24. rial Analysis

Embed Size (px)

Citation preview

  • 8/8/2019 24. rial Analysis

    1/7

    24 Combinatorial AnalysisK GOLDBERG.M NEWMAN,' HAYNSWORTH~

    Conten tsMathematical Properties . . . . . . . . . . . . . . . . . . . .

    24.1. Basic Numbers . . . . . . . . . . . . . . . . . . . .24.1.1 Binomial Coefficient s . . . . . . . . . . . . . .24.1.2 Multinomial Coefficients . . . . . . . . . . . . . 24.1.3 Stirling Numbers of the First Kind . . . . . . . .24.1.4 Stirling Numbers of the Second Kind . . . . . . .24.2. Partitions . . . . . . . . . . . . . . . . . . . . . .24.2.1 Unrestricted Partitions . . . . . . . . . . . . . . 24.2.2 Part itions Int o Distinct Part s . . . . . . . . . . . 24.3. Number Theoret ic Functions . . . . . . . . . . . . . . 24.3.1 The Mobius Funct ion . . . . . . . . . . . . . . 24.3.2 The Euler Function . . . . . . . . . . . . . . . 24.3.3 Divisor Funct ions . . . . . . . . . . . . . . . . 24.3.4 Primitive Roots . . . . . . . . . . . . . . . . .

    References . . . . . . . . . . . . . . . . . . . . . . . . . .Table 24.1. Binomial Coefficients(;) . . . . . . . . . . . . . . n 1 5 0 . m125Table 24.2. Mult inomials (Including a List of Partitions) . . . . . .n l l OTable 24.3. Stirling Numbers of the First Kind Si"') . . . . . . . .n 5 2 5Table 24.4. Stirling Numbers of the Second Kind si" ') . . . . . .n 1 2 5Table 24.5. Number of Part it ions and Part it ions Int o Dist inct P arts . .

    P b ) . n ) . 1500Table 24.6. Arithmetic Functions . . . . . . . . . . . . . . . .

    d n ) . n ) . i ( n > .5 1 0 0 0Table 24.7. Factorizations . . . . . . . . . . . . . . . . . . . .n < 10 00 0Table 24.8. Primitive Roots. Factorization of p- 1 . . . . . . . . .n< 10000Table 24.9. Primes . . . . . . . . . . . . . . . . . . . . . . .p l l 0 6

    page822822822823824824825825825826826826827827827828

    83 1

    833

    835

    836

    840

    844

    864

    870

    1 . 2 National Bureau of Standards3 National Bureau of Standards (Pr esently. Auburn Univenrity.)

    82 1

    http://e4ce815c3e8ba79b1814f482a76e504a.pdf/http://79dedd1fe4b9a79c50be349a8d15144.pdf/http://e4ce815c3e8ba79b1814f482a76e504a.pdf/http://bf6f32a7af2abc29ffbec17a8cdbdefc.pdf/http://d2729acd3dd74ee45e9835d191dc66b.pdf/http://8acc4e533a424f4c847c81d5c7c5f072.pdf/http://dc355977571dc5e37db969fa727c2af5.pdf/http://79dedd1fe4b9a79c50be349a8d15144.pdf/http://664c35ecb998f0d4db92171c44a4d2eb.pdf/http://9dd54ec314435d2116e9a828622861.pdf/http://409517127cbfe25f1a0f9de1a2d6f24.pdf/http://409517127cbfe25f1a0f9de1a2d6f24.pdf/http://9dd54ec314435d2116e9a828622861.pdf/http://664c35ecb998f0d4db92171c44a4d2eb.pdf/http://79dedd1fe4b9a79c50be349a8d15144.pdf/http://dc355977571dc5e37db969fa727c2af5.pdf/http://8acc4e533a424f4c847c81d5c7c5f072.pdf/http://d2729acd3dd74ee45e9835d191dc66b.pdf/http://bf6f32a7af2abc29ffbec17a8cdbdefc.pdf/http://e4ce815c3e8ba79b1814f482a76e504a.pdf/
  • 8/8/2019 24. rial Analysis

