23
1 3G+ Wireless QoS Performance 3G+ Wireless QoS Performance Simulator Simulator (Modeling and Case studies) (Modeling and Case studies) February February 26 26, 200 , 2004 Wireless Internet Wireless Internet & Network Engineering Research Lab Network Engineering Research Lab (WI WINNER NER’s Lab) Lab) 전자공학부 전자공학부, , 아주대학교 아주대학교 [email protected] [email protected] 031 031-219 219-2477 2477 KJH 2 Agenda Agenda Introduction 3G+ Wireless QoS Performance Simulator Simulation Model Reference Architecture Protocol Stacks Service Traffic Model Network Element Model Cross Layer Modeling Case Studies Performance : End-to-End Performance Network Architecture : 3G+ Wireless Technology Evolution Optimization & Algorithm: System Parameters and Algorithm Conclusion Research Issues Reference

3G+ Wireless QoS Performance Simulators - ajou.ac.krwinner.ajou.ac.kr/publication/data/invited/3G_Wireless... · 2004-07-16 · 1 3G+ Wireless QoS Performance Simulator (Modeling

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

1

3G+ Wireless QoS Performance 3G+ Wireless QoS Performance SimulatorSimulator

(Modeling and Case studies)(Modeling and Case studies)

FebruaryFebruary 2626, 200, 20044

김김재재현현

Wireless Internet Wireless Internet && Network Engineering Research Lab Network Engineering Research Lab ((WIWINNNERNER’’ss Lab)Lab)

전자공학부전자공학부, , 아주대학교아주대학교[email protected]@ajou.ac.kr

031031--219219--24772477

KJH 2

AgendaAgenda

Introduction3G+ Wireless QoS Performance Simulator

Simulation ModelReference Architecture Protocol StacksService Traffic Model Network Element Model Cross Layer Modeling

Case Studies Performance : End-to-End PerformanceNetwork Architecture : 3G+ Wireless Technology EvolutionOptimization & Algorithm: System Parameters and Algorithm

ConclusionResearch Issues Reference

2

KJH 3

Research Area Research Area

CDMA performance simulator 3G-1X/EV-DO end-to-end OPNET performance simulator (ICC 2004)3G-1X/EV-DO Packet Scheduler ModelingRLP re-transmission algorithm TCP parameters, HTTP v.1.0/v.1.1 Wireless channel error, voice codec(G.711, G.726, EVRC) Model

UMTS end-to-end performance modeling Voice and data AAL2 multiplexing issues (ICOIN 2004)Wireless internet QoS management algorithm (US patent 2003/4)Wireless Internet/voice end-to-end simulation model (Network 2002)Wireless application traffic modeling (Web, M-Commerce, E-mail, etc)Adaptive RF sharing algorithm

RFID System Fast Anti-collision algorithm (submitted to JCCI2004)

KJH 4

Research AreaResearch Area

Fixed Broadband Wireless MAC Protocol (IEEE 802.16)Netro Cell MAC(Wireless ATM System) Hybrid system wireless IP MAC protocol (Bell Labs Technical Memos)

ATM Switch Buffer Management Algorithm Lucent CBX 500/GX 550 buffer management algorithm modelingLucent PSAX scheduling algorithm modeling and analysis

Cable Network Protocol (HFC)DOCSIS 1.1 MAC Protocol Optimization : (IEEE ICC 2001)

IEEE 802.11 WLAN MAC ProtocolWireless channel model, DCF, PCF model 성능분석 (IEEE tran. Vehicular Tech., IEICE Tran. Comm., etc.)

3

KJH 5

33GG++ WirelessWireless QoSQoS Performance SimulatorPerformance Simulator

Objectives of Simulator Integrate with network design processnetwork design process to validate performance Obtain performance results based on given application characteristics and network configuration parameters

Application layer performanceApplication layer performance parametersPage and object response time, packet delay, jitter, throughput,etc

Select optimal system configuration parametersoptimal system configuration parameters or algorithmalgorithm based on QoS requirements

Validate and optimize tunable parameters and algorithmsScheduler, Inactivity Timeout, AAL2 MUX, RLP PU_size, etc.

