24
P. 2-1 2. Sensor Properties 2.2 Dynamic Properties 2.1 Static Properties Sensitivity (Empfindlichkeit), Sensitivity to influence effects (Empfindlichkeit auf Einflussgrößen), Resolution (Auflösung), Reproducibility (Reproduzierbarkeit), Linearity (Linearität), Hysteresis (Hysterese), Drift, Errors(Ausfall) 2.0 Introduction Prof. Dr.-Ing. O. Kanoun Chair for Measurement and Sensor Technology Dead time (Totzeit) Slow rate (Anstiegszeit) Delay Time (Verschiebungszeit) Settling Time (Einschwingzeit)

2_Sensorproperties

Embed Size (px)

DESCRIPTION

smart sensors

Citation preview

Page 1: 2_Sensorproperties

P. 2-1

2. Sensor Properties

2.2 Dynamic Properties

2.1 Static Properties

Sensitivity (Empfindlichkeit),

Sensitivity to influence effects (Empfindlichkeit auf

Einflussgrößen),

Resolution (Auflösung),

Reproducibility (Reproduzierbarkeit),

Linearity (Linearität),

Hysteresis (Hysterese),

Drift,

Errors(Ausfall)

2.0 Introduction

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Dead time (Totzeit)

Slow rate (Anstiegszeit)

Delay Time (Verschiebungszeit)

Settling Time (Einschwingzeit)

Page 2: 2_Sensorproperties

P. 2-2

Application Sensor

Which criterions

are important?

Sensor?

Special

Requirements

Principe

Typ

Packaging

….

2.0 Introduction

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 3: 2_Sensorproperties

P. 2-3

Preselection of sensors

Typical

values

Application conditions: Temperature, Polluants, contacting

Efficiency, long time stability, .....

Sensor Schnittstelle

Signalauswertung

T

Geometrical dimensions, integrability

2.0 Introduction

Page 4: 2_Sensorproperties

P. 2-4

Resistance Thermometer

Page 5: 2_Sensorproperties

P. 2-5

Example of a Data Sheet of a Resistance Thermometer Pt 100

Page 6: 2_Sensorproperties

P. 2-6

Beispiel: Datenblatt eines Widerstandsthermometers (Pt100)

Page 7: 2_Sensorproperties

P. 2-7

Capacitive fill

level sensor

Page 8: 2_Sensorproperties

S. 2-8

Capacitive fill

level sensor

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 9: 2_Sensorproperties

P. 2-9

Resolution

Sensitivity

Precision

Drift

Reproducibility

Sensitivity on influence factors

Hysteresis

Linearity

Failure

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 10: 2_Sensorproperties

Messgröße

Sensor

Ausgangs-

signal

empfindlich

Sättigung

P. 2-10

Changes of the signal versus changes of the input

MeasQ

XE a

Sensitivity

A high sensitivity is important!

aX

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Sensitive

Saturation

Measured

Quantity

Output

Signal

Page 11: 2_Sensorproperties

P. 2-11

T in °C

-50 0 50 100 150 200

R in

0

200x103

400x103

600x103

800x103

1x106

T in °C

-50 0 50 100 150 200

dR

/dt in

-60000

-50000

-40000

-30000

-20000

-10000

0

T

b

T

b

TTb

eeReRR 00

0

11

0

b: Material Constant

R0: Resistance at the Temperature T0

RT

b

T

beeR

dT

dRE

T

b

T

b

2200

better sensititvity

Sensitivity: Example NTC-Resistance

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 12: 2_Sensorproperties

P. 2-12

Sensitivity and Accuracy

For a more sensistive sensor an observed change of the sensor signal Dy

corresponds to a smaller change Dx of the measured quantity

Messgröße x

Ausgangssignal y

Dy

Dx1 Dx2

Sensor1

Sensor2

A measurement deviation at the output signal leads to a smaler deviation of the

measurement quantity

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Output Signal y

Measured Quantity x

Page 13: 2_Sensorproperties

P. 2-13

Messgröße

Sensorsignal

T: Einflussgröße

e. g. Influence of temperature on

Sensor signal changes depending

on variable which different to the

measurement quantity

- Changes of material properties

- Changes of activation energies

- Changes of transport mechanisms (Diffusion)