    2/7

    24. Combinat orial AnalysisMathematical Properties

    In ench sub-section of this chnpter we usea fised format wliicli etnplinsizes tlic use a n dmethods or" cstcnding the nccotnpnriyinp tables.T hc format follows this forin :1. D e f i n i t i o n s

    A . Combinn orinlB . Generat ing functionsC . Closed formA . RecurrencesB. Checks in comput. ingC . Basic use in numerical analysisIn general tlie notations used ore stsndnrd.T his includes the difference oper at or A defined onfunctions of t by Af(z)= f(r+ I)-f(;t), An+ y(r)

    = A(A.J (z)), t he K ron ecker deltu the Rieninririzeta function { ( s ) and the grentest commondivisor sym bol (m, n ) , T he range of th e summ andsfor n summation sign without limits is explainedto the right of the formula.T he notat ions which are not s tnndnrd are th osefor tlie multinomials whicli nre arbitrary sliort-hand for use in this chapter , and those for theStir l ing numbers which have never been stand-ardized. A shor t table of various notations forthese numbers follows :

    11 . R e l a t i o n s

    111. A s y m p t o t i c a n d S p e c ia l V a lu e s

    N o t a t i o n s for t h e S t i r l i n g NumbersR e fer en ce F i r s t K i n d S e c o n d K i n d

    This chapter S %!-)124.21 Fort S:-' y y *(24.71 Jordan A e *(24.101 bIoser and Wyman S.: 0: :(24.151 Riordan d n , m) S ( n , m)

    124.91 Milne-Thomson (: I :) B!% (:) B : Z(24.11 Carlitz} ( - 1 ) n - " S l ( n - l , n - m ) S2 (m, n - m )[24.3] Could(UnpublishedMiksa S ( n -m + 1 , n) m S ntables)

    a special nncl easily recognizable symbol, andyet t h n t s\ -mbolmust be easy to write . We havesett led on a script capital 3 without any cer ta intyt h a t we 11ave sett led tliis quest ion permanently.We feel th at tlie subscript-super script notat ionemplinsizes tlie generating friiictioris (wliicli arep6wers of mutunlly inverse functions) from whichmost of the impor t ant r elations flow.

    24.1 . Ba s ic N um be r s24.1.1 Bin om ial Coeff ic ient s

    1. D e f i n i t i o n sA . ( z)s the nu mb er of \ yays of choosing mobjects from a collection of n dist inct objectswithout regard to order .13 . G ener at ing fur ict ioiis

    n = O , l , . .

    C. Closed form

    n > mn ( n - 1 ) . . . ( n -m + l)m !- -11 . R e l a t i o n s

    A. Recurrencesn > m > l

    =( :)+( :::)+. . . + r im )> mB. Checks

    124.171 Gupta u( n , m )We feel that a capital S is natural for Stirlingnumbers of the first kind; it is infrequently usedfor other notat ion in th is cont est . . Bu t once i tis used we have difficulty finding a suitablesymbol for Stir l ing numbers of tlie second kind.T he num bers are suffic iently import ant to warr ant

    a22 *Rev p n g e XI .

    r + s L nr 2 r + l

    (:')= ("D> ( ' ' ' I ) . . . ( Inodp) pa pr imemo in.,

  • 8/8/2019 24. rial Analysis

    3/7

    COMBINATORIAL ANALYSIS 823wheren = E n,$, m = C m k p k p > m k , n k 2Qm mk-0 k -0

    m=O(-om ;)f(z-m)) k j ( z - - s ) e

  • 8/8/2019 24. rial Analysis

    4/7

    C OM B I NATOR I AL ANALYSIS824P , 1 0 . . . 0Pz P l 2 . . .P, Pz P l . . .

    . . .

