30
1 S. Radl a a Institute of Process and Particle Engineering, TU Graz with contributions from Josef Tausendschön, a Schalk Cloete, b Henri Cloete, b Shahriar Amini b b SINTEF (NOR) Dos and Don’ts Coarse-Grained Models for Gas-Particle Flow 25 minutes speaking time Direct and parcel-based simulation of a cohesive gas-particle mixture

2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

11

S. RadlaaInstitute of Process and Particle Engineering, TU Graz

with contributions fromJosef Tausendschön,a Schalk Cloete,b

Henri Cloete,b Shahriar AminibbSINTEF (NOR)

Dos and Don’ts

Coarse-Grained Models for Gas-Particle Flow

25 minutes speaking time

Direct and parcel-based simulation of a cohesive gas-particle mixture

Page 2: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

22

Why Particles?

Radl et al., Powder Technology 200 (2010) 171–189

Page 3: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

33

Why Particles?

Granular temperature “s²” for dry and wet granular matter„wet“ means

Bo = 11.9

…cohesive force

versus

gravity force

Page 4: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

44

Why Particles?

Mean velocity fluctuations “u²” for dry and wet granular matter

Cohesion INCREASES

“meso” transport rates

quite dramatically!

Can we develop

“meso models” to account for

such effects?

Page 5: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

55

Content of this Presentation

1 - Coarse Graining: A ReviewWhy do we need parcels?What is a parcel? What is NOT a parcel?What is a „filtered model“?

2 - Choosing Coarse Graining ParametersHow shall we perform the particle-to-fluid mapping?The maximum permissible parcel size and cohesionWhat happens if the fluid cell size is increased?

3 - Future Improvement of Models & ClosuresHow shall we account for anisotropy?What about reactions?

…fluid coarsening

…particlecoarsening

Page 6: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

66

1 - Coarse Graining: A Review

Page 7: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

77

Flow

Scalar Transport

• Particles: Contact + cohesive forces and torques

• Fluid & Fluid-Particle interaction: (drag) forces and torques

• Heat and mass transfer rates (fluid and particle phase)

• Filtration rates• Dispersion rates (fluid and

particle phase)• Reactions

Askarishahi et al., AIChE J (2017) 63:2569-2587

Phenomena to be modelled

Page 8: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

88

I MICRO II MESO

IIIMACRO

• Particle-particle cohesion models (and other) must be fed into “micro-scale” models

• Continue with meso and macro scale (necessary to model large scale with reasonable resources)

• Plurality of particles represent by parcels

Holloway, PhD Thesis, 2012.

Phenomena to be modelled

closures

closures

Page 9: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

99

Visualization of what can be interpreted as a “parcel”

• „Particle filtering“ considering a particle oarse graining ratio CG = 4

• Parcels expand and contract

• Parcels “collide gently”

• Particles have a different speed, i.e., an “intra-parcel” fluctuation 𝐩,𝒊 of particle speeds exists:

• Thus, parcels develop a kinetic stress (pressure):

,

The Parcel

Page 10: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1010

Key observation: strong anisotropy of “intra parcel” velocity fluctuations

The Parcel

y = 0.6858xR² = 0.7265

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.2 0 0.2 0.4 0.6

parc

el m

ean

part

icle

spe

ed [m

/s]

center particle speed [m/s]

lateral direction

y = 0.844xR² = 0.9243

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

parc

el m

ean

part

icle

spe

ed [m

/s]

center particle speed [m/s]

verticaldirection

Non-cohesive (Bo = 0, CG = 4)

Page 11: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1111

y = 0.7681xR² = 0.835

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

parc

el m

ean

part

icle

spe

ed [m

/s]

center particle speed [m/s]

Lateraldirection

Key observation: cohesive flow shows higher coherence in particle speeds

The Parcel

Bo = 10, CG = 4

y = 0.9192xR² = 0.9423

-1

-0.5

0

0.5

1

1.5

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

parc

el m

ean

part

icle

spe

ed [m

/s]

center particle speed [m/s]

verticaldirection

Page 12: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1212

A parcel:

- is a way toapproximate an ensemble of particles

- represents a fixednumber of particles (the „statistical weight“ is fixed)

- approximates theaverage particlemotion at a certainpoint in space

The Parcel

A parcel CANNOT:

- represent a fixed SET ofparticles, sinceparticles „move intoand out“ of a parcel

- be used directlyprediction particle-particle collisions

- be assumed to be offixed size (spatialextension)