Evaluate tradeoff between application performance and network utilization

Identify system performance bottleneckbottleneck and seek improvementimprovement

KJH 6

Simulation ModelSimulation Model

Reference Architecture CDMA 2000 UMTS

Protocol StacksCDMA 2000UMTS

Service Traffic Model Foreground /BackgroundQueuing Impact Model

Network Element Model Cross Layer Modeling

CDMA 2000 3G 1X-RTT/ EV

4

KJH 7Can model reference connections including applications and data center

Reference Architecture Reference Architecture : CDMA 2000: CDMA 2000

KJH 8

Data Center

Reference Architecture Reference Architecture : : UMTS Rel99UMTS Rel99

5

KJH 9

Protocol Stack Protocol Stack :: 3G3G--1X Data (ATM) 1X Data (ATM)

AT 3G-1XCell

PC 3G-1X MSC Host

10 Base TRS-232

Cable

3com

3G3G--1x1xBTSBTS

Ethernet

MAC

IP

TCP/UDP

PPP

Ethernet

MAC

Airlink

MAC

RLP

Airlink

MAC

T1

ATM

PP/T1

ATM

T1

FR

IPRMI

ServersServers

IP - Internet Protocol TCP - Transmission Control Protocol RLP- Radio Link Protocol

UDP- User Datagram Protocol PPP - Point-to-Point Protocol FR – Frame Relay

3G3G--1x1xMSCMSC

PCF

PCFPCF

T1

FR

Phys

GRE

L2 L2

Phys

IP

TCP/UDP

PDSNPDSN

Air

AAL2

T1

FR

T1

ATM/AAL5

OC3

Airlink

ATM

T1

ATM

ATM SwitchATM Switch

PSAX

AAL2

T1

RLP

Application Application

Phys

L2 L2

Phys

IP

GREPPP

IP

KJH 10

Protocol Stack Protocol Stack :: 3G EVDO (HDLC)3G EVDO (HDLC)

AT 1xEV-DOCell

PC RAN Router 1xEV-DO FMS Host

10 Base T

Cable Backhaul

R-P (A10/A11) IP NetworkRouter

PCF PDSN

PDSNPDSN1xEV1xEV--DODO

BTSBTSRouterRouter

Ethernet

MAC

IP

TCP/UDP

PPP

Ethernet

MAC

Airlink

MAC

RLP

Airlink

MAC

T1/E1

HDLC

IP

TCP/ UDP

RMI

T1/E1

HDLC

Ethernet

MAC

IP

Ethernet

MAC

T1/E1

L2

IP

TCP/ UDP

IP

GRE

RMI

RLP

T1/E1

L2 L2

Phys

IP

GRE

PPP

IP

L2

Phys

IP

TCP/UDP

1xEV1xEV--DODOControllerController

PCFPCF

ServersServers

GRE - Generic Routing Encapsulation (protocol) RMI - Remote Method Invocation IP - Internet Protocol TCP - Transmission Control Protocol UDP- User Datagram Protocol PPP - Point-to-Point ProtocolHDLC – High Level Data Link Control

Application Application

6

KJH 11

PHY

Protocol Stack Protocol Stack : : UMTS PS service (Data)UMTS PS service (Data)

UE

Air

SGSNSGSNUMTSUMTSNodeNode--BB

PHY

TCP/UDP

ATM

AAL2

DchFP

Phys

IP

PDCP – Packet Data Convergence Protocol Iu-UP – Iu User Plane GTP – GPRS Tunneling ProtocolDch-FP - Dedicated Channel Framing Protocol PHY-UP- Physical Layer User Plane MAC_d – Media Access Control for DCH IP - Internet Protocol TCP - Transmission Control Protocol UDP- User Datagram Protocol

Application

PHY_UP

MAC_d

RLC

PDCP

IP

ATM

AAL2

DchFP

ATM

AAL2

DchFP

ATM

AAL2

DchFP

PHY_UP

MAC_d

RLC

PDCP

ATM

AAL5

UDP/IP

GTP_U

Iu-UP

ATM

AAL5

UDP/IP

GTP_U

Iu-UP

ATM

L2(AAL5)

UDP/IP

GTP_U

GGSNGGSN

ATM

L2(AAL5)

