19
3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005) 3.012 Fund of Mat Sci: Bonding – Lecture 12 PolymerspOlymerspoLymerSPOLYmerSPOLYMerSPOLYMErspolymeRpolymerS Image of a DNA strand removed for copyright reasons.

3.012 Fund of Mat Sci: Bonding – Lecture 12 P O L Y

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

3.012 Fund of Mat Sci: Bonding – Lecture 12

PolymerspOlymerspoLymerSPOLYmerSPOLYMerSPOLYMErspolymeRpolymerS

Image of a DNA strand removed for copyright reasons.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Homework for Fri Oct 21

• Study:25.7 (Huckel model), 18.1 (quantum oscillator),

• Read 18.6 (classical harmonic oscillator)

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Last time: 1. Hartree and Hartree-Fock equations2. Slater determinants3. H2 solution4. Symmetries5. Homonuclear diatomic levels6. Bond order

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Fluorine dimer F2

Correction: Nodal plane containing molecular axis → πFigure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Matrix Formulation (I)

H Eψ ψ=

{ }1,

orthogonal n n nn k

cψ ϕ ϕ=

= ∑

ψϕψϕ mm EH =ˆ

mnkn

mn EcHc =∑=

ϕϕ ˆ,1

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Matrix Formulation (II)

mkn

nmn EccH =∑= ,1

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

=

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

kkkkk

k

c

c

E

c

c

HH

HH

.

.

.

.

.

.

............

...... 11

1

111

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Matrix Formulation (III)

11 1

22

1

....... .

det . . 0. .

......

k

k kk

H E HH E

H H E

−⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Empirical tight binding andHückel approach

• TB: The matrix elements of the Hamiltonian are “universal empirical parameters”

• Hückel: Planar / quasi-planar systems with delocalized π bonding: two parameters– α: matrix element between same orbital – β: matrix element between neighboring orbitals– Hamiltonian between further neighbors is 0

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Example: Benzene (C6H6)

Diagram of the sigma bond network of benzene removed for copyright reasons.

See page 462, Figure 12-26 in Petrucci, R. H., W. S. Harwood, and F. G. Herring. General Chemistry: Principles and Modern Applications. 8th ed. Upper Saddle River, NJ: Prentice Hall, 2002.

Benzene – energy levels

0 0 00 0 0

0 0 0det 0

0 0 00 0 0

0 0 0

EE

EE

EE

α β ββ α β

β α ββ α β

β α ββ β α

−⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟−

=⎜ ⎟−⎜ ⎟

⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

H

CC C

CCC

H

H

H

H

H

π

π

ππ

π

π bonding

π

Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Benzene – molecular orbitals

π6

π5π4

π2 π3

α − 2β

α − β

α + β

α + 2βπ1

Energy

π5 π4

π2

π1

π6

π3

Figure by MIT OCW. Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

HOMO-LUMO in naphthalene

Images of orbitals in naphthalene removed for copyright reasons.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

The Quantization of Vibrations

• Electrons are much lighter than nuclei (mproton/melectron~1800)

• Electronic wave-functions always rearrange themselves to be in the ground state (lowest energy possible for the electrons), even if the ions are moving around

• Born-Oppenheimer approximation: electrons in the instantaneous potential of the ions (so, electrons can not be excited – FALSE in general)

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Nuclei have some quantum action…• Go back to Lecture 1 – remember the

harmonic oscillator

Stationaryobject

Spring

Mass

Equilibriumposition of

mass

z

z0

A mass on a spring. This system can berepresented by a harmonic oscillator.

6

4

2

0

-2

-4

-6

8

1 2 3 4

σ*1s energyu

σg1s energy

Born-Oppenheimer energyof exact orbitals

E BO

/eV

R/10-10m

uOrbital Energies for the σg 1s and σ* 1s LCAO Molecular Orbitals.

Figure by MIT OCW.

Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

The quantum harmonic oscillator (I)2 2

22

1 ( ) ( )2 2

d kz z E zM dz

ϕ ϕ⎛ ⎞− + =⎜ ⎟

⎝ ⎠

h

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

The quantum harmonic oscillator (I)2 2

22

1 ( ) ( )2 2

d kz z E zM dz

ϕ ϕ⎛ ⎞− + =⎜ ⎟

⎝ ⎠

h

km

ω =kma =h

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

The quantum harmonic oscillator (II)

Graph of harmonic oscillator wave functions removed for copyright reasons.

See Mortimer, R. G. Physical Chemistry. 2nd ed. San Diego, CA: Elsevier, 2000, p. 532, figure 14.21.

12

E nω⎛ ⎞= +⎜ ⎟⎝ ⎠

h

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Quantized atomic vibrations

Image removed for copyright reasons.See http://w3.rz-berlin.mpg.de/%7Ehermann/hermann/Phono1.gif.

Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Specific Heat of Graphite (Dulong and Petit)

00

500

500

1000

1000

1500

1500

2000

2000

2500

2500

Temperature (K)

CP

(J.K

-1.k

g-1)

Figure by MIT OCW.