51
3. Geometrical Optics

3. Geometrical Optics

  • Upload
    shilah

  • View
    87

  • Download
    3

Embed Size (px)

DESCRIPTION

3. Geometrical Optics. Geometric optics —process of light ray through lenses and mirrors to determine the location and size of the image from a given object. Reflection and Mirror. Image Formation by Reflection. Application of Double Reflection -Periscope. DIY Periscope. - PowerPoint PPT Presentation

Citation preview

Page 1: 3. Geometrical Optics

3. Geometrical Optics

Page 2: 3. Geometrical Optics

Geometric optics—process of light ray through lenses and mirrors to determine the location and size of the image from a given object .

Reflection and Mirror

angle reflection:

angleincident :

reflection of Law

r

i

ri

Page 3: 3. Geometrical Optics

Image Formation by Reflection

Page 4: 3. Geometrical Optics

Application of Double Reflection-Periscope

Page 5: 3. Geometrical Optics

DIY Periscope

Page 6: 3. Geometrical Optics

DIY Periscope (Cont’)

Page 7: 3. Geometrical Optics

Law of reflection (Snell’s law)

2211 sinsin nn

Page 8: 3. Geometrical Optics

Types of Lenses

Page 9: 3. Geometrical Optics

Ray Tracing through Thin Lenses

Page 10: 3. Geometrical Optics

Image Formation by thin Lenses

form) (Newtonian

form)(Gaussian 111

212

21

zzf

fdd

Lens equation:

1

2

1

2

d

d

h

hM

ionMagnificat

Page 11: 3. Geometrical Optics

ABCD Matrix

Page 12: 3. Geometrical Optics

ABCD Matrix (Cont’)

Page 13: 3. Geometrical Optics

ABCD Matrix (Cont’)

Page 14: 3. Geometrical Optics

ABCD Matrix (Cont’)

Page 15: 3. Geometrical Optics

ABCD Matrix (Cont’)

Page 16: 3. Geometrical Optics

ABCD Matrix (Cont’)

Page 17: 3. Geometrical Optics

ABCD Matrix (Cont’)

Page 18: 3. Geometrical Optics
Page 19: 3. Geometrical Optics
Page 20: 3. Geometrical Optics

Aberrations of Lenses• Primary Aberration image deviate from the original

picture/the first-order approximation

Monochromatic aberrations

Spherical Aberration

Coma

Astigmatism

Curvature of field

Distortion

Chromatic aberration

Page 21: 3. Geometrical Optics

General Method of Reducing Aberration

in Optical Systems-Multiple Lenses

United States Patent 6844972

Page 22: 3. Geometrical Optics

General Method of Reducing Aberration in Optical Systems-Multiple Lenses

(Cont’)

United States Patent 6995908

Page 23: 3. Geometrical Optics

Chromatic Aberration

The focal lengths of lights with distinct wavelengths are different.

Page 24: 3. Geometrical Optics

Solution of Chromatic Aberration-Using Doublet, Triplet, or Diffractive Lens

Page 25: 3. Geometrical Optics

Spherical Aberration (SA)

Page 26: 3. Geometrical Optics

Spherical Aberration for Different Lenses

(a)  Simple biconvex lens(b)  “Best-form” lens(c)  Two lenses(d)  Aspheric, almost plano-convex lens

Page 27: 3. Geometrical Optics

Solutions of Spherical Aberration-Using Aspherical Lens or Stop

Page 28: 3. Geometrical Optics

Coma

Page 29: 3. Geometrical Optics

Coma (Cont’)

(a) Negative coma (b) Postive coma

Page 30: 3. Geometrical Optics

Astigmatism

Page 31: 3. Geometrical Optics

Astigmatism (Cont’)

Page 32: 3. Geometrical Optics

Solutions of Astigmatism-Using Multiple Lenses

Page 33: 3. Geometrical Optics

Curvature of field

Page 34: 3. Geometrical Optics

Solutions of Curvature of field-Using Multiple Lenses

Page 35: 3. Geometrical Optics

Distortion

Picture taken by a wide-angle camera in front of graph paper with square grids

Page 36: 3. Geometrical Optics

Solution of Distortion-Using Multiple Lenses

Page 37: 3. Geometrical Optics

Nearsightedness (Myopia) and Farsightedness (Hyperopia)

Page 38: 3. Geometrical Optics

Image Formation Camera

Page 39: 3. Geometrical Optics

Camera

aperture ofdiameter

length focalnumberF Eg. 50 mm camera lens, aperture stop 6.25mm:

F-number = 8 (f/8)

F-number

Exposure

2

2

2 f4

dB

f

BAE

E: energy collected by camera lens

B: brightness of objectA: area of aperture d: diameter of aperture stop

2number)-(F

1Eobject given any For

Page 40: 3. Geometrical Optics

Camera Lenses

• Wide-angle Lenses-the Aviogon and the Zeiss Orthometer lenses

• Standard Lenses-the Tessar and the Biotar lenses

• Lens of reducing the 3rd-order aberration-the Cooke triplet lens

Page 41: 3. Geometrical Optics

Depth of Field (DOF)• The distance between the nearest

and farthest objects in a scene that appear acceptably sharp in an image.

• In cinematography, a large DOF is called deep focus, and a small DOF is often called shallow focus.

• For a given F-number, increasing the magnification decreases the DOF; decreasing magnification increases DOF.

• For a given subject magnification, increasing the F-number increases the DOF; decreasing F-number decreases DOF.

Page 42: 3. Geometrical Optics

Numerical Aperture (NA)

• The numerical aperture of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light.

• Generally, • For a multi-mode optical

fiber,

Page 43: 3. Geometrical Optics

Telescope

Page 44: 3. Geometrical Optics

Astronomical (Keplerian) Telescope

Magnification (magnifying power):

'

M

: angle subtended at input end in front of objective’: angle subtended at output end behind eyepiece

(inverted image)

For small angle:

0'

e

o

f

fM

General Keplerian telescope: d=fo+fe

Page 45: 3. Geometrical Optics

Galileo Telescope

0'

e

o

f

fM

General Galileo telescope: d=fo-fe

Page 46: 3. Geometrical Optics

Terrestrial TelescopeAll images are erecting

Page 47: 3. Geometrical Optics

Optical Microscope

Page 48: 3. Geometrical Optics

Microscope Theory

Objective

eommM

Overall magnification:

mo: linear magnification of objectiveme: angular magnification of eyepiece

f

'x

y

'ymo Linear magnification:

Numerical aperture (NA)

objective)(for number-F

1

f

DNA

Page 49: 3. Geometrical Optics

Microscope Theory (Cont’)

)cm25f (usually, f

251

f

25'me

Angular magnification:

(normal reading distance)

1) (if 25

ytan

1)' (if x

y

25

'y'tan'

eo

eo

f

25

f

'x

mmM

Overall magnification of microscope:

fo: focal length of objectivefe: focal length of eyepiece

Eyepiece

Page 50: 3. Geometrical Optics

Simple Projection System

Page 51: 3. Geometrical Optics

Fresnel Lens and Plates

focusing point (in phase)

• Radius of the concentric circular: rn = [(n)2+2fn] ½ , n=0, 1, 2,….

• Sapce between two adjacent circular

• zone: rn = rn+1rn