UDP/IP

GTP_U

External

ATM AAL2 ATM AAL2ATM AAL5

IubUu Iur Iu-ps Gn

UMTSUMTSCRNCCRNC

UMTSUMTSSRNCSRNC

ATM AAL5

KJH 12

PHY

Protocol Stack Protocol Stack :: UMTS CS Service (voice)UMTS CS Service (voice)

UE

Air

WAGWAGUMTSUMTSNodeNode--BB

PHY

ATM

AAL2

DchFP

Phys

PHY_UP

MAC_d

RLC

ATM

AAL2

DchFP

ATM

AAL2

DchFP

ATM

AAL2

DchFP

PHY_UP

MAC_d

RLC

ATM

AAL5

Iu-UP

ATM

AAL5

Iu-UP

Ethernet

UDP/IP

TAGTAG

Ethernet

ATM AAL2 ATM AAL2ATM PVC

IubUu Iur Iu-cs Gn

UMTSUMTSCRNCCRNC

UMTSUMTSSRNCSRNC

ATM AAL5

AMR

Application

PDCP – Packet Data Convergence Protocol Iu-UP – Iu User Plane Dch-FP - Dedicated Channel Framing ProtocolPHY-UP- Physical Layer User Plane MAC_d – Media Access Control for DCH IP - Internet Protocol TCP - Transmission Control Protocol UDP- User Datagram Protocol

AMR G.711

ATM

UDP/IPAAL1

7

KJH 13

Service Service Traffic ModelsTraffic Models

Foreground trafficApplication traffic modeled in detailEach application is generated at the UE and transmitted along a reference connectionEnd-to-end application performance can be measured

Background traffic (traffic load for each NE’s)Background traffic depicts characteristics of the actual application trafficVary network load and impact to the performance of the foreground trafficBackground traffic model may be defined consistently with product planning assumptions or to represent a specific customer network

Model background traffic with application characteristics and foreground traffic in detail.

KJH 14

Service Traffic Model Service Traffic Model ::Voice Call and Web Browsing Application ModelVoice Call and Web Browsing Application Model

Call-Level Generator

PacketsInterarrival

Duration

CallsDuration

Interarrival

Packet-Level Generator

DurationInterarrival

Sessions

PagesDuration

Interarrival

ObjectsInterarrival

Duration

Session-Level Generator

Packet-Level Generator

Application models include distribution information about call/session arrivals, packet arrivals within a call, and packet sizes.

8

KJH 15

Voice Traffic Model CDMA2000 : 13Kbps, 8 Kbps EVRC (Qualcomm Model)UMTS : 12.2 Kbps AMR Codec

Data Traffic Model (3GPP2-C50-EVAL-2001022)PPP/RLP/MAC Overhead, 4%/10% air interface error, RLP re-transmitWeb traffic : Avg. Page size = 43056 Bytes

Exponential Mean = 30 sec

Reading Time

Lognormal DistributionMean = 7758 B Std. Deviation = 126168 B

Object Size

Pareto DistributionMean 5.55 MAX 55

No. of Objects per Page

Lognormal DistributionMean = 17, Standard Deviation = 22

No. of Pages

Web BrowsingService

Service Traffic MService Traffic Model : odel : Voice Call and Web Browsing Application ModelVoice Call and Web Browsing Application Model

KJH 16

Service Traffic Model : Service Traffic Model : Background Traffic Load Queueing impactBackground Traffic Load Queueing impact

Lindley recursion equationSame impact for end-to-end packet delay with discrete event simulationMultiple priority traffic queueing model Reduce discrete event simulation processing time for queueingimpact

( )( )

( )

( )

( )

( ) packets )1( and between timearrival-inter :packet of timeservice :

packet theof time waiting:

packet )1( theof time waiting:

00

0

1

)()()(

)()()()()()()1(

ththn

thn

thnq

thnq

nnnq

nnnq

nnnqn

q

nnTnS

nW

nW

TSW

TSWTSWW

+−

+−

⎪⎩

⎪⎨⎧

≤−+

>−+−+=

+

+

9

KJH 17

Network Elements ModelsNetwork Elements Models: CDMA2000 MT: CDMA2000 MT

Mobile Terminal ModelInput parameters

Traffic and RLP parametersOutput Parameters

End–to-end Service statisticsCDMA transport statistics

FunctionsTraffic GenerationTCP/UDP and IP (for Data UE)RLP/MAC protocol stackPHY layer