Page 13: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1313

What people made out of it: the map of parcel modeling approaches

The Parcel

Adopted from Lu et al., Ind. Eng. Chem. Res. 2017, 56, 7865−7876

TDHS = time-driven hard sphereCGPM = coarse-grained particle method

Filt-CGPM…Fluid-filtered CGPMMP-PIC = multiphase particle-in-cell

S…time steps per reference timeW…number of particles per parcel

Filt-CG PM

fine fluid gridcoarse grid

Page 14: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1414

2 - Choosing CoarseGraining Parameters

Page 15: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1515

Fluid-To-Particle Mapping

Clarke et al., Ind. Eng. Chem. Res. 2018, 57, 3002−3013

We use a combinationof thisschemes witha „diffusionlength“ Lsmooth

Page 16: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1616

Fluid-To-Particle Mapping

Tausendschön et al., in preparation

• Bo = 0• dp = 150 µm, rp = 2000• ∆Grid = 3 dp

Non-cohesive

Page 17: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1717Tausendschön et al., in preparation

Non-cohesive

Fluid-To-Particle Mapping

Great!!! We can now isolate the effect of

parcel-interaction parameters in gas-

particle flows (i.e., we exclude fluid mesh

resolution effect)

Page 18: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1818

Scaling of Cohesion Parameters

Tausendschön et al., in preparation

Next question: how shall we scale the cohesive strength?

Page 19: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

1919

Scaling of Cohesion Parameters

Tausendschön et al., in preparation

Page 20: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2020

Large Fluid Cell Size

Ozel et al., Chem Eng Sci 155 (2016), 258-267

• Bo = 0• dp = 75 … 300 µm, rp = 1500

kg/m³• ∆Grid = 3 dp

Non-cohesive

Page 21: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2121

Large Fluid Cell Size

Radl and Sundaresan, Chem Eng Sci 117 (2014), 416-425

Non-cohesive

• Bo = 0• dp = 75 µm, rp = 1500 kg/m³• VFG: ∆Grid = 1.67 dp

• FG: ∆Grid = 3 dp

• CG: ∆Grid = 26.7 dp

Page 22: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2222

Large Fluid Cell Size

Radl and Sundaresan, Chem Eng Sci 117 (2014), 416-425

Non-cohesive

A simple isotropic correction function for the drag coefficient improves the prediction a lot!

Page 23: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2323

3 - Future Improvement of Models & Closures

Page 24: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2424

Anisotropy

Cloete et al., submitted

• Euler-Euler simulationsindicate someroom forimprovementwith respect todrag force closures

Classical approach: correctionidentical in each direction

New approach: correction depends on direction

Page 25: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2525

Anisotropy

Cloete et al., submitted

Classical approach: correctionidentical in each direction

New approach: correction depends on direction

Page 26: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2626

Anisotropy

Cloete et al., submitted

lateral direction vertical direction

• Correction of drag force depends on direction• The same is true for the meso-scale stress• Can we increase performance of CG Euler-Lagrange models

by including these effects?

Page 27: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2727

Chemical Reactions

Cloete et al., CFD2017, Trondheim.

Reference(0.89 mm

grid)

Reference(time av.)

20 mm grid (time av.)

40 mm grid (time av.)

80 mm grid (time av.)

• Yes! If we do not account for meso-scale structures, we typically overpredict conversion A LOT (figures use a log scaling)!

Is the outcome of heterogeneous reactions affected as well? Let us consider the conversion of a solids-catalyzed reaction in an FB…

• However, if we consider a meso-scale effectiveness factor, we can substantially improve predictions!

…with “meso

magic”

Page 28: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2828Radl et al., ESCAPE28, Graz.

How does that impact the design of a reactor? Let us consider a multi-scale process intensification study…

• At the same methane feed rate (0.6 kg/s), the nano-structured material achieves much higher conversion

• High particle and CH4concentration low effectiveness factor (more solid reactantmore gas consumption)

• Lower effectiveness factors for nano-structured material (faster reaction “meso-scale” mass transfer limitation)

1 µm 10 nm

Chemical Reactions

Page 29: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

2929

• We still have no clear explanation for the correct strength of smoothing. But it is clearly needed…

• Scaling of cohesion parameters up to CG = 5 helps a lot!– 1 / 125 of particles need to be tracked– Study cohesive fluidization with (almost) no simulation time penalty

due to particle tracking

• Adoption of Euler-Euler closures in CG EL simulators suggested

• Polydispersity: does the stress-based scaling law for cohesion also hold for these systems?

Conclusions

Page 30: 2019-03-14 ParcelsDosDonts Radl · î ó z u ] o z ] } v o } o x u & î ì í ó u d } v z ] u x 5hihuhqfh pp julg 5hihuhqfh wlph dy pp julg wlph dy pp julg wlph dy pp julg wlph dy

3030

S. RadlaaInstitute of Process and Particle Engineering, TU Graz

with contributions fromJosef Tausendschön,a Schalk Cloete,b

Henri Cloete,b Shahriar AminibbSINTEF (NOR)

Dos and Don’ts

Coarse-Grained Models for Gas-Particle Flow

THANK YOU Direct and parcel-based simulation of a cohesive gas-particle mixture