20
3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley U.C. Berkeley } U.T. Austin U.T. Austin SDSC & UCSD SDSC & UCSD *author of these slides – edited by C. H. Séquin

3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

3D Hardcopy: Converting Virtual Reality to Physical Models

3D Hardcopy: Converting Virtual Reality to Physical Models

Sara McMains*Carlo SéquinMike Bailey

Rich Crawford

U.C. BerkeleyU.C. Berkeley}

U.T. AustinU.T. Austin

SDSC & UCSDSDSC & UCSD

*author of these slides – edited by C. H. Séquin

Page 2: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

How Do We Make Physical Things ?How Do We Make Physical Things ?

Page 3: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Main Types of ManufacturingMain Types of Manufacturing

• Subtractive- remove material selectively from stock.

• Net shape- re-form material into new shape.

• Additive- build up material in chosen locations.

• Constructive- combine separately formed shapes.

Page 4: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Conventional ManufacturingConventional Manufacturing

• Subtractive– Start with simple stock– Remove unwanted volume– E.g.

•Machining(NC Milling)

Delcam

Page 5: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Conventional ManufacturingConventional Manufacturing

• Net shape– Start with simple stock (or powder)– Reshape in die or mold– E.g.

•Forging •Molding•Casting

Page 6: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Manufacturing by casting, stamping, NC machining …

Manufacturing by casting, stamping, NC machining …

• Appropriate for production runs– Incremental costs low

• Not appropriate for small batch sizes or prototyping– Complex process planning– Special purpose tooling– Set-up costs high– Long lead times

Page 7: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

How Do We Make Quickly Complex Prototypes ?How Do We Make Quickly Complex Prototypes ?

Page 8: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Conventional ManufacturingConventional Manufacturing

• Constructive– Combine complex sub-units– E.g.

•Welding

Page 9: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Layered Manufacturing (LM)a.k.a. Solid Freeform Fabrication (SFF){ a.k.a. Rapid Prototyping (RP) }

Layered Manufacturing (LM)a.k.a. Solid Freeform Fabrication (SFF){ a.k.a. Rapid Prototyping (RP) }

• Additive- build-up of complex 3D shapes from 2.5D layers

Page 10: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Layered Manufacturing CharacteristicsLayered Manufacturing Characteristics

• Perfect for prototyping• Automated process planning

based on CAD model– Short lead times

• No special purpose tooling• Highly complex parts economical

at low production numbers

Page 11: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Benefits of LayersBenefits of Layers

Layering the manufacturing process eliminates constraints:

• No tool clearance constraints:– “Tool” is end of laser beam,– or a drop of glue.

• No mold releasability constraints:– Can make overhangs and undercuts.

• No fixture planning constraints:– As long as shape hangs together

Page 12: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

LayersLayers

• 2.5-D slices through model– Slice interior defines part geometry– Slice complement may function as

fixture and/or support

Page 13: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Supports: - Plan ASupports: - Plan A

• All complement geometry on layer serves as support, e.g.:– Same material in unbound form:

(non-glued or un-fused powder).

– Same material with weaker structure:(fractal-like support pillars).

– Fill in with different sacrificial material:(which can be removed with solvent).

Page 14: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

Supports: - Plan BSupports: - Plan B

• Supports with planned geometry– Identify overhanging features

• Top-down, layer-by-layer analysis.

– Selectively build supports beneath• Also layer by layer.

– May use same material as for part• Less dense fractal like pillars• Loose, brittle support sheets

– May use material different from part• Remove with selective solvent

Page 15: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

LM Technologies ( Commercial – U.S.A. )LM Technologies ( Commercial – U.S.A. )

• Powder solidification– 3D Printing (3DP)– Selective Laser Sintering (SLS)

• Additive with sacrificial supports– Stereolithography (SLA) {= Liquid solidification}– Thermoplastic deposition

• Fused Deposition Modeling (FDM)• Solid Object Printing w/ Multi-Jet Modeling (MJM)• Solidscape’s ModelMaker {previously: Sanders}

• “Subtractive”– Laminated Object Manufacturing (LOM)

Page 16: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

LM Industrial Applications

– Design review– Positives for molds– Functional testing

Page 17: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

LM Medical Applications

– Prosthetics– Pharmaceuticals

• Micro-structure control

– Tissue engineering

Page 18: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

LM Educational Applications

– Scientific Visualization– Topological Models– Tactile Mathematics

Hyperbolic parabaloid w/ Braille annotations (Stewart Dickson)

Klein Bottle Skeleton (SéquinSéquin)

San Diego Harbor (BaileyBailey)

Page 19: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

LM Artistic Applications

– Jewelry– Sculpture

“Ora Squared” (Bathsheba Grossman)

Page 20: 3D Hardcopy: Converting Virtual Reality to Physical Models Sara McMains* Carlo Séquin Mike Bailey Rich Crawford U.C. Berkeley } U.T. Austin SDSC & UCSD

CAD/RP Courses – Use of LM

• Scientific Parts• Math Models• Beautiful Artifacts• Fun Stuff !