Detailed simulation model for each network element

ModifiedOPNETModule

Built-inModule

KJH 18

Cross Layer Modeling:Cross Layer Modeling:3G3G--1X RTT,(L11X RTT,(L1-- L7)L7)

Model ArchitectureUser mobilityassumption

Physical Layer Spec

Power Requirement of each rateEc/Ior Curve

Link Level Simulation

Static System Level Simulation

C/I DistributionCurve

3G3G--1X Performance Simulator (OPNET)1X Performance Simulator (OPNET)- Dynamic Application Performance- Scheduling Algorithm - Sector throughput - Optimal system configurable parameters

Walsh Code

Backlogged Packet size

3G-1X RTT Scheduler model for Rel. 19 (OPNET)

Protocol Stacks :

TCP/IP, RLPTransmission :

Packet Pipe, Ethernet,

ATMNetwork Elements

Application Profile

Web, E-mail, FTP, etc.

From Physical Data

OPNET Model

10

KJH 19

Cross Layer Modeling: Cross Layer Modeling: 3G 1X EV3G 1X EV--DO model (Scheduler)DO model (Scheduler)

Model Approach

IS-856 (1xEV-DO Spec)

OPNET SystemSimulation

ChannelPrediction

System & ApplicationPerformance

C/I distribution

DRC Length

Scheduler

Channel Model

Traffic Model

KJH 20

Case StudyCase Study

Performance : End-to-End PerformanceTraffic Engineering Queueing Impact Performance improvement HTTP protocol

Network Architecture : 3G+ Wireless Technology EvolutionVoice performance Backhaul Network Evolution Backbone Network Evolution 3G-1X RTT vs. 3G-1X EV-DO

Optimization & Algorithm: System Parameters and AlgorithmAAL2 Multiplexing StudyRF Channel Sharing Algorithm Study Resource Sharing AlgorithmNetwork Bottleneck Point Study (Network Design)

11

KJH 21

EndEnd--toto--End Performance:End Performance:WWeb Browsingeb Browsing endend--toto--end performanceend performance

Page response time

(sec)

Object response time

(sec)

Traffic received (bits/sec)

KJH 22

Simulation Time (min)

Channel Throughput (bits/sec)

EndEnd--toto--End Performance:End Performance:Traffic Engineering (Traffic Engineering (Web Protocol OverheadWeb Protocol Overhead))

TCP/IP O.H Included

ATM Overhead Included

Received bytes in Client

Application Goodput

12

KJH 23

EndEnd--toto--End Performance: End Performance: Lindley Lindley QueueingQueueing Impact Impact Runtime ComparisonRuntime Comparison

Number of Foreground

Users

Number of background

Users

Download File size

Simulation Time (sec)

1 0 1 Mbytes 120 sec

2 0 1 Mbytes 237 sec

3 0 1 Mbytes 355 sec

4 0 1 Mbytes 478 sec

5 0 1 Mbytes 596 sec

1 1400 1 Mbytes 190 sec190 sec

1 1670 1 Mbytes 205 sec205 sec

• Run time approximately linear in number of foreground users. • Efficient in number of background users.

KJH 24

HTTP 1.1 supports persistent connection and pipelineHTTP 1.1 shows 12% and 16% mean delay performance improvement for 4% and 10% BLER respectively.

5.684.98

11.7

10.1

6.75.6

16.7

14.5

0

2

4

6

8

10

12

14

16

18

page

resp

onse

tim

e(se

c)

4% FER Mean 4% FER 95%delay

10% FERMean

10% FER 95%delay

HTTP 1.0 HTTP1.1

EndEnd--toto--End Performance: End Performance: Web Browsing protocol Web Browsing protocol HTTP 1.0 HTTP 1.0 vsvs HTTP1.1HTTP1.1

13

KJH 25

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution ::Reference Architecture for Voice TrafficReference Architecture for Voice Traffic