    . . . 0

    . . . n -1Pn P n-1 P n-2 . . . P ,

    = 2(-1)"-m i(n ; u,, &, . . . , u,)*P flP ,"2. . P:

    A . ( - l)n -m Sim )s the number of permutationsB. Generat ing functionsof n symbols which ha ve exactly m cycles.

    nm-0z(x-1) . . . ( x -n + l) = C S!,m)z"

    I. Definitions

    bl

  • 8/8/2019 24. rial Analysis

    5/7

    COMBINATORIAL ANALYSIS 825

    B. Checksn

    m-0 ( -1)" -= m! sp= 1

    111. Asymptotics a n d Special Velum* lim m -" sAm )= (m t ) -ln -m

    24.2. P ar t itions24.2.1 U nr est rict ed P ar t it ions

    I. DefinitionsA . p(n) is the number of decompositions of ninto integer summands without regard to order.E .g.,5= 1+ 4= 2+ 3= 1+ 1+ 3= 1+ 2+ 2= 1+ 1+1 + 2 = 1 + 1 + 1 + 1 + 1 so t h a t p(5)= 7.

    B. Generating function

    where

    ((z))= z-[z]-& if z is not an integer= O if x is an integer11. RelationaA. Recurrence

    p ( n ) = & (-l)k-lp (n-?) p(0)= 11s- 1 I n= I ol(k)p(n-k)n k-1

    B. Check

    111. A a p p t o t i e s1 *d%&P ( 4 - -nd3e

    24.2.2 P artitions Into D istinct P arteI . Definitiono

    A . q(n) is t he nu mb er of decomp osit ions of ninto distinct int eger summands with out regard toorder. E.g.,5= 1+ 4= 2+ 3 s o t ha t q (5)= 3 .B. Generating functionq q ( n ) z " = I I ( l+ x " ) = n-1m m OD 1z1

  • 8/8/2019 24. rial Analysis

    6/7

    826 COMBINATORIAL ANUYBIS11. Relations

    A. Recurrences

    = O otherwise

    B. Checkf - r( -l) ' q( n -( 3k' ~kf ) ) =lf n=O< ;tkktk 1.primes

    B. Gener ating functions2 p( n ) n -s=l/ r ( s ) ~ ' s > Ia-111. Relations

    A. Recurrencep( m n ) =p( m ) p( n )f ( m ,n ) =l

    = O if (m , n ) > lB. Check

    cc( d ) = bC. Numerical analysisg( n ) pf(d)or a ll n f and only ifn f ( 4g ( d) g( n / d)or all n

    g( n )11 f(d) for alln f and only if

    g( z ) =E j ( z / n )or all z >O i f and only ifdln f (n )= n g( n / d) r ( "or all ndl na-1

    j ( x > g ( n ) g( z/ n )or all z >oa-1

    g( z) 2 (m ) or all z >O if and o n l y ifn-1 m= 5( n ) g( 7=)or all z>on-1m a -and if I f ( m nz)= c( n )f(nz) I converges.

    The cyclotomic polynomial of order n ietu-1 n-1 n-1

    I I ($- l ) r ( n / d )dl n

    111. A e y m p t o t i c s

    24.3.2 T h e Euler T o t i e n t F u n c t i on1. Definitions

    A . p( n )s the number of integers not exceedingB. Gener ating functions

    and relat ively prime to n .

    C. Closed form

    over dist inct primes p dividing n .11. Relations

    A. Recurrence( P ( m4= d m )&)B . Checks

    ar(" ) 1 (mod n)111. Asympto t ics

    aa>2

    14"- u1(m)= -+ O -2 m =l24.3.4 P r i m i t i v e R o o t s

    I . DefinitionsT he int egers not exceeding and relatively pr ime

    to a fixed integer n form a group; the group iscyclic if an d o n l y if n = 2 , 4 or n is of th e form pkor2pkwhere p is an odd prime. Then g is a primitiveroot of n if i t genera tes t hat group ; i.e., if g, g2, . . .,g+ ' ( ")re dist inct modulo n . There are cp(cp(n)pr imitive root s of n .11. R elat ions

    A . Recurrences. If g is a primitive root of aprime p and gp-l$ l (mod p2) hen g is a primitiveroot of pk for all k. If gp-' = 1(mod p2) hen g + pis a pr imitive root of pk or all k .If g is a primitive root of p k then either g org+ p k ,whichever is odd, is a pr imitive root of 2p'B. Checks. If g is a p rimitive root of n then gkis a p rimitive root of n if and pnly if (k, cp( n) ,1,and each p rimitive root of n is of this form.

