soil. Again, mix ratios followed in this study are taken directly from the manufacturer.

The germination rate of the indoor tomato and broccoli starts appeared to be inhibited this year. Heat mats were employed, as in 2010, but the temperatures and the evaporation rate seemed to be higher. The increased temperatures and dryness of the soil could have produced higher than ideal soil salinity levels that possibly inhibited seed germination. To reduce future germination issues, heat mat thermostats will be used on the tomato and pepper starts in 2012.

In 2011, new analytical tools were used to provide more data and understanding of the growth plots, plants and surrounding environment.

First, the addition of the weather station to measure weather conditions was crucial as this data is essential in any research of this type. More important however, was the monitoring of soil moisture and temperature to determine optimal times to irrigate. The moisture data was used for tomato watering and could have been employed sooner judging by the leaf drying in the plots; however, while the dryness of the AGGRAND plot was high, the plot continued to show lush vegetation throughout, while the other plant leaves showed drying the week before. This is an indicator that AGGRAND fertilizers, especially the kelp and sulfate of potash components, aid plants’ resistance to drought by strengthening the cell wall.

Second, chlorophyll measurement was a useful tool to monitor plant vigor. In all cases, the AGGRAND plants demonstrated increased chlorophyll levels, directly correlating to improved vigor with higher yield. The Control and Leading Organic plots followed the same correlation with the exception of potato yield; the Control, chlorophyll readings slightly lower than the Leading Organic plants, but Control production was higher than the Leading Organic plot.

Third, soil respiration proved to be an important tool in determining soil health. After 24 hours the AGGRAND plot revealed increased microbial activity through carbon dioxide respiration, indicating more soil microbes processing organic materials and making them available for plant uptake. This test’s accuracy is dependent on consistent soil moisture levels. In 2012, a more detailed approach will be taken to evaluate these soils by drying the soil samples and then wetting them with a specific amount of water during the test. In addition, separate sample jars and paddles will be used for the 24-hour and 96-hour tests.

CONCLUSIONS

Page 39: 2011 AGGRAND® Vegetable Productivity Study

AGGRAND Vegetable Productivity Study 39

Finally, test plot soil fertility has now been determined on four occasions; at the beginning and end of the 2010 growing season, and twice during the 2011 season. Soil analyses obtained thus far reveal AGGRAND fertilizers contribute to and maintain soil fertility, and provide the plants with enough nutrients to sustain healthy growth. The Control and competitive plots showed a steady decline in a number of key soil nutrients. Decreasing nitrogen levels necessitated the addition of composted manure to each growth plot this fall.

The perception persists that organic or sustainable growing systems mean crops can continually be removed from the land without the addition of any supplemental nutrients. This is simply not true. Two growing years have provided good yield from all plots, but the steady decrease in some nutrient levels, most notably nitrogen, indicates that some management of soil amendments must be considered. This principle applies to the gardener and to the large-scale farmer: Continual harvest with no inputs will, over time, render the soil ineffective. On the scale used in the AGGRAND growth plots, addition of amendments is quite easy. Larger growing areas require more thoughtful consideration of crop rotations and cover cropping as an alternative to chemical fertilizers, herbicides and insecticides. (Mohler, 2009) Continued study must be done to determine the long-term effects of growth and fertilizer applications on these plots.

REFERENCESAlbrecht, W.A. (1996). The Albrecht papers. (Vol. 1). Metairie, LA: Acres U.S.A.

AMSOIL INC. (2011). 2010 Vegetable Productivity Study. G-2851. Superior, WI: AMSOIL, INC.

AMSOIL INC. (2010). The gardening guide. G-1292. Superior, WI: AMSOIL, INC.

Carson, T., (2004). Golf Course Management. 72: 28.

Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. (2005). Soil fertility and fertilizers, an introduction to nutrient management. Upper Saddle River, NJ: Pearson Education.

Haney, R. L., W. F. Brinton, and E. Evans. (2008). Soil CO2 respiration: comparison of chemical titration, CO2 IRGA analysis, and the Solvita gel system. Renewable Agriculture and Food Systems. 23:1–6.

Haney, R. L., W. F. Brinton, and E. Evans. 2008. Estimating soil carbon, nitrogen, and phosphorus mineralization from short-term carbon dioxide respiration. Communications in Soil Science and Plant Analysis.39: 2706-2720.

Kinsey, N. and C. Walters. (2009). Hands on agronomy. Austin, TX: Acres U.S.A.

Mohler, C.L. and S.E. Johnson, ed. (2009). Crop rotation on organic farms: a planning manual. Ithaca, NY: Natural Resource, Agriculture, and Engineering Service

Moyer, J. (2011). Organic no-till farming. Austin, TX: Acres U.S.A.

Murdock, L., D. Call, and J. James. (2004). Comparison and use of chlorophyll meters on wheat (reflectance vs. transmittance/absorbance). Lexington, KY: University of Kentucky Extension.

NASA. (2011). Chlorophyll Meters Aid Plant Nutrient Management. Available at: http://www.sti.nasa.gov/tto/Spinoff2009/er_10.html

National Stone Association. (1986). Aglime fact book. Washington, D.C.: National Stone Association.

Senn, T.L. (1987). Seaweed and plant growth. Clemson, SC: Senn.

REFERENCES

Page 40: 2011 AGGRAND® Vegetable Productivity Study

AMSOIL INC., 925 Tower Ave., Superior, WI 54880 715-392-7101 Printed in U.S.A. © 2012, AMSOIL INC. All rights reserved. The AGGRAND logo is a registered trademark of AMSOIL INC.

Contact your AGGRAND Dealer for more information on AGGRAND products or to place an order. You may also order direct by calling AMSOIL INC. at 1-800-956-5695 and providing the referral number listed here.

Referral #_________________________________

G2957 2/12

Natural FertilizerProven Performance through Natural & Organic Ingredients Multi-purpose – excellent results on flowers, fruits, vegetables, lawns, trees, crops and houseplants

Formulated for foliar feed or soil application

Promotes enhanced plant vigor, increasing resistance to disease and stress

Convenient liquid concentrate

Can be mixed with other AGGRAND products for easy application

Natural Kelp and Sulfate of PotashNatural Formula Promotes Healthy, Productive Plants Improves tolerance for heat, cold and drought

Promotes nitrogen (N) use efficiency

Helps reduce susceptibility to insect attack and infection by disease-causing organisms

Promotes early growth and development

Helps increase oil content in seed crops

Promotes early ripening, improved quality and extended shelf-life of fruits and vegetables

Aids seed formation and nitrogen fixation in legumes

Formulated for foliar feed or soil applications

Natural Liquid BonemealPromotes Healthier Vegetables and Flowers through Fast- and Slow-Release Phosphorus Readily usable source of phosphorus (P) and calcium (C)

Slow-release formula feeds plants throughout the growing season

Perfect for all bulbs and transplants

Outstanding performance on root and fruit crops

Ideal for flowers

Convenient liquid concentrate

Can be mixed with other AGGRAND products for easy application

Natural Liquid LimeQuickly and Naturally Increases Calcium Levels in the Soil High-quality super-fine limestone

Specifically formulated for foliar and root applications

Use on lawns, pastures and hay fields

Combine with AGGRAND Natural Fertilizer to supply additional calcium

Easy-to-apply liquid concentrate produces no dusty mess