IP

64k PCM/32K ADPCM

PCM

BTS

ATMAAL2

ATM

Packet Pipes ATM

PCM/ Channelized T1

PSAXPSAXPSAX

MSCPSTN

Media Gateway

PSAXPSAXPSAX

MSC

BTS

ATMAAL2

ATM

Packet Pipes

PCM

Media Gateway

APX8000

Voice call Flow

64k PCM/32K ADPCM100BT

Ethernet

GX550 GX550

1

2 3

1

1 TDM

2

3

ATM :PCM 64 kbps

ATM :ADPCM 32 kbps

Tandem Tandem

4

4 IP :G.726 32 kbps

100BTEthernet

TMX880 TMX880

APX8000

RNCRNC5

5 IP :Vocoder bypass

2.5G2.5G

3G3G

3G+3G+

KJH 26

0

50

100

150

200

250

mse

c

TDM tandemG.711 (64kbps)

ATM BackboneG.711 (64kbps)

AAL1

ATM BackboneG.726 (32kbps)

AAL2

IP BackboneG.726 (32kbps)

IP backboneVocoder Bypass

Technologies

Uplink Avg. Delay BackBone Avg. Delay Downlink Avg. Delay

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution ::EndEnd--toto--end voice packet delayend voice packet delay

No significant difference between ATM and IP backbone Vocoder bypass : delay decrease and better voice quality due to no trans-vocoder

E2E One Way Delay (ms)

64 kbps (G.711)

32 kbps(G.726) 16kbps(G.728)

0 94 87 50 93 86 100 92 85 150 90 83 200 87 80 250 80 73 300 74 67 350 68 61 400 63 56 450 59 52

45 0

9 0 - 1 0 0 B e s t q u a li t y ; u s e rs v e r y s a t is f ie d

8 0 -9 0 H ig h q u a l it y ; u s e rs s a t is f ie d

7 0 -8 0 M e d iu m q u a l i t y ; s o m e u s e rs d is s a t is f ie d

6 0 -7 0 L o w q u a l i t y ; m a n y u s e rs d is s a t is f ie d

5 0 -6 0 P o o r q u a l i t y ; n e a r ly a ll u s e r s d is s a t is f ie d

L e s s th a n 5 0

U n a c c e p t a b le q u a l i t y

Source: IEEE Communications Magazine, July 1999

Voice Quality Scores (R value)

Uplink : MT – BTS – MSC/RNCBackbone : MG – Switch/Router – MGDownlink : MSC/RNC - BTS - MT

14

KJH 27

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution : : Voice : Background load vs. JitterVoice : Background load vs. Jitter

Scenarios IP backbone voice scenarioWeb browsing background traffic in links Web data rate fixed to uplink 64 Kbps and downlink 153 KbpsNo QoS mechanism implemented

QoS mechanism should be support in the backhaul and backbone(end-to-end).

1.99261.823340%

0.0043219.82190%

0.426222.722110%

1.51246.522930%

12.4425.930180%

6.4360.426670%

Avg. Jitter

(msec)

P( x < X) = 0.95Avg. pkt. delay(msec)

Avg. End-to-end packet delay (msec)

Back-groundTraffic Load

0

50

100

150

200

250

300

350

400

450

mse

c

0% 10% 30% 40% 70% 80%

Backgorund traffic

Avg. End-toend delay 95% delay Avg. Jitter

KJH 28

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution ::Backhaul Network Evolution (ATM,HDLC, Ethernet)Backhaul Network Evolution (ATM,HDLC, Ethernet)

Web page response time for the different backhaul (IP backbone)HDLC (15.6%), 100BT Ethernet (21.7 %) show web browsing delay performance improvement for 10% FERIP technology reduce packet overhead and provide higher transmission speed

9.2 9.18.3

14.7

12.411.5

0

2

4

6

8

10

12

14

16

18

Mea

n pa

ge re

spon

se ti

me

(mse

c)

4% 10%

FER

ATM (T1) HDLC (T1) Ethernet (100BT)

15

KJH 29

Web page response time for the different backboneIP backbone reduced little end-to-end delay due to lower header overhead and SAR delay compared to ATM backbone (5.2%, 7.7 %)Other Performance Issues : Mobile Terminal interface (serial port vs. PCMCIA), TCP Window sizes (UNIX vs. MS Server), HTTP version, etc.