Cross Sensitivity

e. g.: A gas sensor for oxygen shows sensitivity to other gases

Sensitivity on modifying input

Sensitivity to Interfering inputs

Sensitivity to Influence Factors

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Sensor Signal

Measured Quantity

T: Influence Factor

Sensor reacts on the same way on the measurand and the interfering inputs

Page 14: 2_Sensorproperties

P. 2-14

..smallest change of the input signal leading to an

observable change of the output signal

Example: Potentiometer

Sensor signal changes is steps

Typical Description xx Measurand

Example: Resolution of a Person Scales: 100 g

xx % of the upper range value

Resolution

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 15: 2_Sensorproperties

P. 2-15

LSB: Least Significant Bit

11001001

n=8 Bit

nLSB

UUU

2

minmax D

Umin ≡ 00000001

Umax ≡ 11111111

Example:

A/D-converters of 8 Bit resolution

Resolution of Analog/Digital-Converters

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 16: 2_Sensorproperties

P. 2-16

Reproducibility /Repeatability

Possible Causes:

• Thermal Noise

• Material elasticity

• Contamination of Bio and Gas Sensors

Sensor system delivers not the same

value, even if the measurement

conditions remain the same

Typical description:

MBE

ymaxDD

Measurand

MBE: end value of the measurement range

maxyD : Maximal deviation of the output signal

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 17: 2_Sensorproperties

P. 2-17

Linearity

The transfer behaviour of a system is not linear

Cause: measurement principle

typical description:

maxyD

MBE

ymaxDD

Examination by linearization or numerical differenciation

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 18: 2_Sensorproperties

P. 2-18

Example: Linearity Deviation of an NTC-Resistance

T in °C

-50 0 50 100 150 200

R in

-400x103

-200x103

0

200x103

400x103

600x103

800x103

1x106

y= 127811 - 2233 x

T

b

T

b

TTb

eeReRR 00

0

11

0

T in °C

-50 0 50 100 150 200

DR

/Rm

ax in

%

-20

0

20

40

60

80

100

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 19: 2_Sensorproperties

P. 2-19

Hysteresis

Causes

• Hysteresis of Materials like ferromagnetics

• Friction and settlement of multipart (Screwed or clamped)

messurement setups

• Plastic deformation of the assmbly between chip and

packaging

Sensor output signal is dependent on previous values

of the input

typ. Angabe:

MBE

ymaxDD

Sensor signal is dependent of the history

The dependence of the output signal from

input signal is not unique!

2.1 Static Properties

Page 20: 2_Sensorproperties

P. 2-20

Aging/Drift

Causes, e. g. :

- of Materials

Properties of the sensor system change with time.

Drift: is a special type of aging describing:

slow changes with time

- Setting of atoms in the cristal grid Time

Ou

tput

Sig

nal

Linear Sensors: Drift of the zero point

Drift of sensitivity

Tolerance Band

calibration!

Ageing is dependent on the application conditions

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 21: 2_Sensorproperties

P. 2-21

Failure

MTBF (Mean Time between Failures)

Availability of a sensor system

MTTR (Mean Time to Repair)

[DIN EN/IEC61709]

MTTRMTBF

MTBFV

2.1 Static Properties

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 22: 2_Sensorproperties

Impulse

Characterization of dynamic behaviour

x(t)=x0sin(wt) H0(w)

Frequency excitation

Step-Function

j(w)

Amplitude

Phase

y(t)=y0sin(wt+j)

Prof. Dr.-Ing. O. Kanoun

Professur für Mess- und Sensortechnik S. 1-22

Linear

system

Linear

system

Linear

system

2.2 Dynamic Properties

Page 23: 2_Sensorproperties

P. 2-23

tL: Dead time (Totzeit)

tA: Slow rate, rise time (Anstiegszeit)

tV: Delay time (Verschiebungszeit)

tE: Settling time (Einschwingzeit)

2.2 Dynamic Properties

Step Response of a Sensor System (general case!)

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology

Page 24: 2_Sensorproperties

F(P) 1/F(P)xe(t) xa(t) xo(t)= xa(t) * g(t)

sensor Correction of

dynamic

behaviour

)(*)()()(0

tgtxdtxtx a

t

ao

)(/1)( 1 PFLtg

Transferfunktion:

Dynamic Correction of Linear Systems

Prof. Dr.-Ing. O. Kanoun

Professur für Mess- und SensortechnikS. 1-24

see chapter applications of amplification circuits

2.2 Dynamic Properties