    ReferencesTexts

    [24.1] L. Ca r l it r , Not e on Nor l unds po lynomi al B $ ) ,P r o c. A m e r . M a t h . SOC.1, 452-455 (1960).[24.2] T . F or t , F ini te di ffe rences (Clarend on P ress ,Oxford, En gland, 1948) .[24.3] H . W . G ould, St i r l ing num ber repr esent a t ionprob l e ms , P roc . Ame r . Ma t h . SOC.11, 447-451(1960).[24 .4 ] G . H . Ha rdy , R a ma nu j a n (Che l se a P ub l ish ing C o . ,Ne w York , N . Y . , 1959) .[24 . 5 ] G . H . Ha rdy a nd E . M. Wr i gh t , An i n t roduc t i ont o t he t he ory o f numbe rs , 4 t h e d . (Cl a re ndonP ress , Oxford, E nglan d, 1960) .[24.6] L. K . Hu a , On t he numbe r of pa r t i t i ons of a num -be r in t o une qua l pa r t s , T r a ns . Ame r . Ma t h . SOC.51, 194-201 (1942).[24.7] C . Jor dan, Calculus of finite differences, 2d ed .(Che l se a Pub l i sh i ng Co . , Ne w York , N . Y. ,1960).[24 .8 ] K . K nopp , Th e ory a nd a pp l ic a t i on of infini teser ies (Blackie and Son, Ltd. , London, England,1951).[24.9] L. M. Mi lne-Thomson, The ca lculus of finitedi f fe rences (Macmi l lan and Co. , L td. , London,England, 1951) .[24.10] L. Mose r a nd M. Wyma n, S t i r l i ng numbe rs of t h esecond kind , Du ke M at h. J . 25, 29-43 (1958).[24.11] L. Mose r a nd M. Wyma n, Asympt o t i c de ve l op-ment of the St i r l ing numbers of the f i rs t kind,J . Lo n d on M a t h . SOC.3, 133-146 (1958).i24.121 H . H . Ost man n, Ad di t ive Zahlentheor ie , vol . I(Spr inger-Verlag, Ber l in , Germ any, 1956) .

    [24.13] H . R ademacher , On th e par t i t ion func t ion, Pr ocL o n d o n M a t h . SOC.3, 241-254 (1937).[24.14] H . Radem acher and A . W hi teman , Th eorems onDe de k i nd sums , Ame r . J . Math. 63, 377-407(1941).[24.15] J . R iordan, An int roduc t ion t o combina tor ia lana lys i s (John Wi ley & Sons , Inc . , New York,N .Y. , 1958) .[24.16] J . V. Uspensky and M. A. Heas le t , E lementarynumb e r t he ory (Mc Gra w-Hi ll Book C o . , In c .New York, N.Y. , 1939) .

    Tables[24.17] Br i t ish Associat ion for t he A dva ncem ent of ScienceM ath emat ica l Tab les, vol . VI II , Num ber-divisort a b l e s (Ca mbr i dge Uni v . Press , Ca mbr i dgeEngl a nd , 1940) . n S l 0 ' .[24.18] H. Gupta , Tables of di s t r ibut ions , Res . Bul l . EasP an jab Un iv. 13-44 (1950); 750 (1951).[24.19] H . Gup ta , A table of par t i t ions , P roc . LondonM a t h . SOC.39, 142-149 (1935) and 11. 42546-549 (1937). p(n) , n = 1 ( 1) 3 00 ; p(n), n = 3 01(1)600.[24.20] G . KavB n, Fac t or t ables (M acmi l lan and C o. , L t d.London, England, 1937) . n 1 2 5 6 , 0 0 0 .[24.21] D. N. Lehmer , List of pr ime nu mb ers from 1 t o10,006,721, Car negie Ins t i tu t ion of W ashingtonPubl ica t ion N o . 165, Washington, D.C. (1914)[24.22] Royal Soc ie ty Mathemat ica l Tables , vol . 3 , Tablof binomial coefficients (Cambridge Univ. PressCam br idge, En gland , 1954). (:) .for r