9.69 9.1

8.3

0

2

4

6

8

10

12

mea

n pa

ge re

spon

se ti

me

(mse

c)

ATM IP

Backbone transport technologies

EVDO HDLC(T1) Ethernet (100BT)

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution ::Backbone Network Evolution (ATM vs. IP)Backbone Network Evolution (ATM vs. IP)

KJH 30

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution : : 3G3G--11XX, EVDO vs. EVDV, EVDO vs. EVDV

Web page response time for the technologies phaseDelay is reduced 46% from 3G-1X trial to EVDV technology in 10% BLERImprovement not proportional to difference in air interface speedsHigher speed air interface is expected to see higher BLER - improvement may not be good as 46%.

3.5 3.42.6 2.5

9.18.3

7

5

15.1

11.5

9.38.1

0

2

4

6

8

10

12

14

16

page

resp

onse

tim

e (s

ec)

No FER 4% FER 10% FER

FER

3G-1X RTT (F:153 Kbps, R:64 Kbps)3G-1X (F:153 Kbps, R:153 Kbps)EV-DO (F:2.4 Mbps, R:153Kbps)EV-DV (F:2.4 Mbps, R:2Mbps)

16

KJH 31

AssumptionsBased on 3GPP UMTS Release 99 standards Voice traffic

mobile-to-mobile modelsWeb browsing

client-server modelsThe Node-B to concentrator link: E1The concentrator to RNC link: STM-1

System Parameter & Algorithm :System Parameter & Algorithm :AAL2 Multiplexing StudyAAL2 Multiplexing Study

KJH 32

B(τ,n) is average user payload in a cell. depend of the remainder in a cellThe remainder in a cell has a Markovian property

given n packet arrivals, the probability of i talkspurt packets and j silence packets among nDefine

The packing density:

The bandwidth gain:

( , )(%) 100 ,(1 47)47

B n Bτψ = × ≤ ≤

[ ]1

,

1(1 ) ,

ij talk silence

i jN ntalk silence talk silence

p P N i N j

N nP P P P i j n

n i− −

= = =

−⎡ ⎤ ⎡ ⎤= − − + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( , ) (0, )( , )(%) 100(0, ) 5

B n B nnB nτγ τ −

= ×+

(n-1)thpacket nth packet (n+1)th packetnth packet

(n-1)th cell nth cell

( ) ( ) ( )

( ) ( )

4 1 3 2 1 7 2

0 0 0 1 0 2 0 30 0 0 0

5

1 0 0 0 0 1 0 2 0 3 1 00

1 5 3 0 4 5

4 2 4 7 1

i i i ii i i i

ii

B p i p i p i p i

p i p p p p p

π π π π

π

= = = =

=

= + + + + + +

+ + + − − − − −

∑ ∑ ∑ ∑

System Parameter & Algorithm :System Parameter & Algorithm :AAL2 Multiplexing (PD, BW Gain)AAL2 Multiplexing (PD, BW Gain)

17

KJH 33

1 10 20 30 40 50 60 70 80 90 100 120 140 1600

2

4

6

8

10

12

14

16

Number of concurrnt voice users

Ave

rage

ban

dwid

th g

ain(

%)

Timer CU= 0 ms (Analysis)Timer CU= 1 ms (Analysis)Timer CU= 2 ms (Analysis)Timer CU= 3 ms (Analysis)Timer CU= 4 ms (Analysis)Timer CU= 5 ms (Analysis)Timer CU= 6 ms (Analysis)Timer CU= 7 ms (Analysis)Timer CU= 0 ms (Simulation)Timer CU= 1 ms (Simulation)Timer CU= 2 ms (Simulation)Timer CU= 3 ms (Simulation)Timer CU= 4 ms (Simulation)Timer CU= 5 ms (Simulation)Timer CU= 6 ms (Simulation)Timer CU= 7 ms (Simulation)

Voice Traffic ScenariosPacking Density Bandwidth gain

The symbols present simulation results and the curves mean analytical results. The analytic results are very close to simulation ones. Maximum bandwidth gain with AAL2 is about 18% higher than the bandwidth gain without AAL2

1 10 20 30 40 50 60 70 80 90 100 120 140 160

84

86

88

90

92

94

96

98

100

Number of concurrent voice user

Pac

king

den

sity

in N

ode-

B(%

)

Timer CU=0 ms (Analysis)Timer CU=1 ms (Analysis)Timer CU=2 ms (Analysis)Timer CU=3 ms (Analysis)Timer CU=4 ms (Analysis)Timer CU=5 ms (Analysis)Timer CU=6 ms (Analysis)Timer CU=7 ms (Analysis)Timer CU=0 ms (Simulation)Timer CU=1 ms (Simulation)Timer CU=2 ms (Simulation)Timer CU=3 ms (Simulation)Timer CU=4 ms (Simulation)Timer CU=5 ms (Simulation)Timer CU=6 ms (Simulation)Timer CU=7 ms (Simulation)

System Parameter & Algorithm :System Parameter & Algorithm :AAL2 Multiplexing (PD, BW Gain)AAL2 Multiplexing (PD, BW Gain)

KJH 34

0.51

2

3

4

5

6

7

8

9

10

0 10 20 30 40 60 80 100 150 200 248

Tim

er C

U (m

s)

Number of concurrent voice users

maximum bandwidth gain*95%maximum bandwidth gain*90%maximum bandwidth gain*85%maximum bandwidth gain*80%

Timer_CU decreases rapidly when the number of concurrent user issmall It is closed to asymptotic value over 80 concurrent voice calls.This graph can be used to select the optimal Timer_CU.

System Parameter & Algorithm :System Parameter & Algorithm :AAL2 Multiplexing (PD, BW Gain)AAL2 Multiplexing (PD, BW Gain)

Timer_CU vs. Concurrent voice users (Node-B)

18

KJH 35

This result indicates that there is no significant AAL2 multiplexing benefit in a concentrator on Iub in terms of bandwidth gain.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

10 30 50 70 90 110 130 150 170

Number of concurrent voice users

Ban

dwid

th g

ain

in a

con

cent

rato

r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Traf

fic lo

ad in

E1

Bandwidth gain, Timer_CU=1 msBandwidth gain, Timer_CU=2 msBandwidth gain, Timer_CU=3 msE1 Load, Timer_CU= 1 msE1 Load, Timer_CU= 2 msE1 Load, Timer_CU=3 ms

Bandwidth gain vs. Concurrent voice users (Concentrator)

System Parameter & Algorithm :System Parameter & Algorithm :AAL2 Multiplexing (PD, BW Gain)AAL2 Multiplexing (PD, BW Gain)

KJH 36

Data (Web browsing) Traffic Scenario These two figures represent downlink channel only. AAL2 multiplexing with Timer_CU of 1 ms at each Node-BThe traffic on this link includes DchFP and ATM protocol overhead as well.the bandwidth gain with an additional AAL2 multiplexing at the concentrator would be negligible.

90

91

92

93

94

95

96

97

98

99

100

0 1 2 3 4 5 6 7

Timer_CU (ms)

Pack

ing

dens

ity (%

)

1 User 5 User 10 User

20 User 30 User 40 User

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

Timer_CU (ms)

Util

izat

ion(

%) i

n E1

1 User 5 User 10 User

20 User 30 User 40 User

Packing Density Link Utilization

System Parameter & Algorithm :System Parameter & Algorithm :AAL2 Multiplexing (Data traffic)AAL2 Multiplexing (Data traffic)

19

KJH 37

Comparison Fixed and Adaptive algorithmFixed algorithm : inactivity timer 5 sec fixedProposed Adaptive algorithmProposed Adaptive algorithm : 100 msec and 40 msec interval

Use backlogged packet size and data rate (Lucent proprietary information)Number of DCH used/ Averaged Number of DCH

System Parameter & Algorithm :System Parameter & Algorithm :RF Channel Sharing Algorithm StudyRF Channel Sharing Algorithm Study

FIXED: 5 secFIXED: 5 sec

Proposed : 100 msecProposed : 100 msec

Proposed : 40 msecProposed : 40 msec

KJH 38

System Parameter & Algorithm :System Parameter & Algorithm :QoS based Processor Resource Management QoS based Processor Resource Management

Processor Resource Management in RNC/Node-B/…

Class1 Queue

Class2 Queue

Class3 Queue

Class4 Queue

processor resource

Give priority to Class 1 QueueIf accumulated service time >

T1, then no more new call allowed

Weighted round robin with Ti, i = 2,3, when Class 1 queue is empty

Best effort service when other queues are empty

New traffic for class 1 and 2 can preempt class 4 traffic

20

KJH 39

Network topologyPt.-Pt. Demands by serviceRoutingReference connection to be modeled

Background traffic - All network traffic that crosses referenceconnection mapped to appropriate network elements.

Translation of all network info into simulation format.

User plane Key Performance Indicators

Network Design

Simulator Preprocessor

Performance Simulator

Test additional reference connections?Modify network design?

Satisfied !!

Specific application to be modeled along reference connection

Network design process to include performance model

System Parameter & Algorithm :System Parameter & Algorithm :Network Bottleneck Point Study (Network Design)Network Bottleneck Point Study (Network Design)

KJH 40

OPNET View after importing the network topology

•120 Nodes

–15 Backbone Nodes (GX550)

–105 Access Nodes (ATM Clients)

•119 Links

System Parameter & Algorithm :System Parameter & Algorithm :Network Bottleneck Point Study (Network Design)Network Bottleneck Point Study (Network Design)

21

KJH 41

• No performance problems over large range of loads. • Ability to determine performance bottleneck.

Key network element causing

bottleneck

System Parameter & Algorithm :System Parameter & Algorithm :Network Bottleneck Point StudyNetwork Bottleneck Point Study

KJH 42

What you may get from this talk? What you may get from this talk? Wireless Network Performance Modeling

Wireless Service Traffic Model (Voice, Web, Calendaring, M-commerce, SMS, MMS, etc)Cross Layer Protocol Integration Model Network Element Model Reference Architecture and Connection Model

Wireless Application Perspective Performance QoS Mechanism should be provided for the end-to-end connectionsQoS Definition and end-to-end Mapping

3G+ Wireless QoS Performance End-to-end Network Architecture Issues (Backhaul and Backbone)System Parameters issues (TCP, RLP PU, MUX, TTI, Inactivity Timer, etc.) Wireless Protocols Issues (Flow control, Scheduling, Process Sharing)Technology Evolution ( 3G-1X, EVDO, EVDV, ALL IP, MIP)

22

KJH 43

Future Research IssuesFuture Research Issues

Wireless Terminal ResearchUser application/service traffic Modeling & Performance Performance improvement in UE

Wireless System Research 3G Wireless Algorithms : MAC, Scheduling, Process SharingProtocols issues : HTTP, TCP/IP, RLP,RLC, HARQ, HandoffOptimal configuration parameters

Network Research AlI IP scenarios QoS problemQoS IP routing protocols : MPLS, Diffserv, etc. 4G Mobile IP network (WLAN, WMAN, WPAN + 3G)End-to-end Network Solution Portfolio

KJH 44

ReferenceReference

J. H. Kim and C. W. Lee, "End-to-end User Perceived Application Performance in 3G+ Networks" to appear in Proc. IEEE ICC'04, Paris, France, June. 2004 H. J. Lee and J. H. Kim, "Decision Point of AAL2 Multiplexing for Voice and Data Services in 3G WCDMA Network" in Proc. ICOIN2004, Pusan, Korea, FEB. 2004D. Houck, B.H. Kim and J.H. Kim “End-to-end UMTS network Performance modeling” Networks 2002, Jun 23-27, Munich ,GermanyUS Patent: N. Khrais, C. Chou and J. H. Kim,, “A Method and System For Management of Traffic Processor Resource Supporting UMTS QoS Classes”Submitted on April 16 2003S. H. Cho, J. H. Kim, and S. H. Park, “Performance Evaluation of the DOCSIS 1.1 MAC Protocol according to the structure of a MAP Message,” IEEE ICC2001, vol.6, pp. 1786-1791, Helsinki, Finland. June 11-15, 2001.J. H. Kim and J. K. Lee, "Throughput and Packet Delay Analysis of IEEE 802.11 MAC Protocol for Wireless LAN's," Wireless Personal Communications vol. 11, pp.161-183, Nov. 1999.J. H. Kim and J. K. Lee, “Performance Analysis of CSMA/CA in multipath, shadowing and capture effect,” IEEE Tran. on Vehicular Technology, vol. 48. No.4, pp. 1277-1286, July 1999.

23

Thank you !!Thank you !!Question or Comments?Question